Skip to main content
Log in

Spatial patchiness and association of pests and natural enemies in agro-ecosystems and their application in precision pest management: a review

  • Review
  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Natural enemies can effectively reduce pest populations when they coincide spatially and temporally with those populations. Therefore, along with temporal synchronization, the spatial association of pests and natural enemies is also necessary to increase the efficiency of biological control. The aims of this review were to assess the current state of knowledge concerning the spatial association of pests and their natural enemies in agro-ecosystems, evaluate its application in precision pest management programs and highlight the relevant gaps in the existing literature. Spatial analysis by distance indices (SADIE) and geostatistics are adequate sets of statistical tools used to study spatial patchiness and association of pests and natural enemies, especially in field crops. Spatial association between pests and natural enemies is dynamic and many biotic and abiotic factors can influence it. According to the literature, there are important gaps in the research about the spatial association of pests and natural enemies in orchards and stored products, as well as about the effects of environmental factors on the spatial association between these organisms. Mapping the spatial distribution and association of pests and natural enemies’ populations has not been used in precision biological control until recently. Precision applications focus on the targeted application of agricultural inputs in management zones rather than whole-field treatments. Information about spatial distribution and association of pests and natural enemies can be used to improve pest management practices through precision or site-specific applications of chemical and biological control measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamchuk, V. I., Ferguson, R. B., & Hergert, G. W. (2010). Soil heterogeneity and crop growth. In E. C. Oerke, R. Gerhards, G. Menz, & R. A. Sikora (Eds.), Precision Crop Protection-the Challenge and Use of Heterogeneity (pp. 3–16). Berlin/Heidelberg, Germany: Springer

    Chapter  Google Scholar 

  • Al Hassan, D., Parisey, N., Burel, F., Plantegenest, M., Kindlmann, P., & Butet, A. (2012). Relationship between landscape composition and the abundance of aphids and their natural enemies in crop fields. European Journal of Environmental Sciences, 2, 89–101. https://doi.org/10.14712/23361964.2015.29

    Article  Google Scholar 

  • Athanassiou, C. G., Kavallieratos, N. G., Sciarretta, A., Palyvos, N. E., & Trematerra, P. (2011). Spatial associations of insects and mites in stored wheat. Journal of Economic Entomology, 104, 1752–1764

    Article  PubMed  Google Scholar 

  • Azfar, S., Nadeem, A., Alkhodre, A., Ahsan, K., Mehmood, N., Alghmdi, T., et al. (2018). Monitoring, detection and control techniques of agriculture pests and diseases using wireless sensor network: a review. International Journal of Advanced Computer Science and Applications, 9, 424–433

    Article  Google Scholar 

  • Bell, J. R., King, A., Bohan, R., D. A., & Symondson, W. O. (2010). Spatial co-occurrence networks predict the feeding histories of polyphagous arthropod predators at field scales. Ecography, 33, 64–72

    Article  Google Scholar 

  • Bellone, D., Björkman, C., & Klapwijk, M. J. (2020). Top-down pressure by generalist and specialist natural enemies in relation to habitat heterogeneity and resource availability. Basic and Applied Ecology, 43, 16–26

    Article  Google Scholar 

  • Berryman, A., & Gutierrez, A. (1999). Dynamics of insect predator-prey interactions. Ecological Entomology, 2, 425–462

    Google Scholar 

  • Blaauw, B. R., Polk, D., & Nielsen, A. L. (2015). IPM-CPR for peaches: incorporating behaviorally-based methods to manage Halyomorpha halys and key pests in peach. Pest Management Science, 71, 1513–1522

    Article  CAS  PubMed  Google Scholar 

  • Campos-Herrera, R., Ali, J. G., Diaz, B. M., & Duncan, L. W. (2013). Analyzing spatial patterns linked to the ecology of herbivores and their natural enemies in the soil. Frontiers in Plant Science, 4, 378. https://doi.org/10.3389/fpls.2013.00378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll, G., Holsman, K. K., Brodie, S., Thorson, J. T., Hazen, E. L., Bograd, S. J., et al. (2019). A review of methods for quantifying spatial predator–prey overlap. Global Ecology and Biogeography, 28, 1561–1577

    Article  Google Scholar 

  • Cheng, H. (1990). Pesticides in the soil environment-an overview. Pesticides in the Soil Environment: Processes, Impacts and Modeling, 2, 1–5

    Google Scholar 

  • Clark, I. (2001). Practical geostatistics. Amsterdam, Netherlands: Elsevier

    Google Scholar 

  • Dminić, I., Kozina, A., Bažok, R., & Barčić, J. I. (2010). Geographic information systems (GIS) and entomological research: a review. Journal of Food, Agriculture and Environment, 8, 1193–1198

    Google Scholar 

  • Du, P., Bai, X., Tan, K., Xue, Z., Samat, A., Xia, J., et al. (2020). Advances of four machine learning methods for spatial data handling: A review. Journal of Geovisualization and Spatial Analysis, 4, 1–25

    Article  Google Scholar 

  • Englund, G., Johansson, F., Olofsson, P., Salonsaari, J., & Öhman, J. (2009). Predation leads to assembly rules in fragmented fish communities. Ecology Letters, 12, 663–671

    Article  PubMed  Google Scholar 

  • FAO (2017). Information and communication technologies (ICT) in Agriculture. A report to the G20 Agricultural Deputies. FAO, Rome. Retrieved January 10, 2022, from http://www.fao.org/3/a-i7961e.pdf

  • Ferguson, A. W., Barari, H., Warner, D. J., Campbell, J. M., Smith, E. T., Watts, N. P., et al. (2006). Distributions and interactions of the stem miners Psylliodes chrysocephala and Ceutorhynchus pallidactylus and their parasitoids in a crop of winter oilseed rape (Brassica napus). Entomologia Experimentalis et Applicata, 119, 81–92

    Article  Google Scholar 

  • Fortin, D., Buono, P. L., Schmitz, O. J., Courbin, N., Losier, C., St-Laurent, et al. (2015). A spatial theory for characterizing predator–multiprey interactions in heterogeneous landscapes. Proceedings of the Royal Society B: Biological Sciences, 282, 20150973. https://doi.org/10.1098/rspb.2015.0973

  • Ghahramani, M., Karimzadeh, R., Iranipour, S., & Sciarretta, A. (2019). Does harvesting affect the spatio-temporal signature of pests and natural enemies in alfalfa fields? Agronomy, 9, 532. https://doi.org/10.3390/agronomy9090532

  • Greco, N., Liljeström, G., & Sanchez, N. (1999). Spatial distribution and coincidence of Neoseiulus californicus and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae) on strawberry. Experimental and Applied Acarology, 23, 567–579

    Article  Google Scholar 

  • Gutierrez, A. (1999). Modelling tritrophic field populations. In C. B. Huffaker, & A. P. Gutierrez (Eds.), Ecological Entomology (2nd ed., pp. 647–680). Hoboken, USA: John Wiley & Sons, Inc.

    Google Scholar 

  • Holland, J., Perry, J., & Winder, L. (1999). The within-field spatial and temporal distribution of arthropods in winter wheat. Bulletin of Entomological Research, 89, 499–513

    Article  Google Scholar 

  • Hurlbert, S. H. (1978). The measurement of niche overlap and some relatives. Ecology, 59, 67–77

    Article  Google Scholar 

  • Iost Filho, F. H., Heldens, W. B., Kong, Z., & de Lange, E. S. (2019). Drones: innovative technology for use in precision pest management. Journal of Economic Entomology, 113, 1–25

    Article  Google Scholar 

  • Iranipour, S., Mahdavi, H., Mehrvar, A., & Karimzadeh, R. (2018). Population fluctuations of small walnut aphid Chromaphis juglandicola (Hemiptera: Aphididae) and its natural enemies in walnut orchards of northwestern Iran. Journal of Crop Protection, 7, 303–314

    Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). Applied Geostatistics. New York, USA: Oxford University Press

    Google Scholar 

  • Jahnke, S. M., Ponte, D., Redaelli, E. M., L. R., & Rego, D. R. G. P. (2014). Spatial patterns and associations of Anastrepha fraterculus (Diptera: Tephritidae) and its parasitoid Doryctobracon areolatus (Hymenoptera: Braconidae) in organic orchards of Psidium guajava and Acca sellowiana. Florida Entomologist, 97, 744–753

    Article  Google Scholar 

  • Johnston, K. (2004). ArcGIS 9: using ArcGIS geostatistical analyst. Redlands, USA: ESRI Press

    Google Scholar 

  • Kareiva, P. (1990). Population dynamics in spatially complex environments: theory and data. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 330, 175–190

    Article  Google Scholar 

  • Karimzadeh, R., Hejazi, M. J., Helali, H., Iranipour, S., & Mohammadi, S. A. (2009). Geostatistical characterization of spatial distribution of Eurygaster integriceps Put. parasitized eggs. In Proceeding of The 6th Asia-Pacific Congress of Entomology. Beijing, China: Institute of Zoology, Chinese Academy of Sciences. P. 31

  • Karimzadeh, R., Hejazi, M. J., Helali, H., Iranipour, S., & Mohammadi, S. A. (2011). Assessing the impact of site-specific spraying on control of Eurygaster integriceps (Hemiptera: Scutelleridae) damage and natural enemies. Precision Agriculture, 12, 576–593

    Article  Google Scholar 

  • Kim, J., Huebner, C., Reardon, R., & Park, Y. L. (2021). Spatially targeted biological control of mile-a-minute weed using Rhinoncomimus latipes (Coleoptera: Curculionidae) and an unmanned aircraft system. Journal of Economic Entomology, 114, 1889–1895

    Article  PubMed  Google Scholar 

  • Kirkeby, C., Rydhmer, K., Cook, S. M., Strand, A., Torrance, M. T., Swain, J. L., et al. (2021). Advances in automatic identification of flying insects using optical sensors and machine learning. Scientific Reports, 11, 1–8

    Article  CAS  Google Scholar 

  • Knight, I. A., Roberts, P. M., Gardner, W. A., Oliver, K. M., Reay-Jones, F. P., Reisig, D. D., et al. (2017). Spatial distribution of Megacopta cribraria (Hemiptera: Plataspidae) adults, eggs and parasitism by Paratelenomus saccharalis (Hymenoptera: Platygastridae) in soybean. Environmental Entomology, 46, 1292–1298

    Article  PubMed  Google Scholar 

  • Kulldorff, M., Athas, W. F., Feurer, E. J., Miller, B. A., & Key, C. R. (1998). Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. American Journal of Public Health, 88, 1377–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre, P., & Legendre, L. (2012). Numerical ecology. Amsterdam, Netherlands: Elsevier

    Google Scholar 

  • Liebhold, A., & Gurevitch, J. (2002). Integrating the statistical analysis of spatial data in ecology. Ecography, 25, 553–557

    Article  Google Scholar 

  • Liebhold, A. M., Rossi, R. E., & Kemp, W. P. (1993). Geostatistics and geographic information systems in applied insect ecology. Annual Review of Entomology, 38, 303–327

    Article  Google Scholar 

  • Lindsay, K. R., Zalucki, M. P., Newton, I. R., & Furlong, M. J. (2019). Spatial and temporal dynamics of the native banana-spotting bug, Amblypelta lutescens lutescens (Hemiptera: Coreidae), in avocado crops in north Queensland, Australia. Journal of Economic Entomology, 112, 1812–1820

    Article  PubMed  Google Scholar 

  • Martins, J. C., Picanço, M. C., Silva, R. S., Gonring, A. H., Galdino, T. V., & Guedes, R. N. (2018). Assessing the spatial distribution of Tuta absoluta (Lepidoptera: Gelechiidae) eggs in open-field tomato cultivation through geostatistical analysis. Pest Management Science, 74, 30–36

    Article  CAS  PubMed  Google Scholar 

  • Midgarden, D., Fleischer, S. J., Weisz, R., & Smilowitz, Z. (1997). Site-specific integrated pest management impact on development of esfenvalerate resistance in Colorado potato beetle (Coleoptera: Chrysomelidae) and on densities of natural enemies. Journal of Economic Entomology, 90, 855–867

    Article  Google Scholar 

  • Nachman, G. (2001). Predator-prey interactions in a nonequilibrium context: the metapopulation approach to modeling “hide-and-seek” dynamics in a spatially explicit tri-trophic system. Oikos, 94, 72–88

    Article  Google Scholar 

  • Nguyen, H. D. D., & Nansen, C. (2018). Edge-biased distributions of insects. A review. Agronomy for Sustainable Development, 38, 1–13

    Article  Google Scholar 

  • Oliver, M. A. (2010). Geostatistical applications for precision agriculture. Berlin/Heidelberg, Germany: Springer

    Book  Google Scholar 

  • Park, Y. L., & Obrycki, J. J. (2004). Spatio-temporal distribution of corn leaf aphids (Homoptera: Aphididae) and lady beetles (Coleoptera: Coccinellidae) in Iowa cornfields. Biological Control, 31, 210–217

    Article  Google Scholar 

  • Park, Y. L., Krell, R. K., & Carroll, M. (2007). Theory, technology, and practice of site-specific insect pest management. Journal of Asia-Pacific Entomology, 10, 89–101

    Article  Google Scholar 

  • Park, Y. L., Cho, J. R., Lee, G. S., & Seo, B. Y. (2021). Detection of Monema flavescens (Lepidoptera: Limacodidae) cocoons using small unmanned aircraft system. Journal of Economic Entomology, 114, 1927–1933

    Article  PubMed  Google Scholar 

  • Park, Y. L., Gururajan, S., Thistle, H., Chandran, R., & Reardon, R. (2018). Aerial release of Rhinoncomimus latipes (Coleoptera: Curculionidae) to control Persicaria perfoliata (Polygonaceae) using an unmanned aerial system. Pest Management Science, 74, 141–148

    Article  CAS  PubMed  Google Scholar 

  • Pearce, S., & Zalucki, M. P. (2006). Do predators aggregate in response to pest density in agroecosystems? Assessing within-field spatial patterns. Journal of Applied Ecology, 43, 128–140

    Article  Google Scholar 

  • Penczykowski, R. M., Laine, A. L., & Koskella, B. (2016). Understanding the ecology and evolution of host–parasite interactions across scales. Evolutionary Applications, 9, 37–52

    Article  PubMed  Google Scholar 

  • Pereira, P. S., Sarmento, R. A., Lima, C. H. O., Pinto, C. B., Silva, G. A., Santos, D., G. R., et al. (2020). Geostatistical assessment of Frankliniella schultzei (Thysanoptera: Thripidae) spatial distribution in commercial watermelon crops. Journal of Economic Entomology, 113, 489–495

    PubMed  CAS  Google Scholar 

  • Perović, D. J., Gámez-Virués, S., Landis, D. A., Tscharntke, T., Zalucki, M. P., Saura, S., et al. (2022). Broadening the scope of empirical studies to answer persistent questions in landscape-moderated effects on biodiversity and ecosystem functioning. In D. A. Bohan, A. J. Dumbrell, & A. J. Vanbergen (Eds.), Advances in Ecological Research (pp. 109–131). Cambridge, USA: Academic Press

    Google Scholar 

  • Perry, J. N. (1995). Spatial analysis by distance indices. Journal of Animal Ecology, 64, 303–314

    Article  Google Scholar 

  • Perry, J. N. (1997). Spatial association for counts of two species. Acta Jutlandica, 72, 149–170

    Google Scholar 

  • Perry, J. N. (1998). Measures of spatial pattern for counts. Ecology, 79, 1008–1017

    Article  Google Scholar 

  • Perry, J. N., & Dixon, P. M. (2002). A new method to measure spatial association for ecological count data. Ecoscience, 9, 133–141

    Article  Google Scholar 

  • Perry, J. N., Winder, L., Holland, J., & Alston, R. (1999). Red–blue plots for detecting clusters in count data. Ecology Letters, 2, 106–113

    Article  Google Scholar 

  • Rahman, T., Roff, M. N. M., & Ghani, I. B. A. (2010). Within-field distribution of Aphis gossypii and aphidophagous lady beetles in chili, Capsicum annuum. Entomologia Experimentalis et Applicata, 137, 211–219

    Article  Google Scholar 

  • Rakhshani, H., Ebadi, R., & Mohammadi, A. (2009). Population dynamics of alfalfa aphids and their natural enemies, Isfahan. Iran. Journal of Agricultural Science and Technology, 11, 505–520

    Google Scholar 

  • Reay-Jones, F. P., Greene, J. K., & Bauer, P. J. (2019). Spatial distributions of thrips (Thysanoptera: Thripidae) in cotton. Journal of Insect Science, 19, 3. https://doi.org/10.1093/jisesa/iez103

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi, R. E., Mulla, D. J., Journel, A. G., & Franz, E. H. (1992). Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs, 62, 277–314

    Article  Google Scholar 

  • Schaefer, M., & Pearson, A. (2021). Accuracy and precision of GNSS in the field. In G. P. Petropoulos, & P. K. Srivastava (Eds.), GPS and GNSS Technology in Geosciences (pp. 393–414). Amsterdam, Netherlands: Elsevier

    Chapter  Google Scholar 

  • Schotzko, D., & Smith, C. (1991). Effects of Host Plant on the Between-Plant Spatial Distribution of the Russian Wheat Aphid (Homoptera: Aphididae. Journal of Economic Entomology, 84, 1725–1734

    Article  Google Scholar 

  • Sciarretta, A., & Trematerra, P. (2014). Geostatistical tools for the study of insect spatial distribution: practical implications in the integrated management of orchard and vineyard pests. Plant Protection Science, 50, 97–110

    Article  Google Scholar 

  • Sciarretta, A., & Calabrese, P. (2019). Development of automated devices for the monitoring of insect pests. Current Agriculture Research Journal, 7, 19–25

    Article  Google Scholar 

  • Sciarretta, A., Zinni, A., & Trematerra, P. (2011). Development of site-specific IPM against European grapevine moth Lobesia botrana (D. & S.) in vineyards. Crop Protection, 30, 1469–1477

    Article  Google Scholar 

  • Sciarretta, A., Tabilio, M. R., Lampazzi, E., Ceccaroli, C., Colacci, M., & Trematerra, P. (2018). Analysis of the Mediterranean fruit fly [Ceratitis capitata (Wiedemann)] spatio-temporal distribution in relation to sex and female mating status for precision IPM. PloS one, 13e0195097. https://doi.org/10.1371/journal.pone.0195097

  • Seiter, N. J., Reay-Jones, F. P., & Greene, J. K. (2013). Within-field spatial distribution of Megacopta cribraria (Hemiptera: Plataspidae) in soybean (Fabales: Fabaceae). Environmental Entomology, 42, 1363–1374

    Article  PubMed  Google Scholar 

  • Shayestehmehr, H. (2015). Spatio-temporal distribution of Therioaphis maculata, Aphis craccivora and coccinellid lady beetles in alfalfa fields of Karkaj. M. Sc. thesis University of Tabriz, Iran

  • Shayestehmehr, H., & Karimzadeh, R. (2019). Geostatistical analysis of spatial distribution of Therioaphis maculata (Hemiptera: Aphididae) and coccinellid lady beetles (Coleoptera: Coccinellidae). Journal of Crop Protection, 8, 103–115

    Google Scholar 

  • Shayestehmehr, H., Karimzadeh, R., & Hejazi, M. J. (2017). Spatio-temporal association of Therioaphis maculata and Hippodamia variegata in alfalfa fields. Agricultural and Forest Entomology, 19, 81–92

    Article  Google Scholar 

  • Sih, A. (1984). The behavioral response race between predator and prey. The American Naturalist, 123, 143–150

    Article  Google Scholar 

  • Singh, S., Gupta, R., Kumari, M., & Sharma, S. (2015). Nontarget effects of chemical pesticides and biological pesticide on rhizospheric microbial community structure and function in Vigna radiata. Environmental Science and Pollution Research, 22, 11290–11300

    Article  CAS  PubMed  Google Scholar 

  • Spiesman, B., Iuliano, B., & Gratton, C. (2020). Temporal resource continuity increases predator abundance in a metapopulation model: insights for conservation and biocontrol. Land, 9, 479. https://doi.org/10.3390/land9120479

    Article  Google Scholar 

  • Spiridonov, S. E., Moens, M., & Wilson, M. J. (2007). Fine scale spatial distributions of two entomopathogenic nematodes in a grassland soil. Applied Soil Ecology, 37, 192–201

    Article  Google Scholar 

  • Surendran, A., Plank, M. J., & Simpson, M. J. (2020). Small-scale spatial structure affects predator-prey dynamics and coexistence. Theoretical Ecology, 13, 537–550

    Article  Google Scholar 

  • Symondson, W., Sunderland, K., & Greenstone, M. (2002). Can generalist predators be effective biocontrol agents? Annual Review of Entomology, 47, 561–594

    Article  CAS  PubMed  Google Scholar 

  • van Helden, M. (2010). Spatial and temporal dynamics of arthropods in arable fields. In E. C. Oerke, R. Gerhards, G. Menz, & R. A. Sikora (Eds.), Precision Crop Protection-the Challenge and Use of Heterogeneity (pp. 51–64). Berlin/Heidelberg, Germany: Springer

    Chapter  Google Scholar 

  • Warner, D. J., Allen-Williams, L. J., Ferguson, A. W., & Williams, I. H. (2000). Pest–predator spatial relationships in winter rape: implications for integrated crop management. Pest Management Science, 56, 977–982

    Article  CAS  Google Scholar 

  • Weisz, R., Fleischer, S., & Smilowitz, Z. (1996). Site-specific integrated pest management for high-value crops: impact on potato pest management. Journal of Economic Entomology, 89, 501–509

    Article  Google Scholar 

  • Wells, M. L., & McPherson, R. M. (1999). Population dynamics of three coccinellids in flue-cured tobacco and functional response of Hippodamia convergens (Coleoptera: Coccinellidae) feeding on tobacco aphids (Homoptera: Aphididae). Environmental Entomology, 28, 768–773

    Article  Google Scholar 

  • Wilson, M. J., Lewis, E. E., Yoder, F., & Gaugler, R. (2003). Application pattern and persistence of the entomopathogenic nematode Heterorhabditis bacteriophora. Biological Control, 26, 180–188

    Article  Google Scholar 

  • Winder, L., Alexander, C. J., Holland, J. M., Woolley, C., & Perry, J. N. (2001). Modelling the dynamic spatio-temporal response of predators to transient prey patches in the field. Ecology Letters, 4, 568–576

    Article  Google Scholar 

  • Winder, L., Alexander, C. J., Holland, J. M., Symondson, W. O., Perry, J. N., & Woolley, C. (2005). Predatory activity and spatial pattern: the response of generalist carabids to their aphid prey. Journal of Animal Ecology, 74, 443–454

    Article  Google Scholar 

  • Winder, L., Alexander, C., Griffiths, G., Holland, J., Woolley, C., & Perry, J. (2019). Twenty years and counting with SADIE: Spatial Analysis by Distance Indices software and review of its adoption and use. Rethinking Ecology, 4, 1–16

    Article  Google Scholar 

  • Zhao, J., Zhao, X., Wang, Y., Li, G., Liu, L., Meng, J., et al. (2010). Geostatistical analysis of spatial patterns of Nesidiocoris tenuis (Reuter)(Hemiptera: Miridae) and its natural enemy spiders. Acta Ecologicca Sinica, 30, 4196–4205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roghaiyeh Karimzadeh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimzadeh, R., Sciarretta, A. Spatial patchiness and association of pests and natural enemies in agro-ecosystems and their application in precision pest management: a review. Precision Agric 23, 1836–1855 (2022). https://doi.org/10.1007/s11119-022-09902-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-022-09902-6

Keywords

Navigation