Skip to main content
Log in

Spatial and temporal patterns of benthic nutrient cycling define the extensive role of internal loading in an agriculturally influenced oxbow lake

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Benthic habitats in shallow oxbow lakes may serve as permanent nitrogen (N) sinks by facilitating denitrification. Oxbow sediments may also accumulate nutrients through uptake, deposition and heterotrophic N2 fixation, and ultimately provide a significant internal source of N and phosphorus (P) through sediment release to the water column. To better understand nutrient source-sink dynamics in oxbow lakes, we explored seasonal and habitat specific patterns in sediment dissolved dinitrogen gas (N2-N) and nutrient flux within an oxbow in the Mississippi Alluvial Plain. Time series models indicate a higher probability of positive N2-N fluxes in fall through spring, significant negative summer fluxes, and clear differences among habitats with net annual N2-N fluxes, ranging from − 2.34 g m−2 Y−1 in open water habitat to 0.26 g m−2 Y−1 in shoreline areas. Integrated lake-wide N2-N sediment flux estimates were negative indicating the significant role of net N2 fixation. More complex models explained similar amounts of variation (Adj. R2 = 0.57 vs. 0.45) and indicated that benthic N2-N fluxes were associated with changes in temperature, dissolved inorganic N, sediment oxygen demand, and sediment carbon:N ratios. Ammonium and P flux from sediments were substantial across all habitats and internal N regeneration far outpaced removal from the system by sediment N2-N flux. Results indicate that nutrient release from sediments generate internal nutrient loads proportional to external loading from the watershed. Our results highlight the significant potential for internal nutrient loading and benthic N2 fixation within sediments to regulate biogeochemical processes within understudied oxbow lake ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Available upon request to corresponding author.

Code availability

Not applicable.

References

  • Albert S, Bonaglia S, Stjärnkvist N, Winder M, Thamdrup B, Nascimento FJA (2021) Influence of settling organic matter quantity and quality on benthic nitrogen cycling. Limnol Oceanogr 66:1882–1895. https://doi.org/10.1002/lno.11730

    Article  Google Scholar 

  • An S, Joye SB (2001) Enhancement of coupled nitrification-denitrification by benthic photosynthesis in shallow estuarine sediments. Limnol Oceanogr 46:62–74

    Article  Google Scholar 

  • Anthony JL, Lewis WM Jr (2012) Low boundary layer response and temperature dependence of nitrogen and phosphorus releases from oxic sediments of an oligotrophic lake. Aquat Sci 74:611–617

    Article  Google Scholar 

  • APHA (American Public Health Association) (2005) Standard Methods for the Analysis of Water and Wastewater, 21st ed. American Public Health Association, American Water Works Association, & Water Environment Federation,Washington, DC

  • Arango CP, Tank JL (2008) Land use influences the spatiotemporal controls on nitrification and denitrification in headwater streams. J N Am Benthol Soc 27:90–107

    Article  Google Scholar 

  • Arango CP, Tank JL, Schaller JL, Royer TV, Bernot MJ, David MB (2007) Benthic organic carbon influences denitrification instreams with high nitrate concentration. Freshw Biol 52:1210–1222

    Article  Google Scholar 

  • Beman JM, Popp BN, Alford SE (2012) Quantification of ammonia oxidation rates and ammonia-oxidizing archaea and bacteria at high resolution in the Gulf of California and eastern tropical North Pacific Ocean. Limnol Oceanogr 57:711–726. https://doi.org/10.4319/lo.2012.57.3.0711

    Article  Google Scholar 

  • Benfield EF (2006) Decomposition of leaf material. In: Hauer FR, Lamberti GA (eds) Methods in Stream Ecology. Academic Press, San Diego, pp 711–720

    Google Scholar 

  • Bertics VJ, Scher CRL, Salonen I, Dale AW, Gier J, Schmitz RA, Treude T (2013) Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea. Biogeosciences 10:1243–1258. https://doi.org/10.5194/bg-10-1243-2013

    Article  Google Scholar 

  • Bruesewitz DA, Hamilton DP, Schipper LA (2011) Denitrification potential in lake sediment increases across a gradient of catchment agriculture. Ecosystems 14:341–352

    Article  Google Scholar 

  • Burger DF, Hamilton DP, Pilditch CA (2008) Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecol Modell 211:411–423

    Article  Google Scholar 

  • Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5:89–96

    Article  Google Scholar 

  • Burnham KP, Anderson DR (1998) Practical use of the information-theoretic approach. In: Model Selection and Inference. Springer, New York. https://doi.org/10.1007/978-1-4757-2917-7_3

  • Buttle JM, McDonald DJ (2002) Coupled vertical and lateral preferential flow on a forested slope. Water Resour. https://doi.org/10.1029/2001WR000773

    Article  Google Scholar 

  • Chao X, Jia Y, Cooper CM, Shields FD Jr, Wang SSY (2006) Development and application of a phosphorus model for a shallow oxbow lake. J Environ Eng 132:1498–1507

    Article  Google Scholar 

  • Chao X, Jia Y, Shields FD Jr, Wang SSY, Cooper CM (2010) Three-dimensional numerical simulation of water quality and sediment-associated processes with application to a Mississippi Delta lake. J Environ Manage 91:1456–1466

    Article  Google Scholar 

  • Cheng FY, Basu NB (2017) Biogeochemical hotspots: role of small water bodies in landscape nutrient processing. Water Resour Res 53:5038–5056

    Article  Google Scholar 

  • Chorus I, Spijkerman E (2021) What Colin Reynolds could tell us about nutrient limitation, N: P ratios and eutrophication control. Hydrobiologia 848:95–111

    Article  Google Scholar 

  • Crowe SA, Canfield DE, Mucci A, Sundby B, Maranger R (2012) Anammox, denitrification and fixed-nitrogen removal in sediments from the Lower St. Lawrence Estuary. Biogeosciences 9:4309–4321. https://doi.org/10.5194/bg-9-4309-2012

    Article  Google Scholar 

  • David MB, Wall LG, Royer TV, Tank JL (2006) Denitrification and the nitrogen budget of a reservoir in an agricultural landscape. Ecol Appl 16:2177–2190

    Article  Google Scholar 

  • Doi H (2009) Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. Popul Ecol 51:57–64. https://doi.org/10.1007/s10144-008-0127-z

    Article  Google Scholar 

  • Duncan JM, Groffman PM, Band LE (2013) Towards closing the watershed nitrogen budget: spatial and temporal scaling of denitrification. JGR Biogeosciences 118:1105–1119. https://doi.org/10.1002/jgrg.20090

    Article  Google Scholar 

  • Evans JL, Murdock JN, Taylor JM, Lizotte RE Jr (2021) Sediment nutrient flux rates in a shallow, turbid lake are more dependent on water quality than lake depth. Water 13:1344. https://doi.org/10.3390/w13101344

    Article  Google Scholar 

  • Findlay JC, Small GE, Sterner RW (2013) Human influences on nitrogen removal in lakes. Science 342:247–250

    Article  Google Scholar 

  • Forsberg C (1989) Importance of sediments in understanding nutrient cycling in lakes. Hydrobiologia 176–177:263–277

    Article  Google Scholar 

  • Fulweiler RW, Nixon SW, Buckley BA, Granger SL (2007) Reversal of the net dinitrogen gas flux in coastal marine sediments. Nature 448:180–182. https://doi.org/10.1038/nature05963

    Article  Google Scholar 

  • Fulweiler RW, Brown SM, Nixon SW, Jenkins BD (2013) Evidence and a conceptual model for the co-occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments. Mar Ecol Prog Ser 482:57–68

    Article  Google Scholar 

  • Gardner WS, McCarthy MJ, An S, Sobolev D, Sell KS, Brock D (2006) Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries. Limnol Oceanogr 51:558–568

    Article  Google Scholar 

  • Gardner WS, Newell SE, McCarthy MJ, Hoffman DK, Lu K, Lavrentyev PJ, Hellweger FL, Wilhelm SW, Liu Z, Bruesewitz DA, Paerl HW (2017) Community biological ammonium demand: a conceptual model for cyanobacteria blooms in eutrophic lakes. Environ Sci Technol 51:7785–7793

    Article  Google Scholar 

  • Gibbons KJ, Bridgeman TB (2020) Effect of temperature on phosphorus flux from anoxic western Lake Erie sediments. Water Res 182:116022

    Article  Google Scholar 

  • Grantz EM, Kogo A, Scott JT (2012) Partitioning whole-lake denitrification using in situ dinitrogen gas accumulation and intact sediment core experiments. Limnol Oceanogr 57:525–535

    Article  Google Scholar 

  • Haggard BE, Soerens TS (2006) Sediment phosphorus release at a small impoundment on the Illinois river, Arkansas and Oklahoma. USA Eco Eng 28:280–287

    Article  Google Scholar 

  • Groffman PM, Altabet MA, Böhlke JK, Butterbach-Bahl K, David MB, Firestone MK, Giblin AE, Kana TM, Nielsen LP, Voytek MA (2006) Methods for measuring denitrification: diverse approaches to a difficult problem. Eco Apps 16:2091–2122

    Article  Google Scholar 

  • Haggard BE, Moore PA, DeLaune PB (2005) Phosphorus flux from bottom sediments in Lake Eucha. Oklahoma J Env Qual 34:724–728

    Article  Google Scholar 

  • Harrison JA, Maranger RJ, Alexander RB, Giblin AE, Jacinthe PA, Mayorga E, Seitzinger SP, Sobota DJ, Wollheim WM (2009) The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 93:143–157

    Article  Google Scholar 

  • Harrison MD, Groffman PM, Mayer PM, Kaushal SS (2012) Nitrate removal in two relict oxbow urban wetlands: a 15N mass-balance approach. Biogeochemistry 111:647–660

    Article  Google Scholar 

  • Henderson KA, Murdock JN, Lizotte RE (2021) Water depth influences algal distribution and productivity in shallow agricultural lakes. Ecohydrology 14:e2319

    Article  Google Scholar 

  • Hijmans RJ (2021) raster: geographic data analysis and modeling. R package version 3.4–13. https://CRAN.R-project.org/package=raster

  • Hill AR, Kemp WA, Buttle JM, Goodyear D (1999) Nitrogen chemistry of subsurface storm runoff on forested Canadian Shield hillslopes. Water Resour Res 35:811–821. https://doi.org/10.1029/1998WR900083

    Article  Google Scholar 

  • Inwood SE, Tank JL, Bernot MJ (2007) Factors controlling sediment denitrification in midwestern streams of varying land use. Microb Ecol 53:247–258. https://doi.org/10.1007/s00248-006-9104-2

    Article  Google Scholar 

  • James WF (2010) Nitrogen retention in a floodplain backwater of the upper Mississippi River (USA). Aquat Sci 72:61–69

    Article  Google Scholar 

  • Jeppesen E, Søndergaard M, Jensen JP, Havens KE, Anneville O, Carvahlo L, Coveney MF, Deneke R, Dokulil MT, Foy B, Gerdeaux D, Hampton SE, Hilt S, Kangur K, Kohler J, Lammens EH, Lauridsen TL, Manca M, Miracle MR, Moss B, Nõges P, Persson G, Phillips G, Portielje R, Romo S, Schelske CL, Straile D, Tatrai I, Willén E, Winder M (2005) Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50:1747–1771. https://doi.org/10.1111/j.1365-2427.2005.01415.x

    Article  Google Scholar 

  • Kana TM, Darkangelo C, Hunt MD, Oldham JB, Bennett GE, Cornwell JC (1994) Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and AR in environmental water samples. Anal Chem 66:4166–4170

    Article  Google Scholar 

  • Katsev S, Tsandev I, L’Heureux I, Rancourt DG (2006) Factors controlling long-term phosphorus efflux from lake sediments: exploratory reactive-transport modeling. Chem Geol 234:127–147

    Article  Google Scholar 

  • King KW, Williams MR, Johnson LT, Smith DR, LaBarge GA, Fausey NR (2017) Phosphorus availability in western Lake Erie Basin drainage waters: legacy evidence across spatial scale. J Environ Qual 46:466–469

    Article  Google Scholar 

  • Knapp AN (2012) The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol. https://doi.org/10.3389/fmicb.2012.00374

    Article  Google Scholar 

  • Knowles R (1982) Denitrification. Microbiol Rev 46:43–70

    Article  Google Scholar 

  • Kraemer BM, Anneville O, Chandra S, Dix M, Kuusisto E, Livingstone DM, Rimmer A, Schladow SG, Silow E, Sitoki LM, Tamatamah R, Vadeboncoeur Y, McIntyre PB (2015) Morphometry and average temperature affect lake stratification responses to climate change. Geophys Res Lett 42:4981–4988

    Article  Google Scholar 

  • Larson JH, James WF, Fitzpatrick FA, Frost PC, Evans MA, Reneau PC, Xenopoulos MA (2020) Phosphorus, nitrogen and dissolved organic carbon fluxes from sediments in freshwater rivermouths entering Green Bay (Lake Michigan; USA). Biogeochemistry 147:179–197

    Article  Google Scholar 

  • Lehmann P, Hinz C, McGrath G, Tromp-van Meerveld HJ, McDonnell JJ (2007) Rainfall threshold for hillslope outflow: an emergent property of flow pathway connectivity. Hydrol Earth Syst Sci 11:1047–1063. https://doi.org/10.5194/hess-11-1047-2007

    Article  Google Scholar 

  • Li H, Song C, Cao X, Zhou Y (2016) The phosphorus release pathways and their mechanisms driven by organic carbon and nitrogen in sediments of eutrophic shallow lakes. Sci Total Environ 572:280–288

    Article  Google Scholar 

  • Li S, Christensen A, Twilley RR (2020) Benthic fluxes of dissolved oxygen and nutrients across hydrogeomorphic zones in a coastal deltaic floodplain within the Mississippi River delta plain. Biogeochem 149:115–140

    Article  Google Scholar 

  • Li S, Twilley RR, Hou A (2021) Heterotrophic nitrogen fixation in response to nitrate loading and sediment organic matter in an emerging coastal detaic floodplain within the Mississippi River Delta plain. Limnol Oceanogr 66:1961–1978. https://doi.org/10.1002/lno.11737

    Article  Google Scholar 

  • Lizotte RE, Knight SS, Locke MA, Bingner RL (2014) Influence of integrated watershed-scale agricultural conservation practices on lake water quality. J Soil Wat Cons 69:160–170

    Article  Google Scholar 

  • Lizotte RE, Yasarer LMW, Locke MA, Bingner RL, Knight SS (2017) Lake nutrient responses to integrated conservation practices in an agricultural watershed. J Environ Qual 46:330–338

    Article  Google Scholar 

  • Locke MA, Knight SS, Smith S, Cullum RF, Zablotowicz RM, Yuan Y, Bingner RL (2008) Environmental quality research in the Beasley Lake watershed, 1995 to 2007: succession from conventional to conservation practices. J Soil Water Conserv 63:430–442. https://doi.org/10.2489/jswc.63.6.430

    Article  Google Scholar 

  • Locke MA (2004) Mississippi delta management systems evaluation area: overview of water quality issues on a watershed scale. In: Nett MT, Locke MA, Pennington DA, (Eds) Water quality assessment in the Mississippi Delta: regional solutions, National scope. ACS symposium series 877. American Chemical Society, Washington, DC

  • Locke MA, Tyler DD, Gaston LA (2010) Soil and water conservation in the Mid-South United States: lessons learned and a look to the future. Soil and Water Conservation Advances in the United States. In: Zobeck TM, Schillinger WF (Eds). SSSA Special Publication 60. Madison, WI, USA

  • Locke MA, Lizotte RE Jr, Yasarer LMW, Bingner RL, Moore MT (2020) Surface runoff in Beasley Lake watershed: Effect of land management practices in a Lower Mississippi River Basin watershed. J Soil Water Conserv 75:278–290

    Article  Google Scholar 

  • Lorke A, Müller B, Maerki M, Wüest A (2003) Breathing sediments: the control of diffusive transport across the sediment–water interface by periodic boundary-layer turbulence. Limnol Oceanogr 48:2077–2085

    Article  Google Scholar 

  • Matheson FE, Nguyen ML, Cooper AB, Burt TP, Bull DC (2002) Fate of 15N-nitrate in unplanted, planted and harvested riparian wetland soil microcosms. Ecol Eng 19:249–264

    Article  Google Scholar 

  • McCarthy MJ, Gardner WS, Lavrentyev PJ, Moats KM, Jochem FJ, Klarer DM (2007) Effects of hydrological flow regime on sediment-water interface and water column nitrogen dynamics in a Great Lakes coastal wetland (Old Woman Creek, Lake Erie). J Great Lakes Res 33:219–231

    Article  Google Scholar 

  • McCarthy MJ, Gardner WS, Lehmann MF, Guindon A, Bird DF (2016) Benthic nitrogen regeneration, fixation, and denitrification in a temperate, eutrophic lake: effects on the nitrogen budget and cyanobacteria blooms. Limnol Oceanogr 61:1406–1423

    Article  Google Scholar 

  • Meals DW, Dressing SA, Davenport TE (2010) Lag time in water quality response to best management practices: a review. J Environ Qual 39:85–96

    Article  Google Scholar 

  • Mengistu SG, Creed IF, Kulperger RJ, Quick CG (2013) Russian nesting dolls effect: using wavelet analysis to reveal non-stationary and nested stationary signals in water yield from catchments on a northern forested landscape. Hydrol Process 27:669–686. https://doi.org/10.1002/hyp.9552

    Article  Google Scholar 

  • Miller-Way T, Twilley RR (1996) Theory and operation of continuous flow systems for the study of benthic-pelagic coupling. Mar Ecol Prog Ser 140:257–269

    Article  Google Scholar 

  • Moriasi DN, Duriancik LF, Sadler EJ, Tsegaye T, Steiner JL, Locke MA, Strickland TC, Osmond DL (2020) Quantifying the impacts of the conservation effects assessment project watershed assessments: the first fifteen years. J Soil Water Conserv 75:57A-74A

    Article  Google Scholar 

  • Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, van Cleemput O (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosys 52:225–248

    Article  Google Scholar 

  • Newell SE, McCarthy MJ, Gardner WS, Fulweiler RW (2016a) Sediment nitrogen fixation: a call for re-evaluating coastal N budgets. Est Coasts 39:1626–1638

    Article  Google Scholar 

  • Newell SE, Pritchard KR, Foster SQ, Fulweiler RW (2016b) Molecular evidence for sediment nitrogen fixation in a temperate New England estuary. PeerJ 4:e1615. https://doi.org/10.7717/peerj.1615

    Article  Google Scholar 

  • Nielsen LP, Christensen PB, Revsbech NP, Sørensen J (1990) Denitrification and photosynthesis in stream sediment studied with microsensor and whole-core techniques. Limnol Oceanogr 35:1135–1144

    Article  Google Scholar 

  • Nifong RL, Taylor JM, Moore MT (2019) Mulch-derived organic carbon stimulates high denitrification fluxes from agricultural ditch sediments. J Environ Qual 48:476–484. https://doi.org/10.2134/jeq2018.09.0341

    Article  Google Scholar 

  • North RP, North RL, Livingstone DM, Koster O, Kipfer R (2014) Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake:consequences of a climate regime shift. Glob Chang Biol 20:811–823

    Article  Google Scholar 

  • Østergaard FA, Jensen HS (1992) Regeneration of inorganic phosphorus and nitrogen from decomposition of seston in a freshwater sediment. Hydrobiologia 228:71–81

    Article  Google Scholar 

  • Paerl HW, Xu H, Hall NS, Rossignol KL, Joyner AR, Zhu G, Qin B (2015) Nutrient limitation dynamics examined on a multi-annual scale in Lake Taihu, China: implications for controlling eutrophication and harmful algal blooms. J Freshw Ecol 30:5–24

    Article  Google Scholar 

  • Paerl HW, Havens KE, Xu H, Zhu G, McCarthy MJ, Newell SE, Scott JT, Hall NS, Otten TG, Qin B (2020) Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: the evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia 847:4359–4375

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2020) nlme: linear and nonlinear mixed effects models. R package version 3.1–150, https://CRAN.r-project.org/package=nlme.

  • Piña-Ochoa E, Álvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81:111–130

    Article  Google Scholar 

  • Poe AC, Piehler MF, Thompson SP, Paerl HW (2003) Denitrification in a constructed wetland receiving agricultural runoff. Wetlands 23:817–826

    Article  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reynolds CS (1998) What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369:11–26

    Article  Google Scholar 

  • Reynolds CS (1999) Non-determinism to Probability, or N: P in the community ecology of phytoplankton. Arch Hydrobiol 146:23–35

    Article  Google Scholar 

  • Royer TV, Tank JL, David MB (2004) Transport and fate of nitrate in headwater agricultural streams in Illinois. J Environ Qual 33:1296–1304. https://doi.org/10.2134/jeq2004.1296

    Article  Google Scholar 

  • Royer TV, David MB (2005) Export of dissolved organic carbon from agricultural streams in Illinois. USA Aquat Sci 67:465–471. https://doi.org/10.1007/s00027-005-0781-6

    Article  Google Scholar 

  • Sas H (1989) Lake restoration by reduction of nutrient loading. Expectation, experiences, extrapolation. Academia Verlag Richardz GmbH., St Augustin.

  • Saunders DL, Kalff J (2001) Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia 443:205–212

    Article  Google Scholar 

  • Schilling KE, Wilke K, Pierce CL, Kult K, Kenny A (2019) Multipurpose oxbows as a nitrate export reduction practice in the agricultural Midwest. Agric Environ Lett 4:190035. https://doi.org/10.2134/ael2019.09.0035

    Article  Google Scholar 

  • Scott JT, McCarthy MJ, Gardner WS, Doyle RD (2008) Denitrification, dissimilatory nitrate reduction to ammonium, and nitrogen fixation along a nitrate concentration gradient in a created freshwater wetland. Biogeochemistry 87:99–111

    Article  Google Scholar 

  • Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geological significance. Limnol Oceanogr 33:702–724

    Google Scholar 

  • Seitzinger S, Harrison JA, Bohlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol App 16:2064–2090

    Article  Google Scholar 

  • Sen S, Haggard BE, Chaubey I, Brye KR, Costello TA, Matlock MD (2007) Sediment phosphorus release at beaver reservoir, Northwest Arkansas, USA, 2002–2003: a preliminary investigation. Water Air Soil Pollut 179:67–77. https://doi.org/10.1007/s11270-006-9214-y

    Article  Google Scholar 

  • Sharpley A, Jarvie HP, Buda A, May L, Spears B, Kleinman P (2013) Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual 42:1308–1326

    Article  Google Scholar 

  • Simpson GL (2018) Modelling paleoecological time series using generalised additive models. Front Ecol Evol 6:149

    Article  Google Scholar 

  • Small GE, Cotner JB, Findlay JC, Stark RA, Sterner RW (2014) Nitrogen transformations at the sediment–water interface across redox gradients in the Laurentian Great Lakes. Hydrobiologia 731:95–108. https://doi.org/10.1007/s10750-013-1569-7

    Article  Google Scholar 

  • Song K, Burgin AJ (2017) Perpetual phosphorus cycling: eutrophication amplifies biological control on internal phosphorus loading in agricultural reservoirs. Ecosystems 20:1483–1493

    Article  Google Scholar 

  • Song K, Adams CJ, Burgin AJ (2017) Relative importance of external and internal phosphorus loadings on affecting lake water quality in agricultural landscapes. Ecol Engr 108:482–488

    Article  Google Scholar 

  • Stelzer RS, Bartsch LA, Richardson WB, Strauss EA (2011) The dark side of the hyporheic zone: depth profiles of nitrogen and its processing in stream sediments. Freshw Biol 56:2021–2033. https://doi.org/10.1111/j.1365-2427.2011.02632.x

    Article  Google Scholar 

  • Tan E, Wenbin Z, Zheng Z, Yan X, Du M, Hsu T, Tian L, Middelburg JJ, Trull TW, Kao S (2020) Warming stimulates sediment denitrification at the expense of anaerobic ammonium oxidation. Nat Clim Chang 10:349–355. https://doi.org/10.1038/s41558-020-0723-2

    Article  Google Scholar 

  • Taylor JM, Moore MT, Scott JT (2015) Contrasting nutrient mitigation and denitrification potential of agricultural drainage environments with different emergent aquatic macrophytes. J Environ Qual 44:1304–1314

    Article  Google Scholar 

  • Taylor JM, Lizotte RE Jr, Testa S III (2019) Breakdown rates and associated nutrient cycling vary between novel crop-derived and natural riparian detritus in aquatic agroecosystems. Hydrobiologia 827:211–224

    Article  Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder AJB (Ed). Biology of anaerobic microorganisms. New York, NY: John Wiley and Sons

  • Trimmer M, Risgaard-Petersen N, Nicholls JC, Engström P (2006) Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores. Mar Ecol Prog Ser 326:37–47

    Article  Google Scholar 

  • USGS (2016) USGS historical topographic map explorer: Location: Indianola, Mississippi, United States. USGS, Reston, VA. http://historicalmaps.arcgis.com/usgs/. Accessed 29 July 2021

  • Ullah S, Faulkner SP (2006) Denitrification potential of different land-use types in an agricultural watershed, lower Mississippi valley. Ecol Engr 28:131–140

    Article  Google Scholar 

  • Van Meter KJ, Basu NB, Veenstra JJ, Burras CL (2016) The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environ Res Lett 11:035014

    Article  Google Scholar 

  • Vieillard AM, Fulweiler RW (2012) Impacts of long-term fertilization on salt marsh tidal creek benthic nutrient and N2 gas fluxes. Mar Ecol Prog Ser 471:11–22

    Article  Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65

    Article  Google Scholar 

  • Weiss RF (1970) The solubility of nitrogen, oxygen, and argon in water and seawater. Deep-Sea Res 17:721–735

    Google Scholar 

  • Welch EB, Cooke GD (2005) Internal phosphorus loading in shallow lakes: importance and control. Lake and Reserv Manage 11:273–281

    Article  Google Scholar 

  • Wenk CB, Blees J, Zopfi J, Veronesi M, Bourbonnais A, Schubert CJ, Niemann H, Lehmann MF (2013) Anaerobic ammonium oxidation (anammox) bacteria and sulfide-dependent denitrifiers coexist in the water column of a meromictic south-alpine lake. Limnol Oceanogr 58:1–12

    Article  Google Scholar 

  • Wood, S. N. 2017. Generalized additive models, An introduction with R.2nd edition. Chapman and Hall/CRC. New York, New York.

  • Wren DG, Taylor JM, Rigby JR, Locke MA, Yasarer LW (2019) Short term sediment accumulation rates reveal seasonal time lags between sediment delivery and deposition in an oxbow lake. Agric Ecosyst Environ 281:92–99

    Article  Google Scholar 

  • Yao X, Zhang L, Zhang Y, Zhang B, Zhao Z, Zhang Y, Li M, Jiang X (2018) Nitrogen fixation occurring in sediments: contribution to the nitrogen budget of Lake Taihu. China J Geophys Res Biogeosci 123:2661–2674. https://doi.org/10.1029/2018JG004466

    Article  Google Scholar 

  • Yasarer LMW, Bingner RL, Garbrecht JD, Locke MA, Lizotte RE Jr, Momm HG, Busteed PR (2017) Climate change impacts on runoff, sediment, and nutrient loads in an agricultural watershed in the Lower Mississippi River Basin. Appl Eng Agric 33:379–392

    Article  Google Scholar 

  • Yoshii K, Melnik NG, Timoshkin OA, Bondarenko NA, Anoshko PN, Yoshioka T, Wada E (1999) Stable isotope analyses of the pelagic food web in Lake Baikal. Limnol Oceanogr 44:502–511

    Article  Google Scholar 

  • Zhu G, Wang S, Wang S, Wang Y, Zhou L, Jiang B, Camp HJM, Risgaard-Peteresen N, Schwark L, Peng Y, Hefting MM, Jetten MSM, Yin C (2013) Hotspots of anaerobic ammonium oxidation at land-freshwater interaces. Nat Geosci 6:103–107

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We would like to thank Sam Testa, Terry Welch, Wade Steinreide, Mark Griffith, Lisa Brooks, James Hill, Tate Hillhouse, and James Gledhill for assisting in data collection and sample processing. Lindsey Yasarer provided data to establish habitat zone areas and participated in discussions which greatly improved this manuscript. Tim Strickland, Cliff Ochs, and two anonymous reviewers provided much appreciated comments which improved an earlier draft of this manuscript. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The US Department of Agriculture is an equal opportunity employer and provider.

Funding

This research was supported by the US Department of Agriculture, Agricultural Research Service.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RLN and JMT; Methodology: RLN and JMT; Formal analysis and investigation: RLN, JMT, and SED; Writing—original draft preparation: RLN; Writing—reviewing and editing: RLN, JMT, and SED.

Corresponding author

Correspondence to Rachel L. Nifong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest pertaining to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Jack Brookshire.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nifong, R.L., Taylor, J.M. & DeVilbiss, S. Spatial and temporal patterns of benthic nutrient cycling define the extensive role of internal loading in an agriculturally influenced oxbow lake. Biogeochemistry 159, 413–433 (2022). https://doi.org/10.1007/s10533-022-00935-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-022-00935-7

Keywords

Navigation