Skip to main content
Log in

Oxygen Plasma for Prevention of Biofilm Formation on Silicone Catheter Surfaces: Influence of Plasma Exposure Time

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The most common bacterial species responsible for causing catheter-associated urinary tract infection is Escherichia Coli (E. Coli). In the present work, we report an experimental investigation of plasma-induced physico-chemical changes on silicone catheter surfaces and their influence on biofilm formation by uropathogenic E. coli bacterial cells for 7 days incubation period. Catheter substrates were exposed to an oxygen plasma environment from 1 to 30 min under capacitively coupled radio frequency low-pressure discharge. Plasma-modified surfaces have been characterized by Fourier transform infrared spectroscopy for surface chemistry, video contact angle goniometer for wettability and surface free energy, atomic force microscopy, and scanning electron microscopy for surface morphological studies. Chemical composition of oxygen plasma has been investigated using optical emission spectroscopy. Results convey that plasma induced morphological parameters such as average surface roughness (Sa), the average distance between local peaks (S), and average slope of the morphological features (Δa) play dominant role over surface chemistry for reduction in bacterial colonization and biofilm formation. The effectiveness of plasma treatment was evaluated up to 30 days after plasma treatment. Results confirm that oxygen plasma-treated catheter surface is successfully able to prevent biofilm formation with maximum 99.4% reduction in bacterial adhesion for 10 min of plasma exposure. Our study suggests that oxygen plasma treatment alone can be considered as a simple and eco-friendly solution for the prevention of E. coli biofilm formation on silicone catheter surfaces without involving the use of antibiotics or any other complex coating chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Loose M, Naber KG, Purcell L et al (2021) Anti-biofilm effect of octenidine and polyhexanide on uropathogenic biofilm-producing bacteria. Urol Int 105:278–284. https://doi.org/10.1159/000512370

    Article  CAS  PubMed  Google Scholar 

  2. Anjum S, Singh S, Benedicte L et al (2018) Biomodification strategies for the development of antimicrobial urinary catheters: overview and advances. Glob Chall 2:1700068. https://doi.org/10.1002/gch2.201700068

    Article  PubMed  Google Scholar 

  3. Ramadan R, Omar N, Dawaba M, Moemen D (2021) Bacterial biofilm dependent catheter associated urinary tract infections: characterization, antibiotic resistance pattern and risk factors. Egpt J Basic Appl Sci 8:64–74. https://doi.org/10.1080/2314808X.2021.1905464

    Article  Google Scholar 

  4. Gunardi WD, Karuniawati A, Umbas R et al (2021) Biofilm-producing bacteria and risk factors (gender and duration of catheterization) characterized as catheter-associated biofilm formation. Int J Microbiol. https://doi.org/10.1155/2021/8869275

    Article  PubMed  PubMed Central  Google Scholar 

  5. Soto SM (2014) Importance of biofilms in urinary tract infections: new therapeutic approaches. Adv Biol 2014:1–13. https://doi.org/10.1155/2014/543974

    Article  CAS  Google Scholar 

  6. Mandakhalikar KD, Chua RR, Tambyah PA (2016) New technologies for prevention of catheter associated urinary tract infection. Curr Treat Options Infect Dis 8:24–41. https://doi.org/10.1007/s40506-016-0069-5

    Article  Google Scholar 

  7. Tang J, Han Y, Chen H, Lin Q (2016) Bottom-up fabrication of peg brush on poly(dimethylsiloxane) for antifouling surface construction. Int J Polym Sci. https://doi.org/10.1155/2016/8458752

    Article  Google Scholar 

  8. Lou T, Bai X, He X, Yuan C (2021) Antifouling performance analysis of peptide-modified glass microstructural surfaces. Appl Surf Sci 541:148384. https://doi.org/10.1016/j.apsusc.2020.148384

    Article  CAS  Google Scholar 

  9. Zhang X, Brodus DS, Hollimon V, Hu H (2017) A brief review of recent developments in the designs that prevent bio-fouling on silicon and silicon-based materials. Chem Cent J 11:1. https://doi.org/10.1186/s13065-017-0246-8

    Article  CAS  Google Scholar 

  10. Dong JJ, Muszanska A, Xiang F et al (2019) Contact killing of gram-positive and gram-negative bacteria on PDMS provided with immobilized hyperbranched antibacterial coatings. Langmuir 35:14108–14116. https://doi.org/10.1021/acs.langmuir.9b02549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Liu Y, Ren B et al (2019) Fundamentals and applications of zwitterionic antifouling polymers. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/ab2cbc

    Article  Google Scholar 

  12. Mohamed DS, El-Baky RMA, Sandle T et al (2020) Antimicrobial activity of silver-treated bacteria against other multi-drug resistant pathogens in their environment. Antibiotics. https://doi.org/10.3390/antibiotics9040181

    Article  PubMed  PubMed Central  Google Scholar 

  13. Al-Qahtani M, Safan A, Jassim G, Abadla S (2019) Efficacy of anti-microbial catheters in preventing catheter associated urinary tract infections in hospitalized patients: a review on recent updates. J Infect Public Health 12:760–766. https://doi.org/10.1016/j.jiph.2019.09.009

    Article  PubMed  Google Scholar 

  14. Andersen MJ, Flores-Mireles AL (2020) Urinary catheter coating modifications: the race against catheter-associated infections. Coatings 10:1–25. https://doi.org/10.3390/coatings10010023

    Article  CAS  Google Scholar 

  15. Katsikogianni M, Missirlis YF, Harris L, Douglas J (2004) Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cells Mater 8:37–57

    Article  CAS  Google Scholar 

  16. Oh JK, Yegin Y, Yang F et al (2018) The influence of surface chemistry on the kinetics and thermodynamics of bacterial adhesion. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-35343-1

    Article  CAS  Google Scholar 

  17. Zheng S, Bawazir M, Dhall A et al (2021) Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front Bioeng Biotechnol 9:1–22. https://doi.org/10.3389/fbioe.2021.643722

    Article  Google Scholar 

  18. Wu S, Zhang B, Liu Y et al (2018) Influence of surface topography on bacterial adhesion: a review (review). Biointerphases 13:060801. https://doi.org/10.1116/1.5054057

    Article  CAS  PubMed  Google Scholar 

  19. Singh AV, Vyas V, Patil R et al (2011) Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS ONE. https://doi.org/10.1371/journal.pone.0025029

    Article  PubMed  PubMed Central  Google Scholar 

  20. Parreira P, Magalhaes A, Gonaçalves IC et al (2011) Effect of surface chemistry on bacterial adhesion, viability, and morphology. J Biomed Mater Res Part A 99A:344–353

    Article  CAS  Google Scholar 

  21. Cai S, Wu C, Yang W et al (2020) Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol Rev 9:971–989. https://doi.org/10.1515/ntrev-2020-0076

    Article  CAS  Google Scholar 

  22. Yoshida S, Hagiwara K, Hasebe T, Hotta A (2013) Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf Coatings Technol 233:99–107. https://doi.org/10.1016/j.surfcoat.2013.02.042

    Article  CAS  Google Scholar 

  23. Benčina M, Resnik M, Starič P, Junkar I (2021) Use of plasma technologies for antibacterial surface properties of metals. Molecules. https://doi.org/10.3390/molecules26051418

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jacobs T, Morent R, De Geyter N et al (2012) Plasma surface modification of biomedical polymers: influence on cell-material interaction. Plasma Chem Plasma Process 32:1039–1073. https://doi.org/10.1007/s11090-012-9394-8

    Article  CAS  Google Scholar 

  25. Tran C, Yasir M, Dutta D et al (2019) Single step plasma process for covalent binding of antimicrobial peptides on catheters to suppress bacterial adhesion. ACS Appl Bio Mater 2:5739–5748. https://doi.org/10.1021/acsabm.9b00776

    Article  CAS  PubMed  Google Scholar 

  26. Neoh KG, Li M, Kang E-T et al (2017) Surface modification strategies for combating catheter-related complications: recent advances and challenges. J Mater Chem B 5:2045–2067. https://doi.org/10.1039/C6TB03280J

    Article  CAS  PubMed  Google Scholar 

  27. Milo S, Nzakizwanayo J, Hathaway HJ et al (2019) Emerging medical and engineering strategies for the prevention of long-term indwelling catheter blockage. Proc Inst Mech Eng Part H J Eng Med 233:68–83. https://doi.org/10.1177/0954411918776691

    Article  Google Scholar 

  28. Aflori M, Miron C, Dobromir M, Drobota M (2015) Bactericidal effect on Foley catheters obtained by plasma and silver nitrate treatments. High Perform Polym 27:655–660. https://doi.org/10.1177/0954008315584171

    Article  CAS  Google Scholar 

  29. Taheran L, Zarrini G, Khorram S, Zakerhamidi MS (2016) Plasma surface modification as a new approach to protect urinary catheter against Escherichia coli biofilm formation. Iran J Microbiol 8:257–262

    PubMed  PubMed Central  Google Scholar 

  30. Mandakhalikar KD, Rahmat JN, Chiong E et al (2018) Extraction and quantification of biofilm bacteria: method optimized for urinary catheters. Sci Rep 8:8069. https://doi.org/10.1038/s41598-018-26342-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cvelbar U, Krstulović N, Milošević S, Mozetič M (2007) Inductively coupled RF oxygen plasma characterization by optical emission spectroscopy. Vacuum 82:224–227. https://doi.org/10.1016/j.vacuum.2007.07.016

    Article  CAS  Google Scholar 

  32. Roberson G, Roberto M, Verboncoeur J, Verdonck P (2007) Global model simulations of low-pressure oxygen discharges. Brazilian J Phys 37:457–465. https://doi.org/10.1590/S0103-97332007000300019

    Article  CAS  Google Scholar 

  33. Rezaei F, Abbasi-Firouzjah M, Shokri B (2014) Investigation of antibacterial and wettability behaviours of plasma-modified PMMA films for application in ophthalmology. J Phys D Appl Phys 47:085401. https://doi.org/10.1088/0022-3727/47/8/085401

    Article  CAS  Google Scholar 

  34. Mieno T, Kamo T, Hayashi D et al (1996) Efficient production of O + and O − ions in a helicon wave oxygen discharge. Appl Phys Lett 69:617–619. https://doi.org/10.1063/1.117925

    Article  CAS  Google Scholar 

  35. Johnson LM, Gao L, Shields CW IV et al (2013) Elastomeric microparticles for acoustic mediated bioseparations. J Nanobiotechnol 11:22. https://doi.org/10.1186/1477-3155-11-22

    Article  CAS  Google Scholar 

  36. Kondoh E, Asano T, Nakashima A, Komatu M (2000) Effect of oxygen plasma exposure of porous spin-on-glass films. J Vac Sci Technol B Microelectron Nanom Struct 18:1276. https://doi.org/10.1116/1.591374

    Article  CAS  Google Scholar 

  37. Ryu IS, Liu X, Jin Y et al (2018) Stoichiometric analysis of competing intermolecular hydrogen bonds using infrared spectroscopy. RSC Adv 8:23481–23488. https://doi.org/10.1039/C8RA02919A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hong J, Truica-Marasescu F, Martinu L, Wertheimer MR (2002) An investigation of plasma-polymer interactions by mass spectrometry. Plasmas Polym 7:245–260. https://doi.org/10.1023/A:1019938424698

    Article  CAS  Google Scholar 

  39. Stahl M, Trottenberg T, Kersten H (2010) A calorimetric probe for plasma diagnostics. Rev Sci Instrum 81:023504. https://doi.org/10.1063/1.3276707

    Article  CAS  PubMed  Google Scholar 

  40. Zhenyu L, Xidong L, Yuanxiang Z, et al (2004) Influence of temperature on the hydrophobicity of silicone rubber surfaces. In: The 17th annual meeting of the IEEE lasers and electro-optics society, 2004. LEOS 2004. IEEE, pp 679–682

  41. Wang Z, Luo Y, Zheng F et al (2018) Study on surface structure of plasma-treated polydimethylsiloxane (PDMS) elastomer by slow positron beam. Surf Interface Anal 50:819–826. https://doi.org/10.1002/sia.6484

    Article  CAS  Google Scholar 

  42. Felix T, Benetoli L, Sério S, et al (2020) Temporal evolution of roughness development on polymer surfaces exposed to non-thermal plasma. J Braz Chem Soc. https://doi.org/10.21577/0103-5053.20200101

  43. Gadelmawla ES, Koura MM, Maksoud TMA et al (2002) Roughness parameters. J Mater Process Technol 123:133–145. https://doi.org/10.1016/S0924-0136(02)00060-2

    Article  Google Scholar 

  44. Kallas P, Haugen HJ, Gadegaard N et al (2020) Adhesion of Escherichia coli to nanostructured surfaces and the role of Type 1 fimbriae. Nanomaterials 10:2247. https://doi.org/10.3390/nano10112247

    Article  CAS  PubMed Central  Google Scholar 

  45. De RRL, Albuquerque DAC, Cruz TGS, et al (2012) Measurement of the nanoscale roughness by atomic force microscopy: basic principles and applications. In: Atomic force microscopy - imaging, measuring and manipulating surfaces at the atomic scale. InTech

  46. Mortazavi M, Nosonovsky M (2012) A model for diffusion-driven hydrophobic recovery in plasma treated polymers. Appl Surf Sci 258:6876–6883. https://doi.org/10.1016/j.apsusc.2012.03.122

    Article  CAS  Google Scholar 

  47. Chung HJ, Bang W, Drake MA (2006) Comprehensive stress response of reviews Escherichia coli in food science and food safety. 5

  48. Mar J, Llorens N, Tormo A, Mart E (2010) Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 34:476–495. https://doi.org/10.1111/j.1574-6976.2010.00213.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Sagar Agrawal for sharing resources, Dr. Pintu Bandopadhyay, Mr. Kushagra Nigam and Mr. Vikas Rathore, Institute for Plasma Research for their valuable help in optical emission spectroscopy experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purvi Dave.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, P., Balasubramanian, C., Hans, S. et al. Oxygen Plasma for Prevention of Biofilm Formation on Silicone Catheter Surfaces: Influence of Plasma Exposure Time. Plasma Chem Plasma Process 42, 815–831 (2022). https://doi.org/10.1007/s11090-022-10254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10254-2

Keywords

Navigation