Skip to main content
Log in

Kinetic triplet from low-temperature carburization and carbon deposition reactions

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Carbon deposition reaction is unfavorable for smooth operation of blast furnace, while the product of carburization reaction is a superior iron-bearing raw material in non-blast furnace routes. The kinetic triplet of these two reactions was obtained based on non-isothermal kinetic analysis. According to the Sharp–Wentworth method, the activation energy of the carburization reaction is 397.77 kJ/mol, and the activation energies of the carbon depositions on hematite and magnetite are 188.92 and 100.89 kJ/mol, respectively. The carburization reaction is controlled by the Jander mechanism, and the carbon depositions on hematite and magnetite are both controlled by the mechanism of Zhuravlev–Lesokhin–Tempelman. Based on Coats–Redfern method, the activation energies of the above three reactions are 360.65, 149.29, and 102.36 kJ/mol, respectively. The carburization reaction is a first-order reaction, while the carbon depositions on hematite and magnetite are both third-order reaction. In particular, the negative activation energy is obtained if considering the anti-Arrhenius circumstance in the Sharp-Wentworth method. Based on above results, it is feasible to adopt non-isothermal kinetic method to study the kinetic triplet of a reaction. According to the obtained activation energies and reaction mechanism functions, the simulated kinetic data are in good agreement with the experimental values even using the negative activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.J. Fruehan, Metall. Trans. 4 (1973) 2123–2127.

    Article  Google Scholar 

  2. E.T. Turkdogan, J.V. Vinters, Metall. Trans. 5 (1974) 11–19.

    Article  Google Scholar 

  3. R. Garraway, Iron Steelmaker 23 (1996) 27–30.

    Google Scholar 

  4. O. Ostrovski, G. Zhang, AIChE J. 52 (2006) 300–310.

    Article  Google Scholar 

  5. H.H. Wang, G.Q. Li, J.H. Ma, D. Zhao, RSC Adv. 7 (2017) 44456–44462.

    Article  Google Scholar 

  6. H.H. Wang, G.Q. Li, J. Yang, J.H. Ma, B.S. Khan, Metall. Mater. Trans. B 47 (2016) 2571–2581.

    Article  Google Scholar 

  7. H.H. Wang, G.Q. Li, J.H. Ma, D. Zhao, RSC Adv. 7 (2017) 3921–3927.

    Article  Google Scholar 

  8. J. Zhang, O. Ostrovski, Ironmak. Steelmak. 29 (2002) 15–21.

    Article  Google Scholar 

  9. W. Zhang, J. Zhang, Z. Xue, Z. Zou, Y. Qi, ISIJ Int. 56 (2016) 1358–1367.

    Article  Google Scholar 

  10. W. Zhang, Z.L. Xue, J.H. Zhang, W. Wang, C.G. Cheng, Z.S. Zou, J. Iron Steel Res. Int. 24 (2017) 778–786.

    Article  Google Scholar 

  11. W. Zhang, J. Zhang, Z. Xue, Energy 121 (2017) 135–146.

    Article  Google Scholar 

  12. W. Zhang, J. Dai, C. Li, X. Yu, Z. Xue, H. Saxén, Steel Res. Int. 92 (2021) 2000326.

    Article  Google Scholar 

  13. S. Geng, W. Ding, S. Guo, X. Zou, Y. Zhang, X. Lu, Ironmak. Steelmak. 42 (2015) 714–720.

    Article  Google Scholar 

  14. J.W. Snoeck, G.F. Froment, M. Fowles, J. Catal. 169 (1997) 250–262.

    Article  Google Scholar 

  15. A.N. Conejo, G.P. Martins, ISIJ Int. 37 (1997) 967–976.

    Article  Google Scholar 

  16. C. Li, Y. Shi, N. Cai, J. Power Sources 225 (2013) 1–8.

    Article  Google Scholar 

  17. J. Zhang, A. Schneider, G. Inden, Corros. Sci. 45 (2003) 1329–1341.

    Article  Google Scholar 

  18. J. Zhang, D.J. Young, Oxid. Met. 70 (2008) 189–211.

    Article  Google Scholar 

  19. R.G. Olsson, E.T. Turkdogan, Metall. Trans. 5 (1974) 21–26.

    Article  Google Scholar 

  20. A.W. Coats, J.P. Redfern, Nature 201 (1964) 68–69.

    Article  Google Scholar 

  21. E.S. Freeman, B. Carroll, J. Phys. Chem. 62 (1958) 394–397.

    Article  Google Scholar 

  22. J.H. Sharp, S.A. Wentworth, Anal. Chem. 41 (1969) 2060–2062.

    Article  Google Scholar 

  23. O.J. Wimmers, P. Arnoldy, J.A. Moulijn, J. Phys. Chem. 90 (1986) 1331–1337.

    Article  Google Scholar 

  24. T. Ozawa, J. Therm. Anal. 2 (1970) 301–324.

    Article  Google Scholar 

  25. W. Zhang, J.H. Zhang, Z.S. Zou, Q. Li, Y.H. Qi, Ironmak. Steelmak. 41 (2014) 715–720.

    Article  Google Scholar 

  26. W. Zhang, J. Zhang, Q. Li, Y. He, B. Tang, M. Li, Z. Zhang, Z. Zou, in: F. Marquis (Eds.), Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, PRICM 8 Springer, 2013, pp. 777–789.

  27. C.K. Ande, M.H.F. Sluiter, Metall. Mater. Trans. A 43 (2012) 4436–4444.

    Article  Google Scholar 

  28. J. Zhang, W. Zhang, L. Zhang, S. Gu, Int. J. Miner. Process. 138 (2015) 20–29.

    Article  Google Scholar 

  29. J. Zhang, W. Zhang, Z. Xue, Miner. Process. Extr. Metall. Rev. 38 (2017) 265–273.

    Article  Google Scholar 

  30. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 520 (2011) 1–19.

    Article  Google Scholar 

  31. S.H. Farahani, C. Falamaki, S.M. Alavi, Int. J. Chem. Kinet. 52 (2020) 368–377.

    Article  Google Scholar 

  32. L. Banu, R.A. Potyrailo, M.A. Carpenter, J. Phys. Chem. C 123 (2019) 17925–17932.

    Article  Google Scholar 

  33. N.D. Coutinho, V.H.C. Silva, H.C.B. de Oliveira, A.J. Camargo, K.C. Mundim, V. Aquilanti, J. Phys. Chem. Lett. 6 (2015) 1553–1558.

    Article  Google Scholar 

  34. J.J. Lamb, M. Mozurkewich, S.W. Benson, J. Phys. Chem. 88 (1984) 6441–6448.

    Article  Google Scholar 

  35. S. Vyazovkin, C.A. Wight, Annu. Rev. Phys. Chem. 48 (1997) 125–149.

    Article  Google Scholar 

  36. S. Vyazovkin, J. Comput. Chem. 22 (2001) 178–183.

    Article  Google Scholar 

  37. S. Vyazovkin, J. Therm. Anal. Calorim. 83 (2006) 45–51.

    Article  Google Scholar 

  38. F. Wang, D.S. Qian, P. Xiao, S. Deng, Materials 11 (2018) 2403.

    Article  Google Scholar 

  39. B. Ozturk, V.L. Fearing, J.A. Ruth, G. Simkovich, Metall. Trans. A 13 (1982) 1871–1873.

    Article  Google Scholar 

  40. M. Nikolussi, A. Leineweber, E.J. Mittemeijer, J. Mater. Sci. 44 (2009) 770–777.

    Article  Google Scholar 

  41. P. Deb, M.C. Chaturvedi, Metallography 15 (1982) 341–354.

    Article  Google Scholar 

  42. B. Ozturk, V.L. Fearing, J.A. Ruth, G. Simkovich, Solid State Ionics 12 (1984) 145–151.

    Article  Google Scholar 

  43. N. Sakai, T. Chida, T. Tadaki, J. Shimoiizaka, J. Chem. Eng. Jpn. 18 (1985) 199–204.

    Article  Google Scholar 

  44. D.I. Slovetskii, E.M. Chistov, Kinet. Catal. 51 (2010) 255–265.

    Article  Google Scholar 

  45. T. Nongnual, J. Limtrakul, J. Phys. Chem. C 115 (2011) 4649–4655.

    Article  Google Scholar 

  46. E. Shincho, C. Egawa, S. Naito, K. Tamaru, Surf. Sci. 155 (1985) 153–164.

    Article  Google Scholar 

  47. Y. Qin, S. Yan, Z. Liang, Q. Liao, X. Wang, CIESC J. 41 (1990) 436–443.

    Google Scholar 

  48. S. Vyazovkin, C.A. Wight, Thermochim. Acta 340–341 (1999) 53–68.

    Article  Google Scholar 

  49. S. Vyazovkin, Phys. Chem. Chem. Phys. 18 (2016) 18643–18656.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51804228 and 51804230) and the China Scholarship Council (CSC) (Grant Number 201908420169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (OPJ 4163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, K., Dong, Jh. et al. Kinetic triplet from low-temperature carburization and carbon deposition reactions. J. Iron Steel Res. Int. 29, 1545–1558 (2022). https://doi.org/10.1007/s42243-022-00780-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00780-w

Keywords

Navigation