Skip to main content
Log in

Mechanical Properties and Residual Stress Depth Profiles of Plasma Sprayed Ceramic Coatings Deposited Under Comparable Particle Temperature and Velocity

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A comparative study on the mechanical properties and residual stress profiles of ceramic coatings produced using plasma spraying under comparable conditions are presented. Alumina, titania, alumina-13%titania, zirconia and chromia coatings were deposited, for the first time, under similar particle velocity and a comparable particle temperature to melting temperature ratio. The coatings were characterized by porosity, hardness, indentation modulus, and fracture toughness, and full residual stress depth profiles of the coated specimens. The degree of particle melting and associated coating properties relied on the latent heat of fusion of the feedstock. The top coatings were found to possess different residual stress field depending on their coefficient of thermal expansion. The effect of tensile quenching stress is perceived when the difference in thermal expansion coefficients between the topcoats and the bond coat is low, e.g., titania and zirconia coatings. On the other hand, for a higher differential thermal expansion coefficient, effect of compressive thermal stress is prevalent, e.g., alumina, alumina-titania, and chromia coatings. Moreover, the highly compressive residual stress in the grit blasted substrate was relaxed after coating deposition, and the extent of stress relaxation was dependent on plasma power. Hence, the full residual stress state in a coated component relied on the combined influence of the difference in thermal expansion coefficients between the topcoat and bond coat, degree of feedstock melting, and the extent of stress relaxation owing to annealing effect by the plasma jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw and processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. P.P. Bandyopadhyay, Processing and Characterisation of Plasma Sprayed Ceramic Coatings on Steel Substrate, PhD Thesis, IIT Kharagpur, 2000.

  2. G. Bolelli, K. Sabiruddin, L. Lusvarghi, E. Gualtieri, S. Valeri and P.P. Bandyopadhyay, FIB Assisted Study of Plasma Sprayed Splat–Substrate Interfaces: NiAl–Stainless Steel and Alumina–NiAl Combinations, Surf. Coat. Technol., 2010, 205(2), p 363-371.

    Article  CAS  Google Scholar 

  3. R.B. Heimann, Applications of Plasma-Sprayed Ceramic Coatings, Key Eng. Mater., 1996, 122, p 399-442.

    Article  Google Scholar 

  4. V. Ambardekar, P.P. Bandyopadhyay and S.B. Majumder, Atmospheric Plasma Sprayed SnO2 Coating for Ethanol Detection, J. Alloy. Compd., 2018, 752, p 440-447.

    Article  CAS  Google Scholar 

  5. S.C. Jambagi, N. Sarkar and P.P. Bandyopadhyay, Preparation of Carbon Nanotube Doped Ceramic Powders for Plasma Spraying Using Heterocoagulation Method, J. Eur. Ceram. Soc., 2015, 35(3), p 989-1000.

    Article  CAS  Google Scholar 

  6. B. Das, M. Gopinath, A.K. Nath and P.P. Bandyopadhyay, Effect of Cooling Rate on Residual Stress and Mechanical Properties of Laser Remelted Ceramic Coating, J. Eur. Ceram. Soc., 2018, 38(11), p 3932-3944.

    Article  CAS  Google Scholar 

  7. R. Jaworski, L. Pawlowski, F. Roudet, S. Kozerski and F. Petit, Characterization of Mechanical Properties of Suspension Plasma Sprayed TiO2 Coatings Using Scratch Test, Surf. Coat. Technol., 2008, 202(12), p 2644-2653.

    Article  CAS  Google Scholar 

  8. G. Ghosh, A. Sidpara and P.P. Bandyopadhyay, High Efficiency Chemical Assisted Nanofinishing of HVOF Sprayed WC-Co Coating, Surf. Coat. Technol, 2018, 334, p 204-214.

    Article  CAS  Google Scholar 

  9. W. Żórawski, A. Góral, O. Bokuvka, L. Lityńska-Dobrzyńska and K. Berent, Microstructure and Tribological Properties of Nanostructured and Conventional Plasma Sprayed Alumina–Titania Coatings, Surf. Coat. Technol., 2015, 268, p 190-197.

    Article  CAS  Google Scholar 

  10. P. Zamani and Z. Valefi, Microstructure, Phase Composition and Mechanical Properties of Plasma Sprayed Al2O3, Cr2O3 and Cr2O3-Al2O3 Composite Coatings, Surf. Coat. Technol., 2017, 316, p 138-145.

    Article  CAS  Google Scholar 

  11. A. Kulkarni, A. Vaidya, A. Goland, S. Sampath and H. Herman, Processing Effects on Porosity-Property Correlations in Plasma Sprayed Yttria-Stabilized Zirconia Coatings, Mater. Sci. Eng. A, 2003, 359(1-2), p 100-111.

    Article  CAS  Google Scholar 

  12. B. Das, P. Brodard and P.P. Bandyopadhyay, Raman Spectroscopy Assisted Residual Stress Measurement of Plasma Sprayed and Laser Remelted Zirconia Splats and Coatings, Surf. Coat. Technol., 2019, 378, 124920.

    Article  CAS  Google Scholar 

  13. S. Das, T.K. Bandyopadhyay, S. Ghosh, A.B. Chattopadhyay and P.P. Bandyopadhyay, Processing and Characterization of Plasma-Sprayed Ceramic Coatings on Steel Substrate: Part II. On Coating Performance, Metal. Mater. Trans. A, 2003, 34(9), p 1919-1930.

    Article  Google Scholar 

  14. W. Luo, U. Selvadurai and W. Tillmann, Effect of Residual Stress on the Wear Resistance of Thermal Spray Coatings, J. Therm. Spray Technol., 2016, 25(1-2), p 321-330.

    Article  CAS  Google Scholar 

  15. K. Brinkienė, R. Kėželis, J. Čėsnienė, V. Mėčius and A. Žunda, Characterization of Wear Properties of Plasma Sprayed Ceramic Coatings. Medžiagotyra. Kaunas: Technologija, 2008, 14(4)

  16. P.P. Bandyopadhyay, D. Chicot, C.S. Kumar, X. Decoopman and J. Lesage, Influence of Sinking-In and Piling-Up on the Mechanical Properties Determination by Indentation: A Case Study on Rolled and DMLS Stainless Steel, Mater. Sci. Eng. A, 2013, 576, p 126-133.

    Article  CAS  Google Scholar 

  17. S. Kar, S. Paul and P.P. Bandyopadhyay, Processing and Characterisation of Plasma Sprayed Oxides: Microstructure, Phases and Residual Stress, Surf. Coat. Technol., 2016, 304, p 364-374.

    Article  CAS  Google Scholar 

  18. G. Ghosh, A. Sidpara and P.P. Bandyopadhyay, Review of Several Precision Finishing Processes for Optics Manufacturing, J. Micromanuf., 2018, 1(2), p 170-188.

    Article  Google Scholar 

  19. I.B.A.C.T.U. Kraus, N.B.A.C.T.U. Ganev, G.B.A.C.T.U. Gosmanova, H.D. Tietz, L. Pfeiffer and S. Böhm, Residual Stress Measurement in Alumina Coatings, Mater. Sci. Eng. A, 1995, 199(2), p L15-L17.

    Article  Google Scholar 

  20. S.M. Forghani, M.J. Ghazali, A. Muchtar and A.R. Daud, Mechanical Properties of Plasma Sprayed Nanostructured TiO2 Coatings on Mild Steel, Ceram. Int., 2014, 40(5), p 7049-7056.

    Article  CAS  Google Scholar 

  21. M.L. Benea and L.P. Benea, Characterisation of the TiO2 coatings deposited by plasma spraying, In IOP Conference Series: Mater. Sci. Eng., 2016, 106(1), 012024, IOP Publishing.

  22. M. Harju, M. Järn, P. Dahlsten, J.B. Rosenholm and T. Mäntylä, Influence of Long-Term Aqueous Exposure on Surface Properties of Plasma Sprayed Oxides Al2O3, TiO2 and Their Mixture Al2O3–13TiO2, Appl. Surf. Sci., 2008, 254(22), p 7272-7279.

    Article  CAS  Google Scholar 

  23. Z. Yin, S. Tao, X. Zhou and C. Ding, Particle In-Flight Behavior and Its Influence on the Microstructure and Mechanical Properties of Plasma-Sprayed Al2O3 Coatings, J. Eur. Ceram. Soc., 2008, 28(6), p 1143-1148.

    Article  CAS  Google Scholar 

  24. G. Hou, X. Zhao, Y. An, H. Zhou and J. Chen, Effect of Spraying Parameter and Injector Angle on the Properties of In-Flight Particles and Alumina Coatings on Al Alloy with PA-HT, Ceram. Int., 2018, 44(3), p 3173-3182.

    Article  CAS  Google Scholar 

  25. M. Friis, C. Persson and J. Wigren, Influence of Particle In-Flight Characteristics on the Microstructure of Atmospheric Plasma Sprayed Yttria Stabilized ZrO2, Surf. Coat. Technol., 2001, 141(2-3), p 115-127.

    Article  CAS  Google Scholar 

  26. O. Kovářík, X. Fan and M. Boulos, In Flight Properties of W Particles in an Ar-H2 Plasma, J. Therm. Spray Technol., 2007, 16(2), p 229-237.

    Article  CAS  Google Scholar 

  27. Y.P. Wan, S. Sampath, V. Prasad, R. Williamson and J.R. Fincke, An Advanced Model for Plasma Spraying of Functionally Graded Materials, J. Mater. Process. Technol., 2003, 137(1-3), p 110-116.

    Article  CAS  Google Scholar 

  28. A.F. Kanta, M.P. Planche, G. Montavon and C. Coddet, In-Flight and Upon Impact Particle Characteristics Modelling in Plasma Spray Process, Surf. Coat. Technol., 2010, 204(9-10), p 1542-1548.

    Article  CAS  Google Scholar 

  29. A. Valarezo, K. Shinoda and S. Sampath, Effect of Deposition Rate and Deposition Temperature on Residual Stress of HVOF-Sprayed Coatings, J. Therm. Spray Technol., 2020, 29(6), p 1322-1338.

    Article  CAS  Google Scholar 

  30. C. Li, X. Zhang, Y. Chen, J. Carr, S. Jacques, J. Behnsen, M. Di Michiel, P. Xiao and R. Cernik, Understanding the Residual Stress Distribution Through the Thickness of Atmosphere Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) by High Energy Synchrotron XRD; Digital Image Correlation (DIC) and Image Based Modelling, Acta Mater., 2017, 132, p 1-12.

    Article  CAS  Google Scholar 

  31. X. Zhang, M. Watanabe and S. Kuroda, Effects of Residual Stress on the Mechanical Properties of Plasma-Sprayed Thermal Barrier Coatings, Eng. Frac. Mech., 2013, 110, p 314-327.

    Article  Google Scholar 

  32. D. Mohanty, S. Kar, S. Paul and P.P. Bandyopadhyay, Carbon Nanotube Reinforced HVOF Sprayed WC-Co Coating, Mater. Des., 2018, 156, p 340-350.

    Article  CAS  Google Scholar 

  33. P. Bengtsson and C. Persson, Modelled and Measured Residual Stresses in Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 1997, 92(1-2), p 78-86.

    Article  CAS  Google Scholar 

  34. J. Matejicek, S. Sampath, P.C. Brand and H.J. Prask, Quenching, Thermal and Residual Stress in Plasma Sprayed Deposits: NiCrAlY and YSZ Coatings, Acta Mater., 1999, 47(2), p 607-617.

    Article  CAS  Google Scholar 

  35. M. Wang and L.L. Shaw, Effects of the Powder Manufacturing Method on Microstructure and Wear Performance of Plasma Sprayed Alumina-Titania Coatings, Surf. Coat. Technol., 2007, 202(1), p 34-44.

    Article  CAS  Google Scholar 

  36. C. Dickinson, W. Zhou, R.P. Hodgkins, Y. Shi, D. Zhao and H. He, Formation Mechanism of Porous Single-Crystal Cr2O3 and Co3O4 Templated by Mesoporous Silica, Chem. Mater., 2006, 18(13), p 3088-3095.

    Article  CAS  Google Scholar 

  37. T. Ghara, S. Paul and P.P. Bandyopadhyay, Influence of Grit Blasting on Residual Stress Depth Profile and Dislocation Density in Different Metallic Substrates, Metall. Mater. Trans. A, 2021, 52(1), p 65-81.

    Article  CAS  Google Scholar 

  38. A.G. Evans and E.A. Charles, Fracture Toughness Determinations by Indentation, J. Am. Ceram. Soc., 1976, 59(7-8), p 371-372.

    Article  CAS  Google Scholar 

  39. T. Ghara and P.P. Bandyopadhyay, Understanding the Role of In-flight Particle Temperature and Velocity on the Residual Stress Depth Profile and Other Mechanical Properties of Atmospheric Plasma sprayed Al2O3 Coating, J. Eur. Ceram. Soc., 2022 https://doi.org/10.1016/j.jeurceramsoc.2022.04.019

    Article  Google Scholar 

  40. T. Ghara, S. Paul and P.P. Bandyopadhyay, Effect of Grit Blasting Parameters on Surface and Near-Surface Properties of Different Metal Alloys, J. Therm. Spray Technol., 2021, 30(1), p 251-269.

    Article  CAS  Google Scholar 

  41. M.G. Moore and W.P. Evans, Mathematical correction for stress in removed layers in X-ray diffraction residual stress analysis. SAE Trans., 1958, pp. 340-345.

  42. A.K. Zak, W.H.A. Majid, M.E. Abrishami and R. Youse, X-ray Analysis of ZnO Nanoparticles by Williamson-Hall and Size-Strain Plot Methods, Solid State Sci., 2011, 13(1), p 251-256.

    Article  CAS  Google Scholar 

  43. L.H. Wu and C.H. Jiang, Effect of Shot Peening on Residual Stress and Microstructure in the Deformed Layer of Lnconel 625, Mater. Trans., 2017, 58(2), p 164-166.

    Article  CAS  Google Scholar 

  44. Material Product Data Sheet, Aluminum Oxide-13% Titanium Dioxide powders, DSM-0258.0, Oerlikon metco, 2020, pp. 1-4.

  45. I.P. Gulyaev, Production and Modification of Hollow Powders in Plasma Under Controlled Pressure, J. Phys. Conf. Series, 2013, 441(1), p 012033.

    Article  CAS  Google Scholar 

  46. M. Sebastiani, G. Bolelli, L. Lusvarghi, P.P. Bandyopadhyay and E. Bemporad, High Resolution Residual Stress Measurement on Amorphous and Crystalline Plasma-Sprayed Single-Splats, Surf. Coat. Technol., 2012, 206(23), p 4872-4880.

    Article  CAS  Google Scholar 

  47. R. McPherson, The Relationship Between the Mechanism of Formation, Microstructure and Properties of Plasma-Sprayed Coatings, Thin Solid Films, 1981, 83(3), p 297-310.

    Article  CAS  Google Scholar 

  48. M.W. Chase Jr., J.L. Curnutt, R.A. McDonald and A.N. Syverud, JANAF Thermochemical Tables, 1978 Supplement, J. Phys. Chem. Ref. Data, 1978, 7(3), p 793-940.

    Article  CAS  Google Scholar 

  49. B. Normand, V. Fervel, C. Coddet and V. Nikitine, Tribological Properties of Plasma Sprayed Alumina-Titania Coatings: Role and Control of the Microstructure, Surf. Coat. Technol., 2000, 123(2-3), p 278-287.

    Article  CAS  Google Scholar 

  50. J.W. Adams, R. Ruh and K.S. Mazdiyasni, Young’s Modulus, Flexural Strength, and Fracture of Yttria-Stabilized Zirconia Versus Temperature, J. Am. Ceram. Soc., 1997, 80(4), p 903-908.

    Article  CAS  Google Scholar 

  51. T. Gnaeupel-Herold, H.J. Prask, J. Barker, F.S. Biancaniello, R.D. Jiggetts and J. Matejicek, Microstructure, Mechanical Properties, and Adhesion in IN625 air Plasma Sprayed Coatings, Mater. Sci. Eng. A, 2006, 421(1-2), p 77-85.

    Article  CAS  Google Scholar 

  52. S. Ghosh, S. Das, T.K. Bandyopadhyay, P.P. Bandyopadhyay and A.B. Chattopadhyay, Indentation Responses of Plasma Sprayed Ceramic Coatings, J. Mater. Sci., 2003, 38(7), p 1565-1572.

    Article  CAS  Google Scholar 

  53. G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam and E. Lara-Curzio, Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging, J. Am. Ceram. Soc., 2014, 97(9), p 2736-2744.

    Article  CAS  Google Scholar 

  54. R. McPherson, On the Formation of Thermally Sprayed Alumina Coatings, J. Mater. Sci., 1980, 15(12), p 3141-3149.

    Article  CAS  Google Scholar 

  55. M. Hadad, P.P. Bandyopadhyay, J. Michler and J. Lesage, Tribological Behaviour of Thermally Sprayed Ti-Cr-Si Coatings, Wear, 2009, 267(5-8), p 1002-1008.

    Article  CAS  Google Scholar 

  56. G.J. Yang, Z.L. Chen, C.X. Li and C.J. Li, Microstructural and Mechanical Property Evolutions of Plasma-Sprayed YSZ Coating During High-Temperature Exposure: Comparison Study Between 8YSZ and 20YSZ, J. Therm. Spray Technol., 2013, 22(8), p 1294-1302.

    Article  CAS  Google Scholar 

  57. Y.Y. Santana, J.G. La Barbera-Sosa, M.H. Staia, J. Lesage, E.S. Puchi-Cabrera, D. Chicot and E. Bemporad, Measurement of Residual Stress in Thermal Spray Coatings by the Incremental Hole Drilling Method, Surf. Coat. Technol., 2006, 201(5), p 2092-2098.

    Article  CAS  Google Scholar 

  58. M.J. Lee, B.C. Lee, J.G. Lim and M.K. Kim, Residual Stress Analysis of the Thermal Barrier Coating System by Considering the Plasma Spraying Process, J. Mech. Sci. Technol., 2014, 28(6), p 2161-2168.

    Article  Google Scholar 

  59. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66.

    Article  CAS  Google Scholar 

  60. S. Datta, D.K. Pratihar and P.P. Bandyopadhyay, Modeling of Input–Output Relationships for a Plasma Spray Coating Process Using Soft Computing Tools, Appl. Soft Comp., 2012, 12(11), p 3356-3368.

    Article  Google Scholar 

  61. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Second ed., John Willey and Sons Ltd., England, 2008, http://dx.doi.org/https://doi.org/10.1016/0263-8223(96)80006

  62. D.R. Hummer, P.J. Heaney and J.E. Post, Thermal Expansion of Anatase and Rutile Between 300 and 575 K Using Synchrotron Powder X-ray Diffraction, Powder Diffr., 2007, 22(4), p 352-357.

    Article  CAS  Google Scholar 

  63. H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura and M. Mori, Thermal Expansion Coefficient of Yttria Stabilized Zirconia for Various Yttria Contents, Solid State Ion., 2005, 176(5-6), p 613-619.

    Article  CAS  Google Scholar 

  64. X. Pang, K. Gao, H. Yang, L. Qiao, Y. Wang and A.A. Volinsky, Interfacial Microstructure of Chromium Oxide Coatings, Adv. Eng. Mater., 2007, 9(7), p 594-599.

    Article  CAS  Google Scholar 

  65. U. Savitha, G.J. Reddy, V. Singh, A.A. Gokhale and M. Sundararaman, Additive Laser Deposition of Compositionally Graded NiCrAlY-YSZ Multi-Materials on IN625-NiCrAlY Substrate, Mater. Charact., 2020, 164, 110317.

    Article  CAS  Google Scholar 

  66. V. Luzin, A. Valarezo, and S. Sampath, Through-thickness residual stress measurement in metal and ceramic spray coatings by neutron diffraction. In Materials Science Forum, 2008, 571, 315-320, Trans Tech Publications Ltd.

  67. Y.C. Tsui, C. Doyle and T.W. Clyne, Plasma Sprayed Hydroxyapatite Coatings on Titanium Substrates Part 1: Mechanical Properties and Residual Stress Levels, Biomaterials, 1998, 19(22), p 2015-2029.

    Article  CAS  Google Scholar 

  68. C.M. Weyant, J. Almer and K.T. Faber, Through-Thickness Determination of Phase Composition and Residual Stresses in Thermal Barrier Coatings Using High-Energy X-rays, Acta Mater., 2010, 58(3), p 943-951.

    Article  CAS  Google Scholar 

  69. J. Matejicek and S.J.A.M. Sampath, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings: Part 1: Apparatus and Analysis, Acta Mater., 2003, 51(3), p 863-872.

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Bandyopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghara, T., Bandyopadhyay, P.P. Mechanical Properties and Residual Stress Depth Profiles of Plasma Sprayed Ceramic Coatings Deposited Under Comparable Particle Temperature and Velocity. J Therm Spray Tech 31, 1889–1905 (2022). https://doi.org/10.1007/s11666-022-01412-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01412-1

Keywords

Navigation