Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and clinical implications of intervertebral disc calcification

Abstract

Low back pain is a leading cause of disability worldwide. Intervertebral disc (IVD) degeneration is often associated with low back pain but is sometimes asymptomatic. IVD calcification is an often overlooked disc phenotype that might have considerable clinical impact. IVD calcification is not a rare finding in ageing or in degenerative and scoliotic spinal conditions, but is often ignored and under-reported. IVD calcification may lead to stiffer IVDs and altered segmental biomechanics, more severe IVD degeneration, inflammation and low back pain. Calcification is not restricted to the IVD but is also observed in the degeneration of other cartilaginous tissues, such as joint cartilage, and is involved in the tissue inflammatory process. Furthermore, IVD calcification may also affect the vertebral endplate, leading to Modic changes (non-neoplastic subchondral vertebral bone marrow lesions) and the generation of pain. Such effects in the spine might develop in similar ways to the development of subchondral marrow lesions of the knee, which are associated with osteoarthritis-related pain. We propose that IVD calcification is a phenotypic biomarker of clinically relevant disc degeneration and endplate changes. As IVD calcification has implications for the management and prognosis of degenerative spinal changes and could affect targeted therapeutics and regenerative approaches for the spine, awareness of IVD calcification should be raised in the spine community.

Key points

  • Intervertebral disc (IVD) calcification is associated with IVD degeneration and can lead to pain.

  • IVD calcification may affect disc kinematics and degeneration severity, and can also affect adjacent vertebral endplates, which might lead to pathological non-neoplastic subchondral bone marrow lesions (Modic changes).

  • Calcification in the IVD degenerative process is comparable with mineralization of the degenerative process of cartilaginous tissues in osteoarthritis.

  • IVD calcification is a unique phenotype that is clinically relevant, that could influence personalized approaches to patient care and that warrants further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of a healthy and a degenerated intervertebral disc in the spine.
Fig. 2: Calcification in degenerated discs.
Fig. 3: Images showing presence of fissures near calcified spots.
Fig. 4: Disc calcification: mechanisms, diagnosis and clinical relevance.
Fig. 5: A conceptual overview of the initiation of Modic changes and disc degeneration.

Similar content being viewed by others

References

  1. Francisco, V. et al. A new immunometabolic perspective of intervertebral disc degeneration. Nat. Rev. Rheum. 18, 47–60 (2022).

    Article  CAS  Google Scholar 

  2. Samartzis, D. et al. A population-based study of juvenile disc degeneration and its association with overweight and obesity, low back pain, and diminished functional status. J. Bone Joint Surg. Am. 93, 662–670 (2011).

    Article  PubMed  Google Scholar 

  3. Adams, M. A. & Dolan, P. Intervertebral disc degeneration: evidence for two distinct phenotypes. J. Anat. 221, 497–506 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Buckwalter, J. A. Aging and degeneration of the human intervertebral disc. Spine 20, 1307–1314 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Feng, G., Zhang, Z., Dang, M., Rambhia, K. J. & Ma, P. X. Nanofibrous spongy microspheres to deliver rabbit mesenchymal stem cells and anti-miR-199a to regenerate nucleus pulposus and prevent calcification. Biomaterials 256, 120213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rutges, J. P. et al. Hypertrophic differentiation and calcification during intervertebral disc degeneration. Osteoarthritis Cartilage 18, 1487–1595 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Boos, N., Nerlich, A. G., Wiest, I., von der Mark, K. & Aebi, M. Immunolocalization of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Histochem. Cell Biol. 108, 471–480 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Steinbach, L. S. Calcium pyrophosphate dihydrate and calcium hydroxyapatite crystal deposition diseases: imaging perspectives. Radiol. Clin. North. Am. 42, 185–205 (2004).

    Article  PubMed  Google Scholar 

  9. Slouma, M. et al. Calcifying nucleopathy mimicking infectious spondylodiscitis. Acta Reumatol. Port. 45, 61–64 (2020).

    PubMed  Google Scholar 

  10. Zehra, U., Bow, C., Cheung, J. P., Lu, W. & Samartzis, D. The association of lumbar intervertebral disc calcification on plain radiographs with the UTE Disc Sign on MRI. Eur. Spine J. 27, 1049–1057 (2017).

    Article  PubMed  Google Scholar 

  11. Samartzis et al. Novel diagnostic and prognostic methods for disc degeneration and low back pain. Spine J. 15, 1919–1932 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Luk, K. D. & Samartzis, D. Intervertebral disc “dysgeneration”. Spine J. 15, 1915–1918 (2015).

    Article  PubMed  Google Scholar 

  13. Khan, I., Hargunani, R. & Saifuddin, A. The lumbar high-intensity zone: 20 years on. Clin. Radiol. 69, 551–558 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Ito, M. et al. Predictive signs of discogenic lumbar pain on magnetic resonance imaging with discography correlation. Spine 23, 1252–1258 (1998). discussion 9–60.

    Article  CAS  PubMed  Google Scholar 

  15. Iatridis, J. C., Nicoll, S. B., Michalek, A. J., Walter, B. A. & Gupta, M. S. Role of biomechanics in intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair? Spine J. 13, 243–262 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Galbusera, F. et al. Ageing and degenerative changes of the intervertebral disc and their impact on spinal flexibility. Eur. Spine J. 23, S324–S332 (2014).

    PubMed  Google Scholar 

  17. Niosi, C. A. & Oxland, T. R. Degenerative mechanics of the lumbar spine. Spine J. 4, 202s–208ss (2004).

    Article  PubMed  Google Scholar 

  18. Hristova, G. I. et al. Calcification in human intervertebral disc degeneration and scoliosis. J. Orthop. Res. Soc. 29, 1888–1895 (2011).

    Article  Google Scholar 

  19. Roberts, S., Menage, J. & Eisenstein, S. M. The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J. Orthop. Res. Soc. 11, 747–757 (1993).

    Article  CAS  Google Scholar 

  20. Krzyzanowska, A. K. et al. Activation of nuclear factor-kappa B by TNF promotes nucleus pulposus mineralization through inhibition of ANKH and ENPP1.2021. Sci. Rep. 11, 8271 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weinberger, A. & Myers, A. R. Intervertebral disc calcification in adults: a review. Semin. Arthritis Rheum. 8, 69–75 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. Sandstrom, C. Calcifications of the intervertebral discs and the relationship between various types of calcifications in the soft tissues of the body. Acta Radiol. 36, 217–233 (1951).

    Article  CAS  PubMed  Google Scholar 

  23. Chanchairujira, K. et al. Intervertebral disk calcification of the spine in an elderly population: radiographic prevalence, location, and distribution and correlation with spinal degeneration. Radiology 230, 499–503 (2004).

    Article  PubMed  Google Scholar 

  24. Castriota-Scanderbeg A., Dallapiccola B. Abnormal Skeletal Phenotypes: From Simple Signs to Complex Diagnoses (Springer, 2005).

  25. Sieroń, D. et al. Intervertebral disc calcification in children: case description and review of relevant literature. Pol. J. Radiol. 78, 78–80 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ahemad, A. M., Dasgupta, B. & Jagiasi, J. Intervertebral disc calcification in a child. Indian J. Orthop. 42, 480–481 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mizukawa, K., Kobayashi, T., Yamada, N. & Hirota, T. Intervertebral disc calcification with ossification of the posterior longitudinal ligament. Pediatr. Int. 59, 622–624 (2017).

    Article  PubMed  Google Scholar 

  28. Lernout, C., Haas, H., Rubio, A. & Griffet, J. Pediatric intervertebral disk calcification in childhood: three case reports and review of literature. Childs Nerv. Syst. 25, 1019–1023 (2009).

    Article  PubMed  Google Scholar 

  29. Coppa, V. et al. Pediatric intervertebral disc calcification: case series and systematic review of the literature. J. Pediatr. Orthop. B 29, 590–598 (2020).

    Article  PubMed  Google Scholar 

  30. Beluffi, G., Fiori, P. & Sileo, C. Intervertebral disc calcifications in children. Radiol. Med. 114, 331–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Gerlach, R. et al. Intervertebral disc calcification in childhood — a case report and review of the literature. Acta Neurochir. 143, 89–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Dushnicky, M. J., Okura, H., Shroff, M., Laxer, R. M. & Kulkarni, A. V. Pediatric idiopathic intervertebral disc calcification: single-center series and review of the literature. J. Pediatr. 206, 212–216 (2019).

    Article  PubMed  Google Scholar 

  33. Sato, S. et al. The distinct role of the Runx proteins in chondrocyte differentiation and intervertebral disc degeneration: findings in murine models and in human disease. Arthritis Rheum. 58, 2764–2775 (2008).

    Article  PubMed  Google Scholar 

  34. Haschtmann, D., Ferguson, S. J. & Stoyanov, J. V. B. M. P.-2. and TGF-beta3 do not prevent spontaneous degeneration in rabbit disc explants but induce ossification of the annulus fibrosus. Eur. Spine J. 21, 1724–1733 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang, G., Kang, Y., Chen, F. & Wang, B. Cervical intervertebral disc calcification combined with ossification of posterior longitudinal ligament in an-11-year old girl: case report and review of literature. Childs Nerv. Syst. 32, 381–386 (2016).

    Article  PubMed  Google Scholar 

  36. Cheng, X. G. et al. Radiological prevalence of lumbar intervertebral disc calcification in the elderly: an autopsy study. Skeletal Radiol. 25, 231–235 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Chou, C. W. Pathological studies on calcification of the intervertebral discs. Nihon Seikeigeka Gakkai Zasshi 56, 331–345 (1982).

    CAS  PubMed  Google Scholar 

  38. Bangert, B. A. et al. Hyperintense disks on T1-weighted MR images: correlation with calcification. Radiology 195, 437–443 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Tyrrell, P. N., Davies, A. M., Evans, N. & Jubb, R. W. Signal changes in the intervertebral discs on MRI of the thoracolumbar spine in ankylosing spondylitis. Clin. Radiol. 50, 377–383 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Malghem, J. et al. High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content. Skeletal Radiol. 34, 80–86 (2005).

    Article  PubMed  Google Scholar 

  41. Blandino, A., Longo, M., Loria, G., Gaeta, M. & Pandolfo, I. The fatty disc: an unusual cause of bright intervertebral disc on T1-weighted conventional spin-echo MR: a case report. J. Neuroradiol. 10, 619–621 (1997).

    Google Scholar 

  42. Stigen, Ø., Ciasca, T. & Kolbjørnsen, Ø. Calcification of extruded intervertebral discs in dachshunds: a radiographic, computed tomographic and histopathological study of 25 cases. Acta Vet. Scand. 61, 13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shao, J. et al. Differences in calcification and osteogenic potential of herniated discs according to the severity of degeneration based on Pfirrmann grade: a cross-sectional study. BMC Musculoskelet. Disord. 17, 191 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Karamouzian, S. et al. Frequency of lumbar intervertebral disc calcification and angiogenesis, and their correlation with clinical, surgical, and magnetic resonance imaging findings. Spine 35, 881–886 (2010).

    Article  PubMed  Google Scholar 

  45. Takae, R. et al. Immunolocalization of bone morphogenetic protein and its receptors in degeneration of intervertebral disc. Spine 24, 1397–1401 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, Z., Hutton, W. C. & Yoon, S. T. ISSLS Prize winner: effect of link protein peptide on human intervertebral disc cells. Spine 38, 1501–1507 (2013).

    Article  PubMed  Google Scholar 

  47. Bach, F. C. et al. Hedgehog proteins and parathyroid hormone-related protein are involved in intervertebral disc maturation, degeneration, and calcification. JOR Spine 2, e1071 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Girodias, J. B., Azouz, E. M. & Marton, D. Intervertebral disk space calcification. A report of 51 children with a review of the literature. Pediatr. Radiol. 21, 541–546 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Bertram, H. et al. Accelerated intervertebral disc degeneration in scoliosis versus physiological ageing develops against a background of enhanced anabolic gene expression. Biochem. Biophys. Res. Commun. 342, 963–972 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Akhtar, S., Davies, J. R. & Caterson, B. Ultrastructural immunolocalization of alpha-elastin and keratan sulfate proteoglycan in normal and scoliotic lumbar disc. Spine 30, 1762–1769 (2005).

    Article  PubMed  Google Scholar 

  51. Meir, A., McNally, D. S., Fairbank, J. C., Jones, D. & Urban, J. P. The internal pressure and stress environment of the scoliotic intervertebral disc — a review. Proc. Inst. Mech. Eng. H 222, 209–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Illien-Junger, S. et al. AGEs induce ectopic endochondral ossification in intervertebral discs. Eur. Cell Mater. 32, 257–270 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iatridis, J. C. & ap Gwynn, I. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. J. Biomech. 37, 1165–1175 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Roberts, S., Urban, J. P. G., Evans, H. & Eisenstein, S. M. Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21, 415–420 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Benneker, L. M., Heini, P. F., Alini, M., Anderson, S. E. & Ito, K. 2004 Young investigator award winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 30, 167–173 (2005).

    Article  PubMed  Google Scholar 

  56. Zehra, U., Robson-Brown, K., Adams, M. A. & Dolan, P. Porosity and thickness of the vertebral endplate depend on local mechanical loading. Spine 40, 1173–1180 (2015).

    Article  PubMed  Google Scholar 

  57. Rodriguez, A. G. et al. Morphology of the human vertebral endplate. J. Orthop. Res. 30, 280–287 (2012).

    Article  PubMed  Google Scholar 

  58. Stokes, I. A. & Iatridis, J. C. Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine 29, 2724–2732 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Novais, E. J. et al. Comparison of inbred mouse strains shows diverse phenotypic outcomes of intervertebral disc aging. Aging Cell 19, e13148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu, J., Wu, D., Guo, K., Yuan, F. & Ran, B. OPN polymorphism is associated with the susceptibility to cervical spondylotic myelopathy and its outcome after anterior cervical corpectomy and fusion. Cell. Physiol. Biochem. 34, 565–574 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Gao, S. G. et al. Elevated osteopontin level of synovial fluid and articular cartilage is associated with disease severity in knee osteoarthritis patients. Osteoarthritis Cartilage 18, 82–87 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Mogensen, M. S. et al. Genome-wide association study in Dachshund: identification of a major locus affecting intervertebral disc calcification. J. Hered. https://doi.org/10.1093/jhered/esr021 (2011).

    Article  PubMed  Google Scholar 

  63. Mogensen, M. S. et al. Validation of genome-wide intervertebral disk calcification associations in dachshund and further investigation of the chromosome 12 susceptibility locus. Front Genet https://doi.org/10.3389/fgene.2012.00225 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Huang, H. & Trussell, L. O. KCNQ5 channels control resting properties and release probability of a synapse. Nat. Neurosci. 14, 840–847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jensen, V. F., Beck, S., Christensen, K. A. & Arnbjerg, J. Quantification of the association between intervertebral disk calcification and disk herniation in Dachshunds. J. Am. Vet. Med. Assoc. 233, 1090–1095 (2008).

    Article  PubMed  Google Scholar 

  66. Rohdin, C., Jeserevic, J., Viitmaa, R. & Cizinauskas, S. Prevalence of radiographic detectable intervertebral disc calcifications in Dachshunds surgically treated for disc extrusion. Acta Vet. Scand. 52, 24 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Feinberg, J., Boachie-Adjei, O., Bullough, P. G. & Boskey, A. L. The distribution of calcific deposits in intervertebral discs of the lumbosacral spine. Clin. Orthop. Relat. Res. 254, 303–310 (1990).

    Article  Google Scholar 

  68. Brodeur, M. R. et al. Reduction of advanced-glycation end products levels and inhibition of RAGE signaling decreases rat vascular calcification induced by diabetes. PLoS One 9, e85922 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Sellam, J. & Berenbaum, F. Is osteoarthritis a metabolic disease? Joint Bone Spine 80, 568–573 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Han, Y. et al. Oxidative damage induces apoptosis and promotes calcification in disc cartilage endplate cell through ROS/MAPK/NF-κB pathway: implications for disc degeneration. Biochem. Biophys. Res. Commun. 516, 1026–1032 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Illien-Junger, S. et al. Chronic ingestion of advanced glycation end products induces degenerative spinal changes and hypertrophy in aging pre-diabetic mice. PLoS One 10, e0116625 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Illien-Junger, S. et al. Combined anti-inflammatory and anti-AGE drug treatments have a protective effect on intervertebral discs in mice with diabetes. PLoS One 8, e64302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bessueille, L. & Magne, D. Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell Mol. Life Sci. 72, 2475–2489 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Joshi, F. R. et al. Does vascular calcification accelerate inflammation? J. Am. Coll. Cardiol. 67, 69–78 (2016).

    Article  PubMed  Google Scholar 

  75. Raggi, P. Inflammation and calcification: the chicken or the hen? Atherosclerosis 238, 173–174 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Ikeda, K. et al. Macrophages play a unique role in the plaque calcification by enhancing the osteogenic signals exerted by vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 425, 39–44 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Peng, B. et al. The pathogenesis of discogenic low back pain. J. Bone Joint Surg. Br. 87, 62–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Saifuddin, A., Mitchell, R. & Taylor, B. A. Extradural inflammation associated with annular tears: demonstration with gadolinium-enhanced lumbar spine MRI. Eur. Spine J. 8, 34–39 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Grant, M. P. et al. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc. Eur. Cell Mater. 32, 137–151 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Canaff, L. & Hendy, G. N. Calcium-sensing receptor gene transcription is up-regulated by the proinflammatory cytokine, interleukin-1β. Role of the NF-κB pathway and κB elements. J. Biol. Chem. 280, 14177–14188 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Shao, J., Yu, M., Jiang, L., Wu, F. & Liu, X. Sequencing and bioinformatics analysis of the differentially expressed genes in herniated discs with or without calcification. Int. J. Mol. Med. 39, 81–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Zehra, U. et al. Spinopelvic alignment predicts disc calcification, displacement, and Modic changes: evidence of an evolutionary etiology for clinically-relevant spinal phenotypes. JOR Spine 3, e1083 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Du, G. et al. Abnormal mechanical loading induces cartilage degeneration by accelerating meniscus hypertrophy and mineralization after ACL injuries in vivo. Am. J. Sports Med. 44, 652–663 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Roberts, S., Bains, M. A., Kwan, A., Menage, J. & Eisenstein, S. M. Type X collagen in the human invertebral disc: an indication of repair or remodelling? Histochem. J. 30, 89–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Shen, G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod. Craniofac. Res. 8, 11–17 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Jin, L. et al. Annulus fibrosus cell characteristics are a potential source of intervertebral disc pathogenesis. PLoS One 9, e96519 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Feng, G. et al. Multipotential differentiation of human anulus fibrosus cells: an in vitro study. J. Bone Joint Surg. Am. 92, 675–685 (2010).

    Article  PubMed  Google Scholar 

  88. Hsu, H. H. Mechanisms of initiating calcification. ATP-stimulated Ca- and Pi-depositing activity of isolated matrix vesicles. Int. J. Biochem. 26, 1351–1356 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Ornoy, A. & Langer, Y. Scanning electron microscopy studies on the origin and structure of matrix vesicles in epiphyseal cartilage from young rats. Isr. J. Med. Sci. 14, 745–752 (1978).

    CAS  PubMed  Google Scholar 

  90. Anderson, H. C. Mechanism of mineral formation in bone. Lab. Invest. 60, 320–330 (1989).

    CAS  PubMed  Google Scholar 

  91. Wuthier, R. E. et al. Mechanism of matrix vesicle calcification: characterization of ion channels and the nucleational core of growth plate vesicles. Bone Miner. 17, 290–295 (1992).

    Article  CAS  PubMed  Google Scholar 

  92. Balcerzak, M. et al. The roles of annexins and alkaline phosphatase in mineralization process. Acta Biochim. Pol. 50, 1019–1038 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Ali, S. Y., Sajdera, S. W. & Anderson, H. C. Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc. Natl Acad. Sci. USA 67, 1513–1520 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, L. N., Genge, B. R., Lloyd, G. C. & Wuthier, R. E. Collagen-binding proteins in collagenase-released matrix vesicles from cartilage. Interaction between matrix vesicle proteins and different types of collagen. J. Biol. Chem. 266, 1195–1203 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Bonucci, E. Comments on the ultrastructural morphology of the calcification process: an attempt to reconcile matrix vesicles, collagen fibrils, and crystal ghosts. Bone Miner. 17, 219–222 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Lin, Z. et al. Selective enrichment of microRNAs in extracellular matrix vesicles produced by growth plate chondrocytes. Bone 88, 47–55 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shapiro, I. M., Landis, W. J. & Risbud, M. V. Matrix vesicles: are they anchored exosomes? Bone 79, 29–36 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Qin, Y., Sun, R., Wu, C., Wang, L. & Zhang, C. Exosome: a novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis. Int. J. Mol. Sci. 17, 712 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  99. Cui, Y., Luan, J., Li, H., Zhou, X. & Han, J. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett. 590, 185–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Bach, F. C. et al. Soluble and pelletable factors in porcine, canine and human notochordal cell-conditioned medium: implications for IVD regeneration. Eur. Cell Mater. 32, 163–180 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Bach, F. et al. Notochordal-cell derived extracellular vesicles exert regenerative effects on canine and human nucleus pulposus cells. Oncotarget 8, 88845–88856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lu, K. et al. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Res. Ther. 8, 108 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Christoffersen, J. & Landis, W. J. A contribution with review to the description of mineralization of bone and other calcified tissues in vivo. Anat. Rec. 230, 435–450 (1991).

    Article  CAS  PubMed  Google Scholar 

  104. Miller, G. J. & DeMarzo, A. M. Ultrastructural localization of matrix vesicles and alkaline phosphatase in the Swarm rat chondrosarcoma: their role in cartilage calcification. Bone 9, 235–241 (1988).

    Article  CAS  PubMed  Google Scholar 

  105. Borras, T. & Comes, N. Evidence for a calcification process in the trabecular meshwork. Exp. Eye Res. 88, 738–746 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Kim, E. E. & Wyckoff, H. W. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J. Mol. Biol. 218, 449–464 (1991).

    Article  CAS  PubMed  Google Scholar 

  107. Narisawa, S., Frohlander, N. & Millan, J. L. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev. Dyn. 208, 432–446 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Anderson, H. C. et al. Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am. J. Pathol. 164, 841–847 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chang, W. et al. Calcium sensing in cultured chondrogenic RCJ3.1C5.18 cells. Endocrinology 140, 1911–1919 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Rodriguez, L., Cheng, Z., Chen, T. H., Tu, C. & Chang, W. Extracellular calcium and parathyroid hormone-related peptide signaling modulate the pace of growth plate chondrocyte differentiation. Endocrinology 146, 4597–4608 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Dvorak, M. M. et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc. Natl Acad. Sci. USA 101, 5140–5145 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yuan, F. L. et al. Apoptotic bodies from endplate chondrocytes enhance the oxidative stress-induced mineralization by regulating PPi metabolism. J. Cell. Mol. Med. 23, 3665–3675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ohshima, H. & Urban, J. P. The effect of lactate and pH on proteoglycan and protein synthesis rates in the intervertebral disc. Spine 17, 1079–1082 (1992).

    Article  CAS  PubMed  Google Scholar 

  114. Hannan, F. M., Kallay, E., Chang, W., Brandi, M. L. & Thakker, R. V. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat. Rev. Endocrinol. 15, 33–51 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Brown, E. M. Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best. Pract. Res. Clin. Endocrinol. Metab. 27, 333–343 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Stock, J. L. et al. Autosomal dominant hypoparathyroidism associated with short stature and premature osteoarthritis. J. Clin. Endocrinol. Metab. 84, 3036–3040 (1999).

    CAS  PubMed  Google Scholar 

  117. Burton, D. W. et al. Chondrocyte calcium-sensing receptor expression is up-regulated in early guinea pig knee osteoarthritis and modulates PTHrP, MMP-13, and TIMP-3 expression. Osteoarthritis Cartilage 13, 395–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Hough, T. A. et al. Activating calcium-sensing receptor mutation in the mouse is associated with cataracts and ectopic calcification. Proc. Natl Acad. Sci. USA 101, 13566–13571 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fields, A. J., Rodriguez, D., Gary, K. N., Liebenberg, E. C. & Lotz, J. C. Influence of biochemical composition on endplate cartilage tensile properties in the human lumbar spine. J. Orthop. Res. 32, 245–252 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Rodriguez, A. G. et al. Human disc nucleus properties and vertebral endplate permeability. Spine 36, 512–520 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Yue, B. et al. Thoracic intervertebral disc calcification and herniation in adults: a report of two cases. Eur. Spine J. 25, 118–123 (2016).

    Article  PubMed  Google Scholar 

  122. Choi, J. W. et al. Transdural approach for calcified central disc herniations of the upper lumbar spine. Technical note. J. Neurosurg. Spine 7, 370–374 (2007).

    Article  PubMed  Google Scholar 

  123. Dabo, X. et al. The clinical results of percutaneous endoscopic interlaminar discectomy (PEID) in the treatment of calcified lumbar disc herniation: a case-control study. Pain Phys. 19, 69–76 (2016).

    Article  Google Scholar 

  124. Court, C., Mansour, E. & Bouthors, C. Thoracic disc herniation: surgical treatment. Orthop. Traumatol. Surg. Res. 104, S31–S40 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Yu, L. et al. Removal of calcified lumbar disc herniation with endoscopic-matched ultrasonic osteotome — our preliminary experience. Br. J. Neurosurg. 34, 80–85 (2020).

    Article  PubMed  Google Scholar 

  126. Nogueira-Barbosa, M. H., da Silva Herrero, C. F., Pasqualini, W. & Defino, H. L. Calcific discitis in an adult patient with intravertebral migration and spontaneous remission. Skeletal Radiol. 42, 1161–1164 (2013).

    Article  PubMed  Google Scholar 

  127. Rodacki, M. A., Castro, C. E. & Castro, D. S. Diffuse vertebral body edema due to calcified intraspongious disk herniation. Neuroradiology 47, 316–321 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Azizaddini, S., Arefanian, S., Redjal, N., Walcott, B. P. & Mollahoseini, R. Adult acute calcific discitis confined to the nucleus pulposus in the cervical spine: case report. J. Neurosurg. Spine 19, 170–173 (2013).

    Article  PubMed  Google Scholar 

  129. Crockett, M. T., Kelly, B. S., van Baarsel, S. & Kavanagh, E. C. Modic type 1 vertebral endplate changes: injury, inflammation, or infection? Am. J. Roentgenol. 209, 167–170 (2017).

    Article  Google Scholar 

  130. Pang, H. et al. The UTE Disc Sign on MRI: a novel imaging biomarker associated with degenerative spine changes, low back pain and disability. Spine 43, 503–511 (2017).

    Article  Google Scholar 

  131. Eyvazov, K. et al. The association of lumbar curve magnitude and spinal range of motion in adolescent idiopathic scoliosis: a cross-sectional study. 2017. BMC Musculoskelet. Disord. 18, 51 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Samartzis, D. et al. Selection of fusion levels using the fulcrum bending radiograph for the management of adolescent idiopathic scoliosis patients with alternate level pedicle screw strategy: clinical decision-making and outcomes. PLoS One 10, e0120302 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Yao, G. et al. Characterization and predictive value of segmental curve flexibility in adolescent idiopathic scoliosis patients. Spine 42, 1622–1628 (2017).

    Article  PubMed  Google Scholar 

  134. Yoshikawa, T., Ueda, Y., Miyazaki, K., Koizumi, M. & Takakura, Y. Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine 35, E475–E480 (2010).

    Article  PubMed  Google Scholar 

  135. Orozco, L. et al. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation 92, 822–828 (2011).

    Article  PubMed  Google Scholar 

  136. van Gool, S. A. et al. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage. PLoS One 7, e44561 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Vickers, L., Thorpe, A. A., Snuggs, J., Sammon, C. & Le Maitre, C. L. Mesenchymal stem cell therapies for intervertebral disc degeneration: Consideration of the degenerate niche. JOR Spine 2, e1055 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Vadala, G. et al. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J. Tissue Eng. Regen. Med. 6, 348–355 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Liu, S. et al. Susceptibility weighted imaging: current status and future directions. NMR Biomed. https://doi.org/10.1002/nbm.3552 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Saavedra-Pozo, F. M., Deusdara, R. A. & Benzel, E. C. Adjacent segment disease perspective and review of the literature. Ochsner J. 14, 78–83 (2014).

    PubMed  PubMed Central  Google Scholar 

  141. Eskola, P. J. et al. Genetic association studies in lumbar disc degeneration: a systematic review. PLoS One 7, e49995 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mallow, G. M. et al. Intelligence-based spine care model: a new era of research and clinical decision-making. Glob. Spine J. 11, 135–145 (2021).

    Article  Google Scholar 

  143. Samartzis, D. et al. Precision spine care: a new era of discovery, innovation, and global impact. Glob. Spine J. 8, 321–322 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

D.S. is supported by institutional funding from the Department of Orthopaedic Surgery at RUSH University Medical Center, Chicago, IL, USA. M.T. is supported by funding from the Dutch Arthritis Society (LLP22). F.M. is supported by the Canadian Institute of Health Research (CIHR). J.C.I. and S.I.-J. are supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the NIH under Award Number R01 AR 069315.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussion of the content, wrote the manuscript, and reviewed and edited the manuscript before submission. D.S. provided overall supervision and administrative support.

Corresponding author

Correspondence to Dino Samartzis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BACPAC: https://heal.nih.gov/research/clinical-research/back-pain

Bridge2AI: https://commonfund.nih.gov/bridge2ai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehra, U., Tryfonidou, M., Iatridis, J.C. et al. Mechanisms and clinical implications of intervertebral disc calcification. Nat Rev Rheumatol 18, 352–362 (2022). https://doi.org/10.1038/s41584-022-00783-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00783-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing