Skip to main content
Log in

Optimization of Gas–Steam–Electricity Network of Typical Iron and Steel Enterprise

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Due to the fact that by-product gases constitute significant secondary energy sources in iron and steel enterprises, their reasonable distribution is critical for energy conservation and consumption reduction. In the current study, there is a lack of in-depth thinking about the impact on an entire system owing to the adjustment of single equipment in the process. In this paper, the model combined of gas distribution, steam, and electricity optimization is established based on the mechanism. By using a typical enterprise scene of adjusting the by-product gas combustion ratio of heating furnace, the impact of changes in surplus gas on the Gas–Steam–Electricity network is analyzed. When the ratio of coke-oven gas:blast furnace gas:basic oxygen furnace gas is 2:2:1, the lowest operating cost of the entire system is 95.511 CNY/t-cs, and thus, 5.2619 million CNY can be saved every year. Therefore, the rational allocation and use of by-product gas can bring considerable benefits to the whole enterprise.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study and part of the company's internal data is confidential.

Abbreviations

COG:

Coke oven gas

\({\text{t}}_{\text{HM}}\) :

Temperature of molten iron in steelmaking, °C

BFG:

Blast furnace gas

\({F}_{\mathrm{heat}}\) :

Heat supplement used in steelmaking, t/h

BOFG:

Basic oxygen furnace gas

\({\text{q}}_{\mathrm{heat}}\) :

Specific heat of heat supplement, kJ/(kg °C)

\({C}_{i}\) :

Unit price of gas i, CNY/m3

\({m}_{\mathrm{scrap}}\) :

Crap used in steelmaking, t/h

\({C}_{\mathrm{coal}}\) :

Unit price of coal, CNY/kg

\({\text{c}}_{\text{scrap}}\) :

Specific heat of molten scrap, kJ/(kg °C)

\({C}_{\mathrm{buy}}^{\mathrm{ele}}\) :

Price of purchased electricity, CNY/kW·h

\({\text{t}}_{\text{scrap}}\) :

Temperature of molten scrap, °C

\({C}_{\mathrm{gen}}^{\mathrm{ele}}\) :

Price of electricity exported, CNY/kW·h

\({\text{V}}_{\mathrm{BOFG}}\) :

BOFG production, Nm3/h

\({C}_{\mathrm{ste},k}\) :

Cost of k steam production, CNY/t

\({\text{q}}_{\text{BOFG}}\) :

Calorific value of BOFG, kJ/Nm3

\({F}_{i}\) :

Gas i consumption, m3/h

\({\text{m}}_{\mathrm{steel}}\) :

Output of molten steel, t/h

\({F}_{\mathrm{coal}}\) :

Coal consumption, t/h

\({\text{c}}_{\mathrm{steel}}\) :

Specific heat of molten steel outlet, kJ/(kg °C)

\({E}_{\mathrm{buy}}\) :

Purchased electricity, kW·h

\({\text{t}}_{\mathrm{steel}}\) :

Temperature of molten steel, °C

\({E}_{\mathrm{gen}}\) :

Electricity exported, kW·h

\({\text{m}}_{\text{slag,steel}}\) :

Output of molten slag in steelmaking, t/h

\({F}_{\mathrm{ste},k}\) :

Steam k produced, m3/h

\({\text{c}}_{\text{slag,steel}}\) :

Specific heat of slag in steelmaking, kJ/(kg °C)

\({\text{F}}_{\text{coking}}\) :

Fuel demand in coking

\({\text{t}}_{\text{slag,steel}}\) :

Temperature of slag in steelmaking, °C

\({\text{q}}_{\text{coking}}\) :

Calorific value of coking fuel, kJ/Nm3

\({D}_{\mathrm{boi}-\mathrm{kt}}^{\mathrm{fw}}\) :

Feed water volume of k boilers, t/h

\({\text{V}}_{\text{COG}}\) :

COG production, Nm3/h

\({D}_{\mathrm{boi}-\mathrm{kt}}^{\mathrm{st}}\) :

Evaporation volume of k boilers, t/h

\({\text{q}}_{\text{COG}}\) :

Calorific value of COG, kJ/Nm3

\({D}_{\mathrm{boi}-\mathrm{kt}}^{\mathrm{sd}}\) :

Sewage volume of k boilers, t/h

\({m}_{\mathrm{coal}}\) :

Coke produced, t/h

\({h}_{\mathrm{boi}-\mathrm{kt}}^{fw}\) :

k, boiler feedwater enthalpy, kJ/t

\({\text{c}}_{\text{c.out}}\) :

Specific heat of coke out, kJ/(kg °C)

\({h}_{\mathrm{boi}-\mathrm{kt}}^{\mathrm{st}}\) :

K boiler steam enthalpy, kJ/t

\({\text{c}}_{\text{c.in}}\) :

Specific heat of coke, kJ/(kg °C)

\({h}_{\mathrm{boi}-\mathrm{kt}}^{\mathrm{sd}}\) :

k Boiler sewage enthalpy, kJ/t

\({\text{V}}_{\text{c.w}}\) :

Flue gas, Nm3/h

\({V}_{\mathrm{boi}-\mathrm{kt}.}^{m}\) :

Supply of mixed gas for k boilers, Nm3/h

\({\text{c}}_{\text{p.c.w}}\) :

Specific heat of flue gas, kJ/(Nm3 °C)

\({q}_{\mathrm{boi}-\mathrm{kt}}^{m}\) :

Heating value of the mixed gas, kJ/m3

\({\text{t}}_{\text{c.w}}\) :

Flue gas outlet temperature, °C

\({m}_{\mathrm{coal}}\) :

Steam coal used in the 1025t boiler, t/h

\({\text{F}}_{\text{ore}}\) :

Ore used in ironmaking, t/h

\({D}_{\mathrm{in}}\) :

Intake steam volume, t/h

\({\text{q}}_{\text{coke}}\) :

Heat brought in by iron coke, kJ/t

\({D}_{\mathrm{ex}}\) :

Extraction steam volume

\({\text{V}}_{\mathrm{air}}\) :

Air used in ironmaking, Nm3/h

\({D}_{\mathrm{con}}\) :

Condensing steam volume, t/h

\({\text{c}}_{\text{b.air}}\) :

Specific heat of hot air, kJ/(Nm3 °C)

\({D}_{\mathrm{in}}^{\mathrm{min}}\) :

Lower limits of the intake steam, t/h

\({\text{t}}_{\text{b.air}}\) :

Temperature of hot air, °C

\({D}_{\mathrm{in}}^{\mathrm{max}}\) :

Upper limits of the intake steam, t/h

\({\text{V}}_{\mathrm{BFG}}\) :

BFG production, Nm3/h

\({D}_{\mathrm{ex}}^{\mathrm{min}}\) :

Lower limits of the output steam, t/h

\({\text{q}}_{\text{BFG}}\) :

Calorific value of BFG, kJ/Nm3

\({D}_{\mathrm{ex}}^{\mathrm{max}}\) :

Upper limits of the output steam, t/h

\({V}_{\text{b.w}}\) :

Waste gas production, Nm3/h

\({P}^{\mathrm{min}}\) :

Minimum load to satisfy extraction, t/h

\({\text{c}}_{\text{p.b.w}}\) :

Specific heat of exhaust gas, kJ/(Nm3 °C)

\({q}_{\mathrm{coal}}\) :

Heating value of 1025t boiler steam coal, kJ/t

\({\text{q}}_{\text{ore}}\) :

Heat brought in by ore, kJ/t

\({V}_{\mathrm{boi}-\mathrm{kt}.}^{p}\) :

Flue gas from k boilers, Nm3/h

\({\text{q}}_{\text{coal}}\) :

Heat brought in by coal, kJ/t

\({q}_{\mathrm{boi}-\mathrm{kt}}^{p}\) :

Heating value of flue gas, kJ/m3

\({P}^{\mathrm{max}}\) :

Maximum load to satisfy extraction, t/h

\({\text{t}}_{\text{b.w}}\) :

Temperature of exhaust gas, °C

\({D}_{i-\mathrm{rest}}\) :

Rest of steam i, t/h

\({\text{m}}_{\text{iron}}\) :

Output of molten iron, t/h

\({D}_{i-\mathrm{req}}\) :

Requirement of steam i, t/h

\({\text{c}}_{\text{Iron}}\) :

Specific heat of molten iron, kJ/(kg °C)

\({D}_{i-\mathrm{boi}-k}^{\mathrm{st}}\) :

Boiler k produces steam i, t/h

\({\text{t}}_{\text{Iron}}\) :

Temperature of molten iron, °C

\({V}_{\mathrm{gas}-i}\) :

Production of by-product gas i, Nm3/h

\({\text{m}}_{\text{slag,iron}}\) :

Output of molten slag in ironmaking, t/h

\({V}_{\mathrm{gas}-i,\mathrm{main}}\) :

Main processes demand gas i, Nm3/h

\({\text{c}}_{\text{slag,iron}}\) :

Specific heat of slag, kJ/(kg °C)

\({V}_{\mathrm{gas}-i,\mathrm{buffer}}\) :

Buffer users demand gas i, Nm3/h

\({\text{F}}_{\text{coke}}\) :

Coke used in ironmaking, t/h

\({\text{t}}_{\text{slag,iron}}\) :

Temperature of slag in ironmaking, °C

\({\text{m}}_{\text{HM}}\) :

Molten iron used in steelmaking, t/h

\({\text{c}}_{\text{HM}}\) :

Specific heat of molten iron, kJ/(kg °C)

References

  1. Porzio GF, Colla V, Matarese N, Nastasi G, Branca TA, Amato A, Fornai B, Vannucci M, Bergamasco M (2014) Process integration in energy and carbon intensive industries: an example of exploitation of optimization techniques and decision support. Appl Therm Eng 70:1148–1155. https://doi.org/10.1016/j.applthermaleng.2014.05.058

    Article  Google Scholar 

  2. Mariños Rosado DJ, Rojas Chávez SB, Amaro Gutierrez J, Mayworm de Araújo FH, de Carvalho JA, Mendiburu AZ (2020) Energetic analysis of reheating furnaces in the combustion of coke oven gas, Linz-Donawitz gas and blast furnace gas in the steel industry. Appl Therm Eng 169:114905. https://doi.org/10.1016/j.applthermaleng.2020.114905

    Article  Google Scholar 

  3. Global crude steel output decreases by 0.9% in 2020 (2020) https://www.worldsteel.org/media-centre/press-releases/2021/Global-crude-steel-output-decreases-by-0.9--in-2020.html.

  4. Lu B, Chen G, Chen D, Yu W (2016) An energy intensity optimization model for production system in iron and steel industry. Appl Therm Eng 100:285–295. https://doi.org/10.1016/j.applthermaleng.2016.01.064

    Article  CAS  Google Scholar 

  5. IISI, World steel in figures (2002) https://www.worldsteel.org/zh/dam/jcr:e1f8ca82-b51f-4b10-9edf-5498780a9059/World%2520Steel%2520in%2520Figures%25202020%2520infographic.pdf

  6. Larsson M (2015) Process integration in steelmaking experiences and challenges from the PRISMA excellence centre. 2015 World Congr Sustain Technol WCST 2016:55–60. https://doi.org/10.1109/WCST.2015.7415116

    Article  Google Scholar 

  7. Rao M, Fernandes A, Pronk P, Aravind PV (2019) Design, modelling and techno-economic analysis of a solid oxide fuel cell-gas turbine system with CO2 capture fueled by gases from steel industry. Appl Therm Eng 148:1258–1270. https://doi.org/10.1016/j.applthermaleng.2018.11.108

    Article  CAS  Google Scholar 

  8. Na H, Du T, Sun W, Sun J, He J (2020) Evaluation and improvement of energy utilization efficiency in typical iron and steel smelting route based on input-use-end model. Energy Technol 8:1–12. https://doi.org/10.1002/ente.201901230

    Article  CAS  Google Scholar 

  9. Na H, Du T, Sun W, He J, Sun J, Yuan Y, Qiu Z (2019) Review of evaluation methodologies and influencing factors for energy efficiency of the iron and steel industry. Int J Energy Res 43:5659–5677. https://doi.org/10.1002/er.4623

    Article  Google Scholar 

  10. Zhang Q, Wei Z, Ma J, Qiu Z, Du T (2019) Optimization of energy use with CO2 emission reducing in an integrated iron and steel plant. Appl Therm Eng 157:113635. https://doi.org/10.1016/j.applthermaleng.2019.04.045

    Article  CAS  Google Scholar 

  11. Wei Z, Zhai X, Zhang Q, Yang G, Du T, Wei J (2020) A MINLP model for multi-period optimization considering couple of gas-steam-electricity and time of use electricity price in steel plant. Appl Therm Eng 168:114834. https://doi.org/10.1016/j.applthermaleng.2019.114834

    Article  Google Scholar 

  12. Yang J, Cai J, Sun W, Huang J (2017) Optimal allocation of surplus gas and suitable capacity for buffer users in steel plant. Appl Therm Eng 115:586–596. https://doi.org/10.1016/j.applthermaleng.2016.12.096

    Article  Google Scholar 

  13. Maddaloni A, Porzio GF, Nastasi G, Colla V, Branca TA (2015) Multi-objective optimization applied to retrofit analysis: a case study for the iron and steel industry. Appl Therm Eng 91:638–646. https://doi.org/10.1016/j.applthermaleng.2015.08.051

    Article  CAS  Google Scholar 

  14. Porzio GF, Nastasi G, Colla V, Vannucci M, Branca TA (2014) Comparison of multi-objective optimization techniques applied to off-gas management within an integrated steelwork. Appl Energy 136:1085–1097. https://doi.org/10.1016/j.apenergy.2014.06.086

    Article  CAS  Google Scholar 

  15. Porzio GF, Fornai B, Amato A, Matarese N, Vannucci M, Chiappelli L, Colla V (2013) Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems: an example of application to the steel industry. Appl Energy 112:818–833. https://doi.org/10.1016/j.apenergy.2013.05.005

    Article  Google Scholar 

  16. Yang J, Cai J, Sun W (2015) Optimization and scheduling of byproduct gas system in steel plant. J Iron Steel Res Int 22:408–413

    Article  Google Scholar 

  17. Chen L, Yang B, Shen X, Xie Z, Sun F (2015) Thermodynamic optimization opportunities for the recovery and utilization of residual energy and heat in China’s iron and steel industry: a case study. Appl Therm Eng 86:151–160. https://doi.org/10.1016/j.applthermaleng.2015.04.026

    Article  Google Scholar 

  18. Çamdali Ü, Tunç M (2003) Exergy analysis and efficiency in an industrial AC electric ARC furnace. Appl Therm Eng 23:2255–2267. https://doi.org/10.1016/S1359-4311(03)00192-3

    Article  CAS  Google Scholar 

  19. Liu X, Chen L, Qin X, Sun F (2015) Exergy loss minimization for a blast furnace with comparative analyses for energy flows and exergy flows. Energy 93:10–19. https://doi.org/10.1016/j.energy.2015.09.008

    Article  Google Scholar 

  20. Liu C, Xie Z, Sun F, Chen L (2017) Exergy analysis and optimization of coking process. Energy 139:694–705. https://doi.org/10.1016/j.energy.2017.08.006

    Article  CAS  Google Scholar 

  21. Feng H, Chen L, Liu X, Xie Z, Sun F (2016) Constructal optimization of a sinter cooling process based on exergy output maximization. Appl Therm Eng 96:161–166. https://doi.org/10.1016/j.applthermaleng.2015.11.089

    Article  Google Scholar 

  22. Kelly JD, Menezes BC, Grossmann IE (2018) Successive LP approximation for nonconvex blending in milp scheduling optimization using factors for qualities in the process industry. Ind Eng Chem Res 57:11076–11093. https://doi.org/10.1021/acs.iecr.8b01093

    Article  CAS  Google Scholar 

  23. Kondili E, Pantelides CC, Sargent RWH (1993) A general algorithm for short-term scheduling of batch operations-I. MILP formulation. Comput Chem Eng 17:211–227. https://doi.org/10.1016/0098-1354(93)80015-F

    Article  Google Scholar 

  24. Koné O, Artigues C, Lopez P, Mongeau M (2011) Event-based MILP models for resource-constrained project scheduling problems. Comput Oper Res 38:3–13. https://doi.org/10.1016/j.cor.2009.12.011

    Article  Google Scholar 

  25. Kallrath J (2002) Combined strategic and operational planning: an MILP success story in chemical industry. OR Spectr 24:315–341. https://doi.org/10.1007/s00291-002-0102-6

    Article  Google Scholar 

  26. Steinrücke M (2015) Integrated production, distribution and scheduling in the aluminium industry: a continuous-time MILP model and decomposition method. Int J Prod Res 53:5912–5930. https://doi.org/10.1080/00207543.2015.1023401

    Article  Google Scholar 

  27. Garcia-Sabater JP, Maheut J, García-Sabater JJ (2009) A decision support system for aggregate production planning based on MILP: a case study from the automotive industry, 2009. Int Conf Comput Ind Eng CIE 2009:366–371. https://doi.org/10.1109/iccie.2009.5223630

    Article  Google Scholar 

  28. Roslöf J, Harjunkoski I, Björkqvist J, Karlsson S, Westerlund T (2000) An MILP-based reordering algorithm for complex industrial scheduling and rescheduling. Comput Aided Chem Eng 8:13–18. https://doi.org/10.1016/S1570-7946(00)80004-8

    Article  Google Scholar 

  29. Yazici E, Büyüközkan G, Baskak M (2016) A new extended MILP MRP approach to production planning and its application in the jewelry industry. Math Probl Eng 2016:1–18. https://doi.org/10.1155/2016/7915673

    Article  Google Scholar 

  30. Zhao X, Bai H, Shi Q, Han J, Li H (2015) Optimal distribution of byproduct gases in iron and steel industry based on mixed integer linear programming (MILP). Energy Technol 73:80. https://doi.org/10.1007/978-3-319-48220-0_9

    Article  Google Scholar 

  31. Kong H, Qi E, Li H, Li G, Zhang X (2010) An MILP model for optimization of byproduct gases in the integrated iron and steel plant. Appl Energy 87:2156–2163. https://doi.org/10.1016/j.apenergy.2009.11.031

    Article  CAS  Google Scholar 

  32. Kim JH, Yi HS, Han C (2003) A novel MILP model for plantwide multiperiod optimization of byproduct gas supply system in the iron- and steel-making process. Chem Eng Res Des 81:1015–1025. https://doi.org/10.1205/026387603322482248

    Article  CAS  Google Scholar 

  33. Ning Kong H, Shi Qi E, Guang He S, Li G (2010) MILP model for plant-wide optimal by-product gas scheduling in iron and steel industry. J Iron Steel Res Int 17:34–37. https://doi.org/10.1016/S1006-706X(10)60153-7

    Article  Google Scholar 

  34. Zhao X, Bai H, Lu X, Shi Q, Han J (2015) A MILP model concerning the optimisation of penalty factors for the short-term distribution of byproduct gases produced in the iron and steel making process. Appl Energy 148:142–158. https://doi.org/10.1016/j.apenergy.2015.03.046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by Key R&D Plan of Liaoning Province (2021JH2/10300003 &2020JH2/10300103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Du.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

The contributing editor for this article was Il Sohn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Yuan, Y., Yan, T. et al. Optimization of Gas–Steam–Electricity Network of Typical Iron and Steel Enterprise. J. Sustain. Metall. 8, 806–814 (2022). https://doi.org/10.1007/s40831-022-00527-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00527-7

Keywords

Navigation