Skip to main content
Log in

Testing for diagonal symmetry based on center-outward ranking

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

This article has been updated

Abstract

This paper aims to propose a new class of permutation-invariant tests for diagonal symmetry around a known point based on the center-outward depth ranking. The asymptotic behavior of the proposed tests under the null distribution is derived. The performance of the proposed tests is assessed through a Monte Carlo study. The results show that the tests perform well comparing other procedures in terms of empirical sizes and empirical powers. We demonstrated that the proposed class includes the celebrated Wilcoxon signed-rank test as a special case in the univariate setting. Finally, we apply the tests to a well-known data set to illustrate the method developed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 02 April 2023

    In the first affiliation, the univerty information is updated as “Shahid Beheshti University”.

References

  • Aki S (1986) Some test statistics based on the martingale term of the empirical distribution function. Ann Inst Stat Math 38(1):1–21

    Article  MathSciNet  MATH  Google Scholar 

  • Azzalini A, Valle AD (1996) The multivariate skew-normal distribution. Biometrika 83(4):715–726

    Article  MathSciNet  MATH  Google Scholar 

  • Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J R Stat Soc Ser B 65(2):367–389

    Article  MathSciNet  MATH  Google Scholar 

  • Batsidis A, Zografos K (2013) A necessary test of fit of specific elliptical distributions based on an estimator of Songs measure. J Multivar Anal 113:91–105

    Article  MathSciNet  MATH  Google Scholar 

  • Feifei Chen, Meintanis Simos G, Lixing Zhu (2019) On some characterizations and multidimensional criteria for testing homogeneity, symmetry and independence. J Multivar Anal 173:125–144

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan S, Faridrohani MR (2019) Affine invariant depth-based tests for the multivariate one-sample location problem. TEST 28(3):671–693

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan S, Faridrohani MR (2020) Depth-based signed-rank tests for bivariate central symmetry. REVSTATStat J 18(1):109–129

    MathSciNet  MATH  Google Scholar 

  • Dehghan S, Faridrohani MR (2021) Non-parametric depth-based tests for the multivariate location problem. Austr N Zeal J Stat 63(2):309–330

    Article  MathSciNet  Google Scholar 

  • Dyckerhoff R, Ley C, Paindaveine D (2015) Depth-based runs tests for bivariate central symmetry. Ann Inst Stat Math 67(5):917–941

    Article  MathSciNet  MATH  Google Scholar 

  • Einmahl JH, Gan Z (2016) Testing for central symmetry. J Stat Plann Infer 169:27–33

    Article  MathSciNet  MATH  Google Scholar 

  • Fan Y (2016) New nonparametric approaches for multivariate and functional data analysis in outlier detection, construction of tolerance tubes, and clustering. Doctoral dissertation, Rutgers University-Graduate School-New Brunswick

  • Ghosh S, Ruymgaart FH (1992) Applications of empirical characteristic functions in some multivariate problems. Can J Stat 20:429–440

    Article  MathSciNet  MATH  Google Scholar 

  • Henze N, Mayer C (2020) More good news on the HKM test for multivariate reflected symmetry about an unknown centre. Ann Inst Stat Math 72(3):741–770

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmann EL, D’Abrera HJ (1975) Nonparametrics: statistical methods based on ranks. Holden-day

  • Ley C, Paindaveine D (2011) Depth-based runs tests for multivariate central symmetry. ECORE Discussion Papers 22

  • Koshevoy G, Mosler K (1997) Zonoid trimming for multivariate distributions. Ann Stat 25(5):1998–2017

    Article  MathSciNet  MATH  Google Scholar 

  • Liu RY (1988) On a notion of simplicial depth. Proc Natl Acad Sci 85(6):1732–1734

    Article  MathSciNet  MATH  Google Scholar 

  • Liu RY (1992) Data depth and multivariate rank tests. L1-statistical analysis and related methods, pp 279–294

  • Liu RY, Singh K (1993) A quality index based on data depth and multivariate rank tests. J Am Stat Assoc 88(421):252–260

    MathSciNet  MATH  Google Scholar 

  • Mahfoud ZR, Randles RH (2005) On multivariate signed-rank tests. J. Nonparametr Stat 17:201–216

    Article  MathSciNet  MATH  Google Scholar 

  • McWilliams TP (1990) A distribution-free test for symmetry based on a runs statistic. J Am Stat Assoc 85(412):1130–1133

    Article  MathSciNet  Google Scholar 

  • Mosler K, & Mozharovskyi P (2020) Choosing among notions of multivariate depth statistics. arXiv:2004.01927

  • Pratt JW (1959) Remarks on zeros and ties in the Wilcoxon signed rank procedures. J Am Stat Assoc 54(287):655–667

    Article  MathSciNet  MATH  Google Scholar 

  • Royston JP (1983) Some techniques for assessing multivarate normality based on the ShapiroWilk W. J Roy Stat Soc Ser C (Appl Stat) 32(2):121–133

    MATH  Google Scholar 

  • Sang Y, Dang X (2020) Empirical likelihood test for diagonal symmetry. Stat Prob Lett 156:108595

    Article  MathSciNet  MATH  Google Scholar 

  • Schott JR (2002) Testing for elliptical symmetry in covariance-matrix-based analyses. Stat Prob Lett 60(4):395–404

    Article  MathSciNet  MATH  Google Scholar 

  • Székely GJ, Rizzo ML (2013) Energy statistics: a class of statistics based on distances. J Stat Plan Inference 143(8):1249–1272

    Article  MathSciNet  MATH  Google Scholar 

  • Tukey J (1975) Mathematics and picturing of data. In: Proceeding of the international congress of mathematicians

  • Vardi Y, Zhang CH (2000) The multivariate L1-median and associated data depth. Proc Natl Acad Sci 97(4):1423–1426

    Article  MathSciNet  MATH  Google Scholar 

  • Zuo Y (2003) Projection-based depth functions and associated medians. Ann Stat 31:1460–1490

    Article  MathSciNet  MATH  Google Scholar 

  • Zuo Y, Serfling R (2000) General notions of statistical depth function. Ann Stat 28:461–482

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Faridrohani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

Under the null hypothesis, \( {\textbf {X}}_1,\ldots ,{\textbf {X}}_n \) are i.i.d. from F, where F(.) is diagonally symmetric distribution about the origin. Hence, we have

$$\begin{aligned} ({\textbf {X}}_1,\ldots ,{\textbf {X}}_n) \mathop = \limits ^d(\eta _1{\textbf {X}}_1,\ldots ,\eta _n{\textbf {X}}_n). \end{aligned}$$
(3)

where \(\eta _i\)’s, \(i=1,\ldots ,n\) are i.i.d. random variables taking the values 1 and -1 each with probability 1/2. This yields that for any \(j=1,\ldots ,p\), \(\delta _{1}^j,\ldots ,\delta _n^j\) are independent and identically distributed random variables that take the values 1 and \(-1\) with probability 1/2. Let \({\textbf {X}}_{i}=\delta _{i}^j{\textbf {Y}}_{i}^j\) where \({\textbf {Y}}_{i}^j=(Y_{i1}^j,\ldots ,Y_{ip}^j)^T\), \(i=1,\ldots ,n\) and \(j=1,\ldots ,p\). Thus for \({\textbf {y}}=(y_1,\ldots ,y_p)^T \in \mathbb {R}^p\) and \(i=1,\ldots ,n\)

$$\begin{aligned}&P_{H_0}\left( {Y_{i1}^j \le y_1 ,\ldots ,Y_{ip}^j \le y_p ,\delta _{i}^j = 1} \right) \\&\quad = P_{H_0}\left( {\delta _{i}^j Y_{i1}^j \le y_1 ,\ldots ,\delta _{i}^j Y_{ip}^j \le y_p ,\delta _{i}^j = 1} \right) \\&\quad = P_{H_0}\left( {X_{i1} \le y_1 ,\ldots , X_{ip} \le y_p ,\delta _{i}^j = 1} \right) \\&\quad = P_{H_0}\left( {X_{i1} \le y_1 ,\ldots ,X_{ip} \le y_p ,X_{ij} > 0} \right) \\&\quad = P_{H_0}\left( {X_{i1} \le y_1 ,\ldots ,0< X_{ij} \le y_j ,\ldots ,X_{ip} \le y_p} \right) \\&\quad = P_{H_0}\left( {-X_{i1} \le y_1 ,\ldots ,0< -X_{ij} \le y_j ,\ldots ,-X_{ip} \le y_p} \right) \\&\quad = P_{H_0}\left( {X_{i1} \ge -y_1 ,\ldots ,-y_j \le X_{ij}< 0 ,\ldots ,X_{ip} \ge -y_p} \right) \\&\quad = P_{H_0}\left( {X_{i1} \ge - y_1 ,\ldots , X_{ip} \ge - y_p ,X_{ij} < 0} \right) \\&\quad = P_{H_0}\left( { -X_{i1} \le y_1 ,\ldots , - X_{ip} \le y_p ,\delta _{i}^j = - 1} \right) \\&\quad = P_{H_0}\left( {\delta _{i}^j X_{i1} \le y_1 ,\ldots ,\delta _{i}^j X_{ip} \le y_p ,\delta _{i}^j = - 1} \right) \\&\quad = P_{H_0}\left( {Y_{i1}^j \le y_1 ,\ldots ,Y_{ip}^j \le y_p ,\delta _{i}^j = - 1} \right) \end{aligned}$$

and for \(k\ne i\)

$$\begin{aligned}&P_{H_0}\left( {Y_{i1}^j \le y_1 ,\ldots , Y_{ip}^j \le y_p ,\delta _{k}^j = 1} \right) \\&\quad = P_{H_0}\left( {Y_{i1}^j \le y_1 ,\ldots ,Y_{ip}^j \le y_p ,\delta _{i}^j = 1,\delta _{k}^j = 1} \right) \\&\quad \quad +P_{H_0}\left( {Y_{i1}^j \le y_1 ,\ldots ,Y_{ip}^j \le y_p ,\delta _{i}^j = - 1,\delta _{k}^j = 1} \right) \\&\quad = P_{H_0}\left( {X_{i1} \le y_1 ,\ldots ,X_{ip} \le y_p ,X_{ij}> 0,X_{kj}> 0} \right) \\&\quad \quad +P_{H_0}\left( {X_{i1} \ge - y_1 ,\ldots ,X_{ip} \ge - y_p ,X_{ij}< 0,X_{kj}> 0} \right) \\&\quad = P_{H_0}\left( {X_{i1} \le y_1 ,\ldots ,X_{ip} \le y_p ,X_{ij} > 0,X_{kj}< 0} \right) \\&\quad \quad +P_{H_0}\left( {X_{i1} \ge - y_1 ,\ldots ,X_{ip} \ge - y_p ,X_{ij}< 0,X_{kj} < 0} \right) \\&\quad = P_{H_0}\left( {Y_{i1}^j \le y_1 ,\ldots ,Y_{ip}^j \le y_p ,\delta _{i}^j = 1,\delta _{k}^j = - 1} \right) \\&\quad \quad +P_{H_0}\left( {Y_{i1}^j \le y_1 ,\ldots ,Y_{ip}^j \le y_p ,\delta _{i}^j = - 1,\delta _{k}^j = - 1} \right) \\&\quad = P_{H_0}\left( {Y_{i1}^j \le y_1 ,\ldots ,Y_{ip}^j \le y_p ,\delta _{k}^j = - 1} \right) . \\ \end{aligned}$$

Hence these imply that \(\delta _{i}^j\) for \(i=1,\ldots ,n\), is independent of \({\textbf {Y}}_{1}^j,\ldots , {\textbf {Y}}_{n}^j\). Now, suppose that \(F^s_{{\textbf {X}}_n}\) and \(F^s_{{\textbf {Y}}_n^j}\) be the sample distribution functions of \( \left\{ { \pm {\textbf {X}}_{1} ,\ldots , \pm {\textbf {X}}_{n} } \right\} \) and \( \left\{ { \pm {\textbf {Y}}_{1}^j ,\ldots , \pm {\textbf {Y}}_{n}^j } \right\} \), respectively, \(j=1,\ldots ,p\). Since \(\left\{ { \pm {\textbf {X}}_{1} ,\ldots , \pm {\textbf {X}}_{n} } \right\} = \left\{ { \pm {\textbf {Y}}_{1}^j ,\ldots , \pm {\textbf {Y}}_{n}^j } \right\} \), it is clear that \(F_{{\textbf {X}}_n}^s=F_{{\textbf {Y}}_n^j}^s\), \(j=1,\ldots ,p\). This equality along with the affine invariance of depth function concludes that \(D\left( {\textbf {X}}_{i},F_{{\textbf {X}}_n}^s\right) =D\left( {\textbf {Y}}_{i}^j,F_{{\textbf {Y}}_n^j}^s\right) \), for all \(i=1,\ldots ,n\), \(j=1,\ldots ,p\). This shows that \(R_{i}\) is a function of \({\textbf {Y}}_{1}^j,\ldots ,{\textbf {Y}}_{n}^j\) and thus is independent of \(\delta _{i}^j\), \(i=1,2,\ldots ,n\), \(j=1,\ldots ,p\). Define \({\textbf {T}}_i=\phi ({i}/(n+1) )\varvec{\delta }_i \). Then we can write that

$$\begin{aligned} \bar{\varvec{V}}_n =\dfrac{1}{n} \sum \limits _{i = 1}^n {{\textbf {V}}_i}=\dfrac{1}{n} \sum \limits _{i = 1}^n \phi \left( {\frac{{ R_i }}{{n + 1}}}\right) \varvec{\delta }_i \,\mathop = \limits ^d \dfrac{1}{n} \sum \limits _{i = 1}^n \phi \left( {\frac{{ i}}{{n + 1}}} \right) \varvec{\delta }_i =\dfrac{1}{n} \sum \limits _{i = 1}^n {{\textbf {T}}_i}= \bar{\varvec{T}}_n . \end{aligned}$$
(4)

where \(\mathop = \limits ^d \)means equal in distribution. Moreover, for any \(j=1,\ldots ,p\), \(\delta _{1}^j,\ldots ,\delta _{n}^j\) are independent and identically distributed random variables that take the values 1 and \(-1\) with probability 1/2. Then, it is clear that \( E({\textbf {T}}_i)=0\). Define

$$\begin{aligned} \varvec{\varphi }_i =cov({\textbf {T}}_i) = \phi ^2 \left( \frac{{i }}{{ {n + 1} }}\right) \varvec{\Omega }, \quad \quad \varvec{\varphi }= \mathop {\lim }\limits _{n \rightarrow \infty } \frac{1}{n}\sum \limits _{i = 1}^n {\varvec{\varphi }_i } = c \varvec{\Omega }\end{aligned}$$

where \(\varvec{\Omega }\) is the covariance matrix of the vector \(\varvec{\delta }_i\) and c is a constant that does not depend on n. The aim is to establish a multivariate Lindeberg-Feller central limit theorem for the \(\bar{\varvec{T}}_n\). For any \(\varepsilon >0\) and sufficiently large n, \(\phi \left( {\frac{i}{{n + 1}}} \right) \le \frac{{\varepsilon \sqrt{n} }}{{\sqrt{p} }}\) then \(\mathop {\lim }\limits _{n \rightarrow \infty } \frac{{\phi \left( {\frac{i}{{n + 1}}} \right) \sqrt{p} }}{{\varepsilon \sqrt{n} }} = 0\) and

$$\begin{aligned} \mathop {\lim }\limits _{n \rightarrow \infty } E\left( {\left\| \phi \left( {\frac{{i }}{{n + 1}}}\right) \varvec{\delta }_i \right\| ^2 1_{\left\{ {\left\| \phi \left( {\frac{{i }}{{n + 1}}}\right) \varvec{\delta }_i \right\| \ge \varepsilon \sqrt{n} } \right\} } } \right) = \mathop {\lim }\limits _{n \rightarrow \infty } p \phi ^2\left( {\frac{{i }}{{n + 1}}}\right) 1_{\left\{ {\phi \left( {\frac{i}{{n + 1}}} \right) \ge \frac{{\varepsilon \sqrt{n} }}{{\sqrt{p} }}} \right\} } = 0 \end{aligned}$$

Consequently, Lindeberg’s condition holds. Now from (4), we conclude that the r.v. \( \sqrt{n}\bar{\varvec{V}}_n \) converges to the p-variate normal distribution with mean zero and dispersion matrix \(\varvec{\varphi }\). Moreover, we have

$$\begin{aligned} \frac{1}{n}\sum \limits _{i = 1}^n {{\textbf {V}}_i {\textbf {V}}'_i } - \varvec{\varphi } = o_p (1) \end{aligned}$$
(5)

Finally, by applying Slutsky’s theorem it is clear that under the null hypothesis \(W_{n,D} {\mathop {\sim }\limits ^{d}} \chi _p^2\). \(\square \)

Proof of Theorem 2

Let \({\textbf {Z}}_i=c{\textbf {A}}{} {\textbf {X}}_i\), \(i=1,\ldots ,n\), and \(R_i^*\), \( \varvec{\delta }_i^* \) and \({\textbf {V}}^*_i\) are specified in the same way as \(R_i\), \( \varvec{\delta }_i \) and \({\textbf {V}}_i\) through \({\textbf {Z}}_i\)’s instead of \({\textbf {X}}_i\)’s. For \(i=1,\ldots ,n\), we have

$$\begin{aligned} R_i^*=R_i, \quad \quad and \quad \quad \varvec{\delta }_i^*={\textbf {A}}\varvec{\delta }_i. \end{aligned}$$

Thus

$$\begin{aligned} {\textbf {V}}^*_i={\textbf {A}}{} {\textbf {V}}_i. \end{aligned}$$

Therefore

$$\begin{aligned} W_{n,D} \left( {{\textbf {Z}}_1 ,\ldots ,{\textbf {Z}}_n } \right)&= n\bar{\varvec{V}}^{\prime }_n {\textbf {A}}^{\prime }\left( {\frac{1}{n}\sum \limits _{i = 1}^n {\textbf {A}}{{\textbf {V}}_i {\textbf {V}}^\prime _i }{} {\textbf {A}}^\prime } \right) ^{ - 1} {\textbf {A}}\bar{\varvec{V}}_n \\&= W_{n,D} \left( {{\textbf {X}}_1 ,\ldots ,{\textbf {X}}_n } \right) . \end{aligned}$$

\(\square \)

Proof of Proposition 1

It is clear that

$$\begin{aligned} I_{\left| {X_j } \right|< \left| {X_i } \right| }&= I_{X_i> X_j } I_{X_i> - X_j } + I_{X_i< X_j } I_{X_i < - X_j } \\&= 2I_{X_i> X_j } I_{X_i> - X_j } - I_{X_i> X_j } - I_{X_i> - X_j } + 1\\&=1-\left| {I_{X_i> X_j } - I_{X_i > - X_j } } \right| . \end{aligned}$$

Therefore

$$\begin{aligned} r_i = \sum \limits _{j = 1}^n {I_{\left| {X_j } \right| < \left| {X_i } \right| } } + 1 = n + 1 - \sum \limits _{j = 1}^n {\left| {I_{X_i> X_j } - I_{X_i > - X_j } } \right| }. \end{aligned}$$

Define

$$\begin{aligned} S_{i}&=\sum \limits _{j = 1}^n {\left( {I_{\left( {X_j \le X_i} \right) } + I_{\left( { - X_j \le X_i} \right) } } \right) },\\ L_{i}&=\sum \limits _{j = 1}^n {\left( {I_{\left( {X_j \ge X_i} \right) } + I_{\left( { - X_j \ge X_i} \right) } } \right) }. \end{aligned}$$

For \(p=1\), \( HD({\textbf {x}},F) = \inf \left\{ {F\left( x \right) ,1 - F\left( x^- \right) } \right\} \). Thus

$$\begin{aligned} HD\left( {X_i ,F_n^s } \right)&= \frac{1}{{2n}}\min \left\{ {S_i ,L_i } \right\} \\&= \frac{1}{{4n}}\left\{ {2\left( {n + 1} \right) - \left| {S_i - L_i } \right| } \right\} \\&= \frac{1}{{2n}}\left\{ {\left( {n + 1} \right) - \left| {S_i - \left( {n + 1} \right) } \right| } \right\} \end{aligned}$$

Analoguos to \(r_i\), we can write \(R_i\), \(i=1,\ldots ,n\) defined in (1) as

$$\begin{aligned} R_i&= \sum \limits _{j= 1}^n {I_{\left\{ {HD\left( {X_j ,F_n^s } \right)> HD\left( {X_i ,F_n^s } \right) } \right\} } } + 1 = \sum \limits _{j = 1}^n {I_{\left\{ {\left| {S_{j} - \left( {n + 1} \right) } \right| < \left| {S_{i} - \left( {n + 1} \right) } \right| } \right\} } } + 1 \\&= n + 1 - \sum \limits _{j = 1}^n {\left| {I_{S_{i}> S_{j} } - I_{S_{i}> \left\{ {2\left( {n + 1} \right) - S_{j} } \right\} } } \right| } = n + 1 - \sum \limits _{j = 1}^n {\left| {I_{S_{i}> S_{j} } - I_{S_{i} > L_{j} } } \right| } \end{aligned}$$

Now, for arbitrary \(i, j=1,\ldots ,n\) assume that \({\left| {I_{X_i> X_j } - I_{X_i > - X_j } } \right| }=1\). Then two cases occurs. Either \(X_i > X_j\) and \(X_i \le - X_j\) or \(X_i \le X_j\) and \(X_i > - X_j\). First if \(X_i > X_j\) and \(X_i \le - X_j\) then

$$\begin{aligned} I_{\left\{ {S_{i}> S_{j} } \right\} } = 1, \quad I_{\left\{ {S_{i} > L_{j} } \right\} } = 0 \end{aligned}$$

and for \(X_i \le X_j\) and \(X_i > - X_j\) then

$$\begin{aligned} I_{\left\{ {S_{i}> S_{j} } \right\} } = 0, \quad I_{\left\{ {S_{i} > L_{j} } \right\} } = 1. \end{aligned}$$

Then, in both cases

$$\begin{aligned} \left| {I_{S_{i}> S_{j} } - I_{S_{i} > L_{j} } } \right| = 1 \end{aligned}$$

Similarly, for \({\left| {I_{X_i> X_j } - I_{X_i > - X_j } } \right| }=0\), we have

$$\begin{aligned} \left| {I_{S_{i}> S_{j} } - I_{S_{i} > L_{j} } } \right| = 0. \end{aligned}$$

By a similar argument, the above relations can be concluded in the opposite direction. Therefore, it is shown that \(r_i=R_i\), \(i=1,\ldots ,n\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, S., Faridrohani, M.R. & Barzegar, Z. Testing for diagonal symmetry based on center-outward ranking. Stat Papers 64, 255–283 (2023). https://doi.org/10.1007/s00362-022-01316-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-022-01316-w

Keywords

Navigation