Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High harmonic generation in condensed matter

Abstract

When solids are exposed to intense laser fields whose forces are comparable to the binding forces of valence electrons in crystals, nonlinear optics of solids advances to the nonperturbative or extreme nonlinear regime. A hallmark effect of extreme nonlinear optics is the emission of high-order harmonics of the laser from the bulk of materials. The discovery and detailed study of this phenomenon over the course of the past decade has offered a broad range of possibilities and seen the dawn of a new field of extreme solid-state photonics. In particular, it opens the way to previously inaccessible spectral ranges, as well as the development of novel solid-state spectroscopy and microscopy techniques that enable detailed probing of the electronic structure of solids. Here we review recent experimental and theoretical advances in this emerging area of study, and highlight the potential future directions and applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HHG in bulk solids and its measurement.
Fig. 2: Time resolution of high harmonic emission in bulk solids.
Fig. 3: Models of HHG in bulk solids.
Fig. 4: Spectroscopies and microscopies based on high harmonics in solids.
Fig. 5: Optimization, mesoscopic-scale imaging and control of high harmonics.

Similar content being viewed by others

References

  1. Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    Article  ADS  Google Scholar 

  2. Bloembergen, N. Nonlinear optics: past, present, and future. IEEE J. Sel. Top. Quantum Electron. 6, 876–880 (2000).

    Article  ADS  Google Scholar 

  3. Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).

    Article  ADS  Google Scholar 

  4. Saleh, B. E. A. & Teich M. C. in Fundamentals of Photonics 737–798 (Wiley, 1991).

  5. Levenson, M. D. in Introduction to Nonlinear Laser Spectroscopy 66–114 (Academic, 1982).

  6. Campagnola, P. J. et al. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 82, 493–508 (2002).

    Article  ADS  Google Scholar 

  7. Boyd, R. W. Nonlinear Optics (Elsevier, 2003).

  8. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  9. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

    Article  ADS  Google Scholar 

  10. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

    Article  Google Scholar 

  11. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  12. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  13. Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  14. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  15. Moulet, A. et al. Soft x-ray excitonics. Science 357, 1134–1138 (2017).

    Article  ADS  Google Scholar 

  16. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  ADS  Google Scholar 

  17. Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  18. Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66–70 (2016).

    Article  ADS  Google Scholar 

  19. Andriukaitis, G. et al. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier. Opt. Lett. 36, 2755–2757 (2011).

    Article  ADS  Google Scholar 

  20. Manzoni, C. & Cerullo, G. Design criteria for ultrafast optical parametric amplifiers. J. Opt. 18, 103501 (2016).

    Article  ADS  Google Scholar 

  21. Schmidt, B. E. et al. Frequency domain optical parametric amplification. Nat. Commun. 5, 3643 (2014).

    Article  ADS  Google Scholar 

  22. Malevich, P. et al. High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers. Opt. Lett. 38, 2746–2749 (2013).

    Article  ADS  Google Scholar 

  23. Schultz, K. D. et al. Strong field physics with long wavelength lasers. J. Mod. Opt. 54, 1075–1085 (2007).

    Article  ADS  Google Scholar 

  24. Fattahi, H. et al. Third-generation femtosecond technology. Optica 1, 45–63 (2014).

    Article  ADS  Google Scholar 

  25. Sell, A., Leitenstorfer, A. & Huber, R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Opt. Lett. 33, 2767–2769 (2008).

    Article  ADS  Google Scholar 

  26. Lenzner, M. et al. Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett. 80, 4076–4079 (1998).

    Article  ADS  Google Scholar 

  27. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    Article  ADS  Google Scholar 

  28. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article  ADS  Google Scholar 

  29. Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    Article  ADS  Google Scholar 

  30. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article  Google Scholar 

  31. Vampa, G. et al. Linking high harmonics from gases and solids. Nature 522, 462–464 (2015).

    Article  ADS  Google Scholar 

  32. Franz, D. et al. All semiconductor enhanced high-harmonic generation from a single nanostructured cone. Sci. Rep. 9, 5663 (2019).

    Article  ADS  Google Scholar 

  33. Langer, F. et al. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (2016).

    Article  ADS  Google Scholar 

  34. Lanin, A. A., Stepanov, E. A., Fedotov, A. B. & Zheltikov, A. M. Mapping the electron band structure by intraband high-harmonic generation in solids. Optica 4, 516–519 (2017).

    Article  ADS  Google Scholar 

  35. Uzan, A. J. et al. Attosecond spectral singularities in solid-state high-harmonic generation. Nat. Photon. 14, 183–187 (2020).

    Article  ADS  Google Scholar 

  36. Lakhotia, H. et al. Laser picoscopy of valence electrons in solids. Nature 583, 55–59 (2020).

    Article  ADS  Google Scholar 

  37. You, Y. S. et al. High-harmonic generation in amorphous solids. Nat. Commun. 8, 724 (2017).

    Article  ADS  Google Scholar 

  38. Liu, H. et al. Enhanced high-harmonic generation from an all-dielectric metasurface. Nat. Phys. 14, 1006–1010 (2018).

    Article  Google Scholar 

  39. Sivis, M. et al. Tailored semiconductors for high-harmonic optoelectronics. Science 357, 303–306 (2017).

    Article  ADS  Google Scholar 

  40. Vampa, G. et al. Plasmon-enhanced high-harmonic generation from silicon. Nat. Phys. 13, 659–662 (2017).

    Article  Google Scholar 

  41. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).

    Article  ADS  Google Scholar 

  42. Han, S. et al. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure. Nat. Commun. 7, 13105 (2016).

    Article  ADS  Google Scholar 

  43. Huttner, U., Kira, M. & Koch, S. W. Ultrahigh off-resonant field effects in semiconductors. Laser Photon. Rev. 11, 1700049 (2017).

    Article  ADS  Google Scholar 

  44. Yu, C., Jiang, S. & Lu, R. High order harmonic generation in solids: a review on recent numerical methods. Adv. Phys. X 4, 1562982 (2019).

    Google Scholar 

  45. Ghimire, S. & Reis, D. A. High-harmonic generation from solids. Nat. Phys. 15, 10–16 (2019).

    Article  Google Scholar 

  46. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    Article  ADS  Google Scholar 

  47. Garg, M. et al. Multi-petahertz electronic metrology. Nature 538, 359–363 (2016).

    Article  ADS  Google Scholar 

  48. Garg, M., Kim, H. Y. & Goulielmakis, E. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz. Nat. Photon. 12, 291–296 (2018).

    Article  ADS  Google Scholar 

  49. Vampa, G., You, Y. S., Liu, H., Ghimire, S. & Reis, D. A. Observation of backward high-harmonic emission from solids. Opt. Express 26, 12210–12218 (2018).

    Article  ADS  Google Scholar 

  50. You, Y. S., Reis, D. A. & Ghimire, S. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. 13, 345–349 (2017).

    Article  Google Scholar 

  51. Ndabashimiye, G. et al. Solid-state harmonics beyond the atomic limit. Nature 534, 520–523 (2016).

    Article  ADS  Google Scholar 

  52. Hammond, T. J. et al. Integrating solids and gases for attosecond pulse generation. Nat. Photon. 11, 594–599 (2017).

    Article  Google Scholar 

  53. Gholam-Mirzaei, S., Beetar, J. & Chini, M. High harmonic generation in ZnO with a high-power mid-IR OPA. Appl. Phys. Lett. 110, 61101 (2017).

    Article  Google Scholar 

  54. Han, S. et al. Extraction of higher-order nonlinear electronic response in solids using high harmonic generation. Nat. Commun. 10, 3272 (2019).

    Article  ADS  Google Scholar 

  55. Jürgens, P. et al. Origin of strong-field-induced low-order harmonic generation in amorphous quartz. Nat. Phys. 16, 1035–1039 (2020).

    Article  Google Scholar 

  56. Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017).

    Article  Google Scholar 

  57. Yoshikawa, N., Tamaya, T. & Tanaka, K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Ghimire, S. et al. Generation and propagation of high-order harmonics in crystals. Phys. Rev. A 85, 043836 (2012).

    Article  ADS  Google Scholar 

  59. Luu, T. T. & Wörner, H. J. Measurement of the Berry curvature of solids using high-harmonic spectroscopy. Nat. Commun. 9, 916 (2018).

    Article  ADS  Google Scholar 

  60. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article  ADS  Google Scholar 

  61. Haworth, C. A. et al. Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval. Nat. Phys. 3, 52–57 (2007).

    Article  Google Scholar 

  62. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    Article  ADS  Google Scholar 

  63. Teichmann, S. M., Silva, F., Cousin, S. L., Hemmer, M. & Biegert, J. 0.5-keV Soft X-ray attosecond continua. Nat. Commun. 7, 11493 (2016).

    Article  ADS  Google Scholar 

  64. Trebino, R. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2000).

  65. Valdmanis, J. A. & Mourou, G. Subpicosecond electrooptic sampling: principles and applications. IEEE J. Quantum Electron. 22, 69–78 (1986).

    Article  ADS  Google Scholar 

  66. Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

    Article  ADS  Google Scholar 

  67. Vampa, G. et al. All-optical reconstruction of crystal band structure. Phys. Rev. Lett. 115, 193603 (2015).

    Article  ADS  Google Scholar 

  68. Dudovich, N. et al. Measuring and controlling the birth of attosecond XUV pulses. Nat. Phys. 2, 781–786 (2006).

    Article  Google Scholar 

  69. Plaja, L. & Roso-Franco, L. High-order harmonic generation in a crystalline solid. Phys. Rev. B 45, 8334–8341 (1992).

    Article  ADS  Google Scholar 

  70. Hüller, S. & Meyer-ter-Vehn, J. High-order harmonic radiation from solid layers irradiated by subpicosecond laser pulses. Phys. Rev. A 48, 3906–3909 (1993).

    Article  ADS  Google Scholar 

  71. Pronin, K. A., Bandrauk, A. D. & Ovchinnikov, A. A. Harmonic generation by a one-dimensional conductor: exact results. Phys. Rev. B 50, 3473–3476 (1994).

    Article  ADS  Google Scholar 

  72. Faisal, F. H. M. & Kamiński, J. Z. Floquet-Bloch theory of high-harmonic generation in periodic structures. Phys. Rev. A 56, 748–762 (1997).

    Article  ADS  Google Scholar 

  73. Feise, M. W. & Citrin, D. S. Semiclassical theory of terahertz multiple-harmonic generation in semiconductor superlattices. Appl. Phys. Lett. 75, 3536–3538 (1999).

    Article  ADS  Google Scholar 

  74. Golde, D., Kira, M., Meier, T. & Koch, S. W. Microscopic theory of the extremely nonlinear terahertz response of semiconductors. Phys. Stat. Solidi B 248, 863–866 (2011).

    Article  ADS  Google Scholar 

  75. Kira, M. & Koch, S. W. Semiconductor Quantum Optics (Cambridge Univ. Press, 2011).

  76. Yablonovitch, E., Heritage, J. P., Aspnes, D. E. & Yafet, Y. Virtual photoconductivity. Phys. Rev. Lett. 63, 976–979 (1989).

    Article  ADS  Google Scholar 

  77. Sanari, Y. et al. Role of virtual band population for high harmonic generation in solids. Phys. Rev. B 102, 041125 (2020).

    Article  ADS  Google Scholar 

  78. Lanin, A. A. et al. High-order harmonic analysis of anisotropic petahertz photocurrents in solids. Opt. Lett. 44, 1888–1891 (2019).

    Article  ADS  Google Scholar 

  79. Vampa, G. et al. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. 113, 073901 (2014).

    Article  ADS  Google Scholar 

  80. Vampa, G., McDonald, C. R., Orlando, G., Corkum, P. B. & Brabec, T. Semiclassical analysis of high harmonic generation in bulk crystals. Phys. Rev. B 91, 064302 (2015).

    Article  ADS  Google Scholar 

  81. Li, L. et al. Reciprocal-space-trajectory perspective on high-harmonic generation in solids. Phys. Rev. Lett. 122, 193901 (2019).

    Article  ADS  Google Scholar 

  82. Yue, L. & Gaarde, M. B. Imperfect recollisions in high-harmonic generation in solids. Phys. Rev. Lett. 124, 153204 (2020).

    Article  ADS  Google Scholar 

  83. Parks, A. M. et al. Wannier quasi-classical approach to high harmonic generation in semiconductors. Optica 7, 1764–1772 (2020).

    Article  ADS  Google Scholar 

  84. Vampa, G. et al. Attosecond synchronization of extreme ultraviolet high harmonics from crystals. J. Phys. B 53, 144003 (2020).

    Article  ADS  Google Scholar 

  85. Taucer, M. et al. Nonperturbative harmonic generation in graphene from intense midinfrared pulsed light. Phys. Rev. B 96, 195420 (2017).

    Article  ADS  Google Scholar 

  86. Yoshikawa, N. et al. Interband resonant high-harmonic generation by valley polarized electron–hole pairs. Nat. Commun. 10, 3709 (2019).

    Article  ADS  Google Scholar 

  87. Hawkins, P. G., Ivanov, M. Y. & Yakovlev, V. S. Effect of multiple conduction bands on high-harmonic emission from dielectrics. Phys. Rev. A 91, 013405 (2015).

    Article  ADS  Google Scholar 

  88. Koch, S. W., Kira, M., Khitrova, G. & Gibbs, H. M. Semiconductor excitons in new light. Nat. Mater. 5, 523–531 (2006).

    Article  ADS  Google Scholar 

  89. Wu, M. et al. Orientation dependence of temporal and spectral properties of high-order harmonics in solids. Phys. Rev. A 96, 063412 (2017).

    Article  ADS  Google Scholar 

  90. Jiang, S. et al. Role of the transition dipole amplitude and phase on the generation of odd and even high-order harmonics in crystals. Phys. Rev. Lett. 120, 253201 (2018).

    Article  ADS  Google Scholar 

  91. Dimitrovski, D., Pedersen, T. G. & Madsen, L. B. Floquet-Bloch shifts in two-band semiconductors interacting with light. Phys. Rev. A 95, 063420 (2017).

    Article  ADS  Google Scholar 

  92. Silva, R. E. F., Martín, F. & Ivanov, M. High harmonic generation in crystals using maximally localized Wannier functions. Phys. Rev. B 100, 195201 (2019).

    Article  ADS  Google Scholar 

  93. Osika, E. N. et al. Wannier-Bloch approach to localization in high-harmonics generation in solids. Phys. Rev. X 7, 021017 (2017).

    Google Scholar 

  94. Catoire, F. et al. Wannier representation of intraband high-order harmonic generation. Phys. Rev. Lett. 121, 143902 (2018).

    Article  ADS  Google Scholar 

  95. Higuchi, T., Stockman, M. I. & Hommelhoff, P. Strong-field perspective on high-harmonic radiation from bulk solids. Phys. Rev. Lett. 113, 213901 (2014).

    Article  ADS  Google Scholar 

  96. Tancogne-Dejean, N., Mücke, O. D., Kärtner, F. X. & Rubio, A. Ellipticity dependence of high-harmonic generation in solids originating from coupled intraband and interband dynamics. Nat. Commun. 8, 745 (2017).

    Article  ADS  Google Scholar 

  97. Ikemachi, T. et al. Time-dependent Hartree-Fock study of electron-hole interaction effects on high-order harmonic generation from periodic crystals. Phys. Rev. A 98, 023415 (2018).

    Article  ADS  Google Scholar 

  98. Wu, M., Ghimire, S., Reis, D. A., Schafer, K. J. & Gaarde, M. B. High-harmonic generation from Bloch electrons in solids. Phys. Rev. A 91, 043839 (2015).

    Article  ADS  Google Scholar 

  99. Li, J. et al. Phase invariance of the semiconductor Bloch equations. Phys. Rev. A 100, 043404 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  100. Yue, L. & Gaarde, M. B. Structure gauges and laser gauges for the semiconductor Bloch equations in high-order harmonic generation in solids. Phys. Rev. A 101, 053411 (2020).

    Article  ADS  Google Scholar 

  101. Fibich, G. & Gaeta, A. L. Critical power for self-focusing in bulk media and in hollow waveguides. Opt. Lett. 25, 335–337 (2000).

    Article  ADS  Google Scholar 

  102. Xia, P. et al. Nonlinear propagation effects in high harmonic generation in reflection and transmission from gallium arsenide. Opt. Express 26, 29393–29400 (2018).

    Article  ADS  Google Scholar 

  103. Abadie, C. Q., Wu, M. & Gaarde, M. B. Spatiotemporal filtering of high harmonics in solids. Opt. Lett. 43, 5339–5342 (2018).

    Article  ADS  Google Scholar 

  104. Floss, I. et al. Ab initio multiscale simulation of high-order harmonic generation in solids. Phys. Rev. A 97, 011401 (2018).

    Article  ADS  Google Scholar 

  105. Kilen, I. et al. Propagation induced dephasing in semiconductor high-harmonic generation. Phys. Rev. Lett. 125, 083901 (2020).

    Article  ADS  Google Scholar 

  106. Almalki, S. et al. High harmonic generation tomography of impurities in solids: conceptual analysis. Phys. Rev. B 98, 144307 (2018).

    Article  ADS  Google Scholar 

  107. Avetissian, H. K. & Mkrtchian, G. F. Impact of electron-electron Coulomb interaction on the high harmonic generation process in graphene. Phys. Rev. B 97, 115454 (2018).

    Article  ADS  Google Scholar 

  108. Tancogne-Dejean, N., Sentef, M. A. & Rubio, A. Ultrafast modification of Hubbard U in a strongly correlated material: ab initio high-harmonic generation in NiO. Phys. Rev. Lett. 121, 097402 (2018).

    Article  ADS  Google Scholar 

  109. Murakami, Y., Eckstein, M. & Werner, P. High-harmonic generation in Mott insulators. Phys. Rev. Lett. 121, 057405 (2018).

    Article  ADS  Google Scholar 

  110. Silva, R. E. F., Blinov, I. V., Rubtsov, A. N., Smirnova, O. & Ivanov, M. High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems. Nat. Photon. 12, 266–270 (2018).

    Article  ADS  Google Scholar 

  111. Bauer, D. & Hansen, K. K. High-harmonic generation in solids with and without topological edge states. Phys. Rev. Lett. 120, 177401 (2018).

    Article  ADS  Google Scholar 

  112. Chacón, A. et al. Circular dichroism in higher-order harmonic generation: heralding topological phases and transitions in Chern insulators. Phys. Rev. B 102, 134115 (2020).

    Article  ADS  Google Scholar 

  113. Silva, R. E. F., Jiménez-Galán, Á., Amorim, B., Smirnova, O. & Ivanov, M. Topological strong-field physics on sub-laser-cycle timescale. Nat. Photon. 13, 849–854 (2019).

    Article  ADS  Google Scholar 

  114. Jiménez-Galán, Á., Silva, R. E. F., Smirnova, O. & Ivanov, M. Lightwave control of topological properties in 2D materials for sub-cycle and non-resonant valley manipulation. Nat. Photon. 14, 728–732 (2020).

    Article  ADS  Google Scholar 

  115. Baykusheva, D. et al. Strong-field physics in three-dimensional topological insulators. Phys. Rev. A 103, 023101 (2021).

    Article  ADS  Google Scholar 

  116. Damascelli, A. Probing the electronic structure of complex systems by ARPES. Phys. Scr. 2004, 61 (2004).

    Article  Google Scholar 

  117. You, Y. S., Cunningham, E., Reis, D. A. & Ghimire, S. Probing periodic potential of crystals via strong-field re-scattering. J. Phys. B 51, 114002 (2018).

    Article  ADS  Google Scholar 

  118. Schmid, C. P. et al. Tunable non-integer high-harmonic generation in a topological insulator. Nature 593, 385–390 (2021).

    Article  ADS  Google Scholar 

  119. Baykusheva, D. et al. All-optical probe of three-dimensional topological insulators based on high-harmonic generation by circularly polarized laser fields. Nano Lett. 21, 8970–8978 (2021).

    Article  ADS  Google Scholar 

  120. Vampa, G. et al. Strong-field optoelectronics in solids. Nat. Photon. 12, 465–468 (2018).

    Article  ADS  Google Scholar 

  121. Vampa, G. et al. Characterization of high-harmonic emission from ZnO up to 11 eV pumped with a Cr:ZnS high-repetition-rate source. Opt. Lett. 44, 259–262 (2019).

    Article  ADS  Google Scholar 

  122. Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under SFB 1477 ‘Light-Matter Interactions at Interfaces’, project number 441234705 and the NSERC CRC programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eleftherios Goulielmakis or Thomas Brabec.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Misha Ivanov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goulielmakis, E., Brabec, T. High harmonic generation in condensed matter. Nat. Photon. 16, 411–421 (2022). https://doi.org/10.1038/s41566-022-00988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-00988-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing