Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-pass high-efficiency terahertz free-electron laser

Abstract

The terahertz gap is a region of the electromagnetic spectrum where high average and peak power radiation sources are scarce while at the same time scientific and industrial applications are growing in demand. Free-electron laser (FEL) coupling in a magnetic undulator is one of the best options for radiation generation in this frequency range, but slippage effects require the use of relatively long and low-current electron bunches to drive the terahertz FEL, limiting amplification gain and output peak power. Here we use a circular waveguide in a 0.96-m strongly tapered helical undulator to match the radiation and electron-beam velocities, allowing resonant energy extraction from an ultrashort 200-pC 5.5-MeV electron beam over an extended distance. Electron-beam spectrum measurements, supported by energy and spectral measurement of the terahertz FEL radiation, indicate an average energy efficiency of ~10%, with some particles losing >20% of their initial kinetic energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tapering-enhanced zero-slippage terahertz FEL scheme.
Fig. 2: Electron beam and THz energy measurements.
Fig. 3: Interferometry measurements.
Fig. 4: THz FEL simulations.

Similar content being viewed by others

Data availability

The datasets for the beam energy spectrum as a function of charge and the interferometry scans at different beam energies are available from the corresponding author upon reasonable request.

Code availability

The GPT input file for simulating the entire Pegasus beamline, including the gun, the RF buncher linac and the interaction with the TE11 mode in the undulator, is available from the corresponding author upon reasonable request.

References

  1. Dhillon, S. et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 50, 043001 (2017).

    Article  ADS  Google Scholar 

  2. Lee, Y.-S. Principles of Terahertz Science and Technology Vol. 170 (Springer, 2009).

  3. Salén, P. et al. Matter manipulation with extreme terahertz light: progress in the enabling THz technology. Phys. Rep. 836, 1–74 (2019).

    Article  ADS  Google Scholar 

  4. Nanni, E. A. et al. Terahertz-driven linear electron acceleration. Nat. Commun. 6, 8486 (2015).

    Article  ADS  Google Scholar 

  5. Thumm, M. High power gyro-devices for plasma heating and other applications. Int. J. Infrared Millim. Waves 26, 483–503 (2005).

    Article  ADS  Google Scholar 

  6. Kemp, M. C. et al. in Terahertz for Military and Security Applications Vol. 5070 (eds Hwu, R. J. & Woolard, D. L.) 44–52 (SPIE, 2003).

  7. Müller, A.-S. & Schwarz, M. in Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications (eds Jaeschke, E. J., Khan, S., Schneider, J. R. & Hastings, J. B.) 83–117 (Springer, 2020).

  8. Gallerano, G. P. et al. Overview of terahertz radiation sources. In Proc. 2004 FEL Conference (eds Bakker, R., Giannessi, L., Marsi, M. & Walker, R.) Vol. 1, 216–221 (JACoW, 2004).

  9. Booske, J. H. et al. Vacuum electronic high power terahertz sources. IEEE Trans. Terahertz Sci. Technol. 1, 54–75 (2011).

    Article  ADS  Google Scholar 

  10. Thumm, M. State-of-the-Art of High Power Gyro-Devices and Free Electron Masers. Update 2017, KIT Scientific Report No. 7750 (KIT Scientific Publishing, 2018).

  11. Kumar, N., Singh, U., Singh, T. & Sinha, A. A review on the applications of high power, high frequency microwave source: gyrotron. J. Fusion Energy 30, 257–276 (2011).

    Article  ADS  Google Scholar 

  12. Elias, L. Free-electron laser research at the University of California, Santa Barbara. IEEE J. Quantum Electron. 23, 1470–1475 (1987).

    Article  ADS  Google Scholar 

  13. Ramian, G. The new UCSB free-electron lasers. Nucl. Instrum. Methods Phys. Res. A 318, 225–229 (1992).

    Article  ADS  Google Scholar 

  14. Oepts, D., Van der Meer, A. & Van Amersfoort, P. The free-electron-laser user facility Felix. Infrared Phys. Technol. 36, 297–308 (1995).

    Article  ADS  Google Scholar 

  15. Gallerano, G., Doria, A., Giovenale, E. & Renieri, A. Compact free electron lasers: from Cerenkov to waveguide free electron lasers. Infrared Phys. Technol. 40, 161–174 (1999).

    Article  ADS  Google Scholar 

  16. Jeong, Y. U. et al. First lasing of the KAERI compact far-infrared free-electron laser driven by a magnetron-based microtron. Nuclear Instrum. Methods Phys. Res. A 475, 47–50 (2001).

    Article  ADS  Google Scholar 

  17. Knyazev, B., Kulipanov, G. & Vinokurov, N. Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements. Meas. Sci. Technol. 21, 054017 (2010).

    Article  ADS  Google Scholar 

  18. Gensch, M. et al. THz facility at Elbe: a versatile test facility for electron bunch diagnostics on quasi-CW electron beams. In Proc. 5th International Particle Accelerator Conference IPAC14 (JACoW, 2014); https://doi.org/10.18429/JACoW-IPAC2014-TUZA02

  19. Shu, X. et al. First lasing of CAEP THz FEL facility. In Proc. 2017 42nd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) 1–2 (IEEE, 2017).

  20. Li, H.-T., Jia, Q.-K., Zhang, S.-C., Wang, L. & Yang, Y.-L. Design of FELiChEM, the first infrared free-electron laser user facility in China. Chin. Phys. C 41, 018102 (2017).

    Article  ADS  Google Scholar 

  21. Romaniuk, R. S. POLFEL-free electron laser in Poland. Phot. Lett. Poland 1, 103–105 (2009).

    Google Scholar 

  22. Nause, A. et al. 6-MeV novel hybrid (standing wave-traveling wave) photo-cathode electron gun for a THz superradiant FEL. Nucl. Instrum. Methods Phys. Res. A 1010, 165547 (2021).

    Article  Google Scholar 

  23. Boonpornprasert, P. et al. Start-to-end simulations for IR/THz undulator radiation at PITZ. In Proc. FEL (eds Chrin, J., Reiche, S. & Schaa, V. R. W.) 153–158 (CERN, 2014).

  24. Musumeci, P. et al. Advances in bright electron sources. Nucl. Instrum. Methods Phys. Res. A 907, 209–220 (2018).

    Article  ADS  Google Scholar 

  25. Curry, E., Fabbri, S., Maxson, J., Musumeci, P. & Gover, A. Meter-scale terahertz-driven acceleration of a relativistic beam. Phys. Rev. Lett. 120, 094801 (2018).

    Article  ADS  Google Scholar 

  26. Snively, E., Xiong, J., Musumeci, P. & Gover, A. Broadband THz amplification and superradiant spontaneous emission in a guided FEL. Opt. Express 27, 20221–20230 (2019).

    Article  ADS  Google Scholar 

  27. Bartolini, R., Doria, A., Gallerano, G. & Renieri, A. Theoretical and experimental aspects of a waveguide FEL. Nucl. Instrum. Methods Phys. Res. A 304, 417–420 (1991).

    Article  ADS  Google Scholar 

  28. Curry, E., Fabbri, S., Musumeci, P. & Gover, A. THz-driven zero-slippage IFEL scheme for phase space manipulation. New J. Phys. 18, 113045 (2016).

    Article  ADS  Google Scholar 

  29. Savilov, A. V. Stimulated wave scattering in the Smith-Purcell FEL. IEEE Trans. Plasma Sci. 29, 820–823 (2001).

    Article  ADS  Google Scholar 

  30. Gover, A. et al. Superradiant and stimulated-superradiant emission of bunched electron beams. Rev. Mod. Phys. 91, 035003 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  31. Duris, J., Murokh, A. & Musumeci, P. Tapering enhanced stimulated superradiant amplification. New J. Phys. 17, 063036 (2015).

    Article  ADS  Google Scholar 

  32. Sudar, N. et al. High efficiency energy extraction from a relativistic electron beam in a strongly tapered undulator. Phys. Rev. Lett. 117, 174801 (2016).

    Article  ADS  Google Scholar 

  33. Maxson, J. et al. Direct measurement of sub-10-fs relativistic electron beams with ultralow emittance. Phys. Rev. Lett. 118, 154802 (2017).

    Article  ADS  Google Scholar 

  34. Alesini, D. et al. New technology based on clamping for high gradient radio frequency photogun. Phys. Rev. Special Top. Accel. Beams 18, 092001 (2015).

    Article  ADS  Google Scholar 

  35. Calvi, M., Camenzuli, C., Ganter, R., Sammut, N. & Schmidt, T. Magnetic assessment and modelling of the Aramis undulator beamline. J. Synchrotron Radiat. 25, 686–705 (2018).

    Article  Google Scholar 

  36. Warren, R. Limitations on the use of the pulsed-wire field measuring technique. Nucl. Instrum. Methods Phys. Res. A 272, 257–263 (1988).

    Article  ADS  Google Scholar 

  37. Zangwill, A. Modern Electrodynamics (Cambridge Univ. Press, 2013).

  38. Fisher, A., Musumeci, P. & Van der Geer, S. Self-consistent numerical approach to track particles in free electron laser interaction with electromagnetic field modes. Phys. Rev. Accel. Beams 23, 110702 (2020).

    Article  ADS  Google Scholar 

  39. Giannessi, L., Musumeci, P. & Quattromini, M. TREDI: fully 3D beam dynamics simulation of RF guns, bendings and FELs. Nucl. Instrum. Methods Phys. Res. At 436, 443–444 (1999).

    Article  ADS  Google Scholar 

  40. Doria, A., Gallerano, G. P., Giovenale, E., Messina, G. & Spassovsky, I. Enhanced coherent emission of terahertz radiation by energy-phase correlation in a bunched electron beam. Phys. Rev. Lett. 93, 264801 (2004).

    Article  ADS  Google Scholar 

  41. Sun, Y.-E. et al. Tunable subpicosecond electron-bunch-train generation using a transverse-to-longitudinal phase-space exchange technique. Phys. Rev. Lett. 105, 234801 (2010).

    Article  ADS  Google Scholar 

  42. Musumeci, P., Li, R. & Marinelli, A. Nonlinear longitudinal space charge oscillations in relativistic electron beams. Phys. Rev. Lett. 106, 184801 (2011).

    Article  ADS  Google Scholar 

  43. Muggli, P., Yakimenko, V., Babzien, M., Kallos, E. & Kusche, K. Generation of trains of electron microbunches with adjustable subpicosecond spacing. Phys. Rev. Lett. 101, 054801 (2008).

    Article  ADS  Google Scholar 

  44. Boscolo, M., Ferrario, M., Boscolo, I., Castelli, F. & Cialdi, S. Generation of short THz bunch trains in a RF photoinjector. Nucl. Instrum. Methods Phys. Res. A 577, 409–416 (2007).

    Article  ADS  Google Scholar 

  45. Zen, H., Ohgaki, H. & Hajima, R. Record high extraction efficiency of free electron laser oscillator. Appl. Phys. Express 13, 102007 (2020).

    Article  ADS  Google Scholar 

  46. Orzechowski, T. et al. High-efficiency extraction of microwave radiation from a tapered-wiggler free-electron laser. Phys. Rev. Lett. 57, 2172–2175 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF grant no. PHY-1734215 and DOE grants nos. DE-SC0009914 and DE-SC0021190. The undulator construction was carried out under SBIR/STTR DE-SC0017102 and DE-SC0018559.

Author information

Authors and Affiliations

Authors

Contributions

A.F. and Y.P. carried out the measurements and analysed the data. M.L. and A.O. helped with UCLA Pegasus beamline operation, including alignment, vacuum and controls. P.M. proposed and supervised the experiment. A.M. participated in the TESSA development and is the principal investigator on one of the supporting grants. R.A. and T.H. were responsible for the undulator construction. A.F., Y.P. and P.M. prepared the manuscript, which was revised and edited by all co-authors.

Corresponding authors

Correspondence to A. Fisher, Y. Park or P. Musumeci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Lixin Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisher, A., Park, Y., Lenz, M. et al. Single-pass high-efficiency terahertz free-electron laser. Nat. Photon. 16, 441–447 (2022). https://doi.org/10.1038/s41566-022-00995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-00995-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing