Skip to main content

Advertisement

Log in

Single-cell transcriptomics identifies premature aging features of TERC-deficient mouse brain and bone marrow

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Aging is a progressive loss of physiological function and increased susceptibility to major pathologies. Degenerative diseases in both brain and bone including Alzheimer disease (AD) and osteoporosis are common in aging groups. TERC is RNA component of telomerase, and its deficiency accelerates aging-related phenotypes including impaired life span, organ failure, bone loss, and brain dysfunction. In this study, we investigated the traits of bone marrow-brain cross-tissue communications in young mice, natural aging mice, and premature aging (TERC deficient, TERC-KO) mice by single-cell transcriptome sequencing. Differentially expressed gene analysis of brain as well as bone marrow between premature aging mouse and young mouse demonstrated aging-related inflammatory response and suppression of neuron development. Further analysis of senescence-associated secretory phenotype (SASP) landscape indicated that TERC-KO perturbation was enriched in oligodendrocyte progenitor cells (OPCs) and hematopoietic stem and progenitor cells (HSPC). Series of inflammatory associated myeloid cells was activated in premature aging mice brain and bone marrow. Cross-tissue comparison of TERC-KO mice brain and bone marrow illustrated obvious ligand-receptor communications between brain glia cells, macrophages, and bone marrow myeloid cells in premature aging–induced inflammation. Enrichment of co-regulation modules between brain and bone marrow identified premature aging response genes such as Dusp1 and Ifitm3. Our study provides a rich resource for understanding premature aging–associated perturbation in brain and bone marrow and supporting myeloid cells and endothelial cells as promising therapy targeting for age-related brain-bone diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

scRNA-Seq data have been deposited into GEO repository with accession codes GSE169599, GSE169606, GSE169608, and GSE190535. Additional data that support the findings of this study are available from the corresponding author on request. Source data are provided with this paper.

References

  1. Lopez-Otin C, et al. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539(7628):180–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Otto E, et al. Crosstalk of brain and bone-clinical observations and their molecular bases. Int J Mol Sci. 2020;21(14):4946.

  5. Idelevich A, Baron R. Brain to bone: What is the contribution of the brain to skeletal homeostasis? Bone. 2018;115:31–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maryanovich M, Takeishi S, Frenette PS. Neural regulation of bone and bone marrow. Cold Spring Harbor Perspect Med. 2018;8(9):a031344.

  7. Liu L, et al. Dysfunctional Wnt/beta-catenin signaling contributes to blood-brain barrier breakdown in Alzheimer’s disease. Neurochem Int. 2014;75:19–25.

    Article  CAS  PubMed  Google Scholar 

  8. Handa K, et al. Bone loss caused by dopaminergic degeneration and levodopa treatment in Parkinson’s disease model mice. Sci Rep. 2019;9:13768.

  9. Carda S, et al. Osteoporosis after stroke: a review of the causes and potential treatments. Cerebrovasc Dis. 2009;28(2):191–200.

    Article  PubMed  Google Scholar 

  10. Yin T, Li L. The stem cell niches in bone. J Clin Invest. 2006;116(5):1195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Terry RL, et al. Inflammatory monocytes and the pathogenesis of viral encephalitis. J Neuroinflammation. 2012;9:270.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sanchez-Ramos J, et al. The potential of hematopoietic growth factors for treatment of Alzheimer’s disease: a mini-review. BMC Neurosci. 2008;9(Suppl 2):S3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Naaldijk Y, et al. Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice. Neuropathol Appl Neurobiol. 2017;43(4):299–314.

    Article  CAS  PubMed  Google Scholar 

  14. Garcia KO, et al. Therapeutic effects of the transplantation of VEGF overexpressing bone marrow mesenchymal stem cells in the hippocampus of murine model of Alzheimer’s disease. Front Aging Neurosci. 2014;6:30.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yuan J, et al. The potential influence of bone-derived modulators on the progression of Alzheimer’s Disease. J Alzheimers Dis. 2019;69(1):59–70.

    Article  PubMed  Google Scholar 

  16. Das MM, et al. Young bone marrow transplantation preserves learning and memory in old mice. Commun Biol. 2019;2:73.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chakravarti D, LaBella KA, DePinho RA. Telomeres: history, health, and hallmarks of aging. Cell. 2021;184(2):306–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Di Micco R, et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22(2):75–95.

    Article  PubMed  Google Scholar 

  19. Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet. 2012;13(10):693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scheller Madrid A, et al. Observational and genetic studies of short telomeres and Alzheimer’s disease in 67,000 and 152,000 individuals: a Mendelian randomization study. Eur J Epidemiol. 2020;35(2):147–56.

    Article  CAS  PubMed  Google Scholar 

  21. Fani L, et al. Telomere Length and the Risk of Alzheimer's Disease: The Rotterdam Study. J Alzheimers Dis. 2020;73(2):707–14.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ain Q, et al. Cell cycle-dependent and -independent telomere shortening accompanies murine brain aging. Aging (Albany NY). 2018;10(11):3397–420.

    Article  CAS  Google Scholar 

  23. Han B, et al. Telomerase gene mutation screening in Chinese patients with aplastic anemia. Leuk Res. 2010;34(2):258–60.

    Article  CAS  PubMed  Google Scholar 

  24. Chen J. Hematopoietic stem cell development, aging and functional failure. Int J Hematol. 2011;94(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  25. Yamaguchi H, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005;352(14):1413–24.

    Article  CAS  PubMed  Google Scholar 

  26. Morrison SJ, et al. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity. 1996;5(3):207–16.

    Article  CAS  PubMed  Google Scholar 

  27. Roake CM, Artandi SE. Regulation of human telomerase in homeostasis and disease. Nat Rev Mol Cell Biol. 2020;21(7):384–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wong KK, et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature. 2003;421(6923):643–8.

    Article  CAS  PubMed  Google Scholar 

  29. Lee HW, et al. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998;392(6676):569–74.

    Article  CAS  PubMed  Google Scholar 

  30. Saeed H, et al. Telomerase-deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment. J Bone Miner Res. 2011;26(7):1494–505.

    Article  CAS  PubMed  Google Scholar 

  31. Jurk D, et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell. 2012;11(6):996–1004.

    Article  CAS  PubMed  Google Scholar 

  32. Rolyan H, et al. Telomere shortening reduces Alzheimer’s disease amyloid pathology in mice. Brain. 2011;134(Pt 7):2044–56.

    Article  PubMed  Google Scholar 

  33. Ju Z, et al. Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med. 2007;13(6):742–7.

    Article  CAS  PubMed  Google Scholar 

  34. Kowalczyk MS, et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 2015;25(12):1860–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ximerakis M, et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat Neurosci. 2019;22(10):1696–708.

    Article  CAS  PubMed  Google Scholar 

  36. Almanzar N, et al. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature. 2020;583(7817):590-+.

    Article  CAS  Google Scholar 

  37. Kimmel JC, et al. Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Res. 2019;29(12):2088–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Satija R, et al. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Han X, et al. Mapping the mouse cell atlas by Microwell-Seq. Cell. 2018;173(5):1307.

    Article  CAS  PubMed  Google Scholar 

  40. Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou Y, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Crow M, et al. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor. Nat Commun. 2018;9(1):884.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dasgupta J, et al. Reactive oxygen species control senescence-associated matrix metalloproteinase-1 through c-Jun-N-terminal kinase. J Cell Physiol. 2010;225(1):52–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ardura JA, et al. Parathyroid Hormone-related protein protects osteoblastic cells from oxidative stress by activation of MKP1 phosphatase. J Cell Physiol. 2017;232(4):785–96.

    Article  CAS  PubMed  Google Scholar 

  45. Min J, et al. IFITM3 upregulates c-myc expression to promote hepatocellular carcinoma proliferation via the ERK1/2 signalling pathway. Biosci Trends. 2020;13(6):523–9.

    Article  PubMed  Google Scholar 

  46. Lee J, et al. IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells. Nature. 2020;588(7838):491–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khan TK, Alkon DL. An internally controlled peripheral biomarker for Alzheimer’s disease: Erk1 and Erk2 responses to the inflammatory signal bradykinin. Proc Natl Acad Sci U S A. 2006;103(35):13203–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu L, et al. Construction of TME and identification of crosstalk between malignant cells and macrophages by SPP1 in hepatocellular carcinoma. Cancer Immunol Immunother. 2021;71:121–136.

  49. Isles HM, et al. The CXCL12/CXCR4 signaling axis retains neutrophils at inflammatory sites in zebrafish. Front Immunol. 2019;10:1784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu X, et al. CXCL12/CXCR4 promotes inflammation-driven colorectal cancer progression through activation of RhoA signaling by sponging miR-133a-3p. J Exp Clin Cancer Res. 2019;38(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Goodell MA, Rando TA. Stem cells and healthy aging. Science. 2015;350(6265):1199–204.

    Article  CAS  PubMed  Google Scholar 

  52. Davie K, et al. A single-cell transcriptome atlas of the aging Drosophila brain. Cell. 2018;174(4):982–998 e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lucanic M, et al. Impact of genetic background and experimental reproducibility on identifying chemical compounds with robust longevity effects. Nat Commun. 2017;8:14256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392–404.

    Article  CAS  PubMed  Google Scholar 

  55. Ajami B, et al. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14(9):1142–U263.

    Article  CAS  PubMed  Google Scholar 

  56. Werner Y, et al. Cxcr4 distinguishes HSC-derived monocytes from microglia and reveals monocyte immune responses to experimental stroke. Nat Neurosci. 2020;23(3):351–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jordao MJC, et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science. 2019;363(6425):eaat7554.

  58. Anafu AA, et al. Interferon-inducible transmembrane protein 3 (IFITM3) restricts reovirus cell entry. J Biol Chem. 2013;288(24):17261–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Perreira JM, et al. IFITMs restrict the replication of multiple pathogenic viruses. J Mol Biol. 2013;425(24):4937–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang IC, et al. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog. 2011;7(1):e1001258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Poddar S, et al. The interferon-stimulated gene IFITM3 restricts infection and pathogenesis of arthritogenic and encephalitic alphaviruses. J Virol. 2016;90(19):8780–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hur JY, et al. The innate immunity protein IFITM3 modulates gamma-secretase in Alzheimer's disease. Nature. 2020;586(7831):735–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao Q, et al. MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med. 2006;203(1):131–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eljaschewitsch E, et al. The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron. 2006;49(1):67–79.

    Article  CAS  PubMed  Google Scholar 

  65. Propson NE, et al. Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging. J Clin Investig. 2021;131(1):e140966.

  66. Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte crosstalk in CNS inflammation. Neuron. 2020;108(4):608–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bowman GL, et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults (vol 14, pg 1640, 2018). Alzheimers Dement. 2019;15(2):319.

    Article  Google Scholar 

  68. Yousef H, et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat Med. 2019;25(6):988-+.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chuang YF, et al. Valproic acid suppresses lipopolysaccharide-induced cyclooxygenase-2 expression via MKP-1 in murine brain microvascular endothelial cells. Biochem Pharmacol. 2014;88(3):372–83.

    Article  CAS  PubMed  Google Scholar 

  70. Zhou YD, et al. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimers Res Ther. 2021;13(1):110.

  71. Leandro GS, et al. Changes in expression profiles revealed by transcriptomic analysis in peripheral blood mononuclear cells of Alzheimer’s disease patients. J Alzheimers Dis. 2018;66(4):1483–95.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang H, Cherian R, Jin K. Systemic milieu and age-related deterioration. Geroscience. 2019;41(3):275–84.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pan M, et al. Aging systemic milieu impairs outcome after ischemic stroke in rats. Aging Dis. 2017;8(5):519–30.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Villeda SA, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477(7362):90–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Villeda SA, Wyss-Coray T. The circulatory systemic environment as a modulator of neurogenesis and brain aging. Autoimmun Rev. 2013;12(6):674–7.

    Article  PubMed  Google Scholar 

  76. Katsimpardi L, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014;344(6184):630–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zou YR, et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393(6685):595–9.

    Article  CAS  PubMed  Google Scholar 

  78. Korin B, et al. High-dimensional, single-cell characterization of the brain’s immune compartment. Nat Neurosci. 2017;20(9):1300–9.

    Article  CAS  PubMed  Google Scholar 

  79. Huang Z, et al. Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis. Proc Natl Acad Sci U S A. 2021;118(33):e2023216118.

  80. Lichtenwalner RJ, et al. Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience. 2001;107(4):603–13.

    Article  CAS  PubMed  Google Scholar 

  81. Minhas PS, et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature. 2021;590(7844):122–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Covarrubias AJ, et al. Senescent cells promote tissue NAD(+) decline during ageing via the activation of CD38(+) macrophages. Nat Metab. 2020;2(11):1265–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ambrosi TH, et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature. 2021;597(7875):256–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li CJ, et al. Senescent immune cells release grancalcin to promote skeletal aging. Cell Metab. 2021;33(10):1957–1973 e6.

    Article  CAS  PubMed  Google Scholar 

  85. Jacome-Galarza CE, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568(7753):541–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge staffs at the Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, for the scientific and technical assistance.

Funding

This study was done with the support of the Zhejiang Medical Science & Technology Program (2021KY329), Ningbo Science & Technology Program Ningbo Natural Science Foundation (202003N4243, 2021J022), and Ningbo Yinzhou Science & Technology Program (2020AS0073).

Author information

Authors and Affiliations

Authors

Contributions

Y.S.G., C.Q.Z., L.F.Y, and J.J.G. conceived, designed, and supervised the study. Y.C.Y., Y.D.P., Y.G.H., and F.Y. performed the experiment and analyzed the data. X.Y.C. provided suggestions. Y.C.Y. and Y.D.P. wrote the manuscript.

Corresponding authors

Correspondence to Youshui Gao, Changqing Zhang, Lufeng Yao or Junjie Gao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

11357_2022_578_MOESM1_ESM.pdf

Supplementary file1 Fig s1. (a) Violin plot showing the number of genes and percent of mitochondrial genes detected in brain samples. (b) Heatmap of cell type correlations in each cluster from mouse brain using MetaNeighbor. Fig s2. (a) Violin plot showing the number of genes and percent of mitochondrial genes detected in bone marrow samples. (b) Heatmap of cell type correlations in each cluster from mouse bone marrow (BM) using MetaNeighbor. Fig s3. (a) Gene ontology enrichment of up-regulated and down-regulated genes in glia cells between TERC-KO mouse brain and 6-month-old WT mouse brain. (b) Gene ontology enrichment of up-regulated and down-regulated genes in glia cells between TERC-KO mouse brain and 20-month-old WT mouse brain. Fig s4. (a) Gene ontology enrichment of up-regulated and down-regulated genes in endothelial cells between TERC-KO mouse brain and 6-month-old WT mouse brain. (b) Gene ontology enrichment of up-regulated and down-regulated genes in endothelial cells between TERC-KO mouse brain and 20-month-old WT mouse brain. Fig s5. (a) Gene ontology enrichment of up-regulated and down-regulated genes in Oligodendrocyte precursor cell (OPC) between TERC-KO mouse brain and 6-month-old WT mouse brain. (b) Gene ontology enrichment of up-regulated and down-regulated genes in OPC between TERC-KO mouse brain and 20-month-old WT mouse brain. Fig s6. (a) Gene ontology enrichment of up-regulated and down-regulated genes in lymphocyte between TERC-KO mouse brain and 6-month-old WT mouse bone marrow. (b) Gene ontology enrichment of up-regulated and down-regulated genes in lymphocyte between TERC-KO mouse brain and 20-month-old WT mouse bone marrow. Fig s7. (a) Gene ontology enrichment of up-regulated and down-regulated genes in myeloid between TERC-KO mouse brain and 6-month-old WT mouse bone marrow. (b) Gene ontology enrichment of up-regulated and down-regulated genes in myeloid between TERC-KO mouse brain and 20-month-old WT mouse bone marrow. (PDF 4.52 mb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Pang, Y., Huang, Y. et al. Single-cell transcriptomics identifies premature aging features of TERC-deficient mouse brain and bone marrow. GeroScience 44, 2139–2155 (2022). https://doi.org/10.1007/s11357-022-00578-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00578-4

Keywords

Navigation