Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 14, 2022

Design of a miniaturized branch line microstrip coupler with a simple structure using artificial neural network

  • Saeed Roshani , Javad Azizian , Sobhan Roshani EMAIL logo , Mohammad (Behdad) Jamshidi and Fariborz Parandin
From the journal Frequenz

Abstract

In this paper, a compact branch microstrip coupler with the simple structure using T-shaped resonators and open-ended stubs at 1.8 GHz is designed and fabricated. The proposed coupler creates two transmission zeros at 3.4 and 3.87 GHz, with more than 50 dB attenuation level, which resulted in a good harmonic suppression at 2nd harmonic. Artificial neural network (ANN) has been utilized to extract the transfer function of the proposed coupler resonator for the first time, so the values of the transmission zeros can be located in the desired frequency. This technique can also be used for the other electrical devices. The designed device has a small size of 28 mm × 30 mm (0.9 λ × 0.95 λ), which shows more than 35% size reduction compared to the typical branch-line coupler with λ/4 branch lines. The proposed coupler is simulated using Advanced Design System (ADS) software and fabricated on Rogers Duroid 5880 substrate (ε r = 2.2, h = 31 mil). The simulation and measurement results verify the correct performance of the designed coupler.


Corresponding author: Sobhan Roshani, Department of Electrical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Declarations: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

  4. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] F. Hosseinkhani and S. Roshani, “A compact branch-line coupler design using low-pass resonators and meandered lines open stubs,” Turk. J. Electr. Eng. Comput. Sci., vol. 26, no. 3, pp. 1164–1170, 2018.10.3906/elk-1801-32Search in Google Scholar

[2] D. M. Pozar, Microwave Engineering, New York, USA, John Wiley & Sons, 2009.Search in Google Scholar

[3] H. Zhang and Z. Zhang, “Miniaturized microstrip branch-line coupler with good harmonic suppression based on radial stub loaded resonators,” Prog. Electromagn. Res., vol. 87, pp. 15–20, 2019, https://doi.org/10.2528/pierl19070103.Search in Google Scholar

[4] S. Sha, Y. Ye, and Z. Zhang, “A novel microstrip branch-line coupler with wide suppression band,” Prog. Electromagn. Res., vol. 83, pp. 139–143, 2019, https://doi.org/10.2528/pierl19021003.Search in Google Scholar

[5] O. J. Jibreel, N. I. Dib, and K. A. Shamaileh, “Miniaturized high split ratio bailey power divider based on multi-ring split ring resonators,” Appl. Comput. Electromagn. Soc. J., vol. 38, no. 9, pp. 1379–1384, 2019.Search in Google Scholar

[6] P. Bhakhar, V. Dwivedi, and P. Prajapati, “Directivity enhancement of miniaturized directional coupler using defected ground structure,” in International Conference on Communication and Signal Processing 2016 (ICCASP 2016), Atlantis Press, 2016.10.2991/iccasp-16.2017.101Search in Google Scholar

[7] L. Song and Y. Nie, “A miniaturized directional coupler using complementary split ring resonator and dumbbell-like defected ground structure,” Prog. Electromagn. Res., vol. 63, pp. 53–57, 2016, https://doi.org/10.2528/pierl16060302.Search in Google Scholar

[8] H. Ouassal, J. Shaker, L. Roy, K. Hettak, and R. E. Amaya, “A novel multifunctional EBG-based coupled-line-defect directional coupler based on layered dielectric substrates,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 8, no. 12, pp. 2140–2151, 2018, https://doi.org/10.1109/tcpmt.2018.2810064.Search in Google Scholar

[9] M. Chudzik, I. Arnedo, A. Lujambio, et al.., “Design of EBG microstrip directional coupler with high directivity and coupling,” in 2012 42nd European Microwave Conference, IEEE, 2012, pp. 483–486.10.23919/EuMC.2012.6459132Search in Google Scholar

[10] M. Chudzik, I. Arnedo, A. Lujambio, et al.., “Microstrip coupled-line directional coupler with enhanced coupling based on EBG concept,” Electron. Lett., vol. 47, no. 23, pp. 1284–1286, 2011, https://doi.org/10.1049/el.2011.2156.Search in Google Scholar

[11] K. M. Cheng and W. C. Ip, “A novel power divider design with enhanced spurious suppression and simple structure,” IEEE Trans. Microw. Theor. Tech., vol. 58, no. 12, pp. 3903–3908, 2010, https://doi.org/10.1109/TMTT.2010.2086473.Search in Google Scholar

[12] H. Sariri, Z. Rahmani, A. Lalbakhsh, and S. Majidifar, “Compact LPF using T-shaped resonator,” Frequenz, vol. 67, nos 1–2, pp. 17–20, 2013, https://doi.org/10.1515/freq-2012-1043.Search in Google Scholar

[13] M. Kazemi, S. Lotfi, H. Siahkamari, and M. Mohammadpanah, “UWB bandpass filter with ultra-wide stopband based on ring resonator,” Frequenz, vol. 72, nos 5–6, pp. 245–252, 2018, https://doi.org/10.1515/freq-2016-0312.Search in Google Scholar

[14] K. Dehghani, G. Karimi, A. Lalbakhsh, and S. V. Maki, “Design of lowpass filter using novel stepped impedance resonator,” Electron. Lett., vol. 50, no. 1, pp. 37–39, 2014, https://doi.org/10.1049/el.2013.3144.Search in Google Scholar

[15] G. Karimi, S. Lotfi, and H. Siahkamari, “Design of microstrip lowpass filter with sharp roll-off using elliptical and radial resonators,” Frequenz, vol. 71, nos 7–8, pp. 349–356, 2017, https://doi.org/10.1515/freq-2016-0111.Search in Google Scholar

[16] A. Lalbakhsh, A. A. Neyestanak, and M. Naser-Moghaddasi, “Microstrip hairpin bandpass filter using modified Minkowski fractal-shape for suppression of second harmonic,” IEICE Trans. Electron., vol. 95, no. 3, pp. 378–381, 2012, https://doi.org/10.1587/transele.e95.c.378.Search in Google Scholar

[17] S. Lotfi, S. Roshani, S. Roshani, and M. S. Gilan, “Wilkinson power divider with band-pass filtering response and harmonics suppression using open and short stubs,” Frequenz, vol. 74, nos 5–6, pp. 169–176, 2020.https://doi.org/10.1515/freq-2019-0200.Search in Google Scholar

[18] S. Lotfi, S. V. Makki, and G. R. Karimi, “Compact microstrip lowpass filter with ultra-wide stopband and sharp roll-off based on modified hairpin resonator,” Int. J. Eng. Technol., vol. 2, no. 2, pp. 109–121, 2014.Search in Google Scholar

[19] M. B. Jamshidi, S. Roshani, J. Talla, S. Roshani, and Z. Peroutka, “Size reduction and performance improvement of a microstrip Wilkinson power divider using a hybrid design technique,” Sci. Rep., vol. 11, no. 1, pp. 1–5, 2021, https://doi.org/10.1038/s41598-021-87477-4.Search in Google Scholar PubMed PubMed Central

[20] G. Karimi, H. Siahkamari, F. K. Hamedani, and A. Lalbakhsh, “Design of modified Z-shaped and T-shaped microstrip filter based on transfer function analysis,” Wireless Pers. Commun., vol. 82, no. 4, pp. 2005–2016, 2015, https://doi.org/10.1007/s11277-015-2328-z.Search in Google Scholar

[21] M. Roshani, G. Phan, G. H. Roshani, et al.., “Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows,” Measurement, vol. 168, p. 108427.10.1016/j.measurement.2020.108427Search in Google Scholar

[22] M. Roshani, M. A. Sattari, P. J. M. Ali, et al.., “Application of GMDH neural network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter,” Flow Meas. Instrum., vol. 75, p. 101804, 2020, https://doi.org/10.1016/j.flowmeasinst.2020.101804.Search in Google Scholar

[23] M. Roshani, G. Phan, R. H. Faraj, et al., Proposing a Gamma Radiation Based Intelligent System for Simultaneous Analyzing and Detecting Type and Amount of Petroleum By-Products, Daejeon, South Korea, Nuclear Engineering and Technology, 2020.10.1016/j.net.2020.09.015Search in Google Scholar

[24] S. Roshani, M. B. Jamshidi, F. Mohebi, and S. Roshani, “Design and modeling of a compact power divider with squared resonators using artificial intelligence,” Wireless Pers. Commun., vol. 117, pp. 1–2, 2020, https://doi.org/10.1007/s11277-020-07960-5.Search in Google Scholar

[25] M. Jamshidi, A. Lalbakhsh, J. Talla, et al.., “Artificial intelligence and COVID-19: deep learning approaches for diagnosis and treatment,” IEEE Access, vol. 8, pp. 109581–109595, 2020, https://doi.org/10.1109/access.2020.3001973.Search in Google Scholar PubMed PubMed Central

[26] M. Jamshidi, R. Farhadi, M. Jamshidi, Z. Shamsi, and S. Naseh, “Using a soft computing method for impedance modelling of li-ion battery current,” Int. J. Adv. Intell. Paradigms, vol. 16, no. 1, pp. 18–29, 2020, https://doi.org/10.1504/ijaip.2020.106686.Search in Google Scholar

[27] M. Roshani, G. T. Phan, P. J. M. Ali, et al.., “Evaluation of flow pattern recognition and void fraction measurement in two phase flow independent of oil pipeline’s scale layer thickness,” Alex. Eng. J., vol. 60, pp. 1955–1966, 2021, https://doi.org/10.1016/j.aej.2020.11.043.Search in Google Scholar

[28] M. A. Sattari, G. H. Roshani, R. Hanus, and E. Nazemi, “Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique,” Measurement, vol. 168, p. 108474, 2021, https://doi.org/10.1016/j.measurement.2020.108474.Search in Google Scholar

[29] A. Karami, G. H. Roshani, A. Khazaei, E. Nazemi, and M. Fallahi, “Investigation of different sources in order to optimize the nuclear metering system of gas–oil–water annular flows,” Neural Comput. Appl., vol. 32, pp. 3619–3631, 2018, https://doi.org/10.1007/s00521-018-3673-0.Search in Google Scholar

[30] M. B. Jamshidi, A. Lalbakhsh, B. Mohamadzade, H. Siahkamari, and S. M. Mousavi, “A novel neural-based approach for design of microstrip filters,” AEU-Int. J. Electron. Commun., vol. 110, p. 152847, 2019, https://doi.org/10.1016/j.aeue.2019.152847.Search in Google Scholar

[31] A. Rezaei, S. I. Yahya, L. Noori, and M. H. Jamaluddin, “Design of a novel wideband microstrip diplexer using artificial neural network,” Analog Integr. Circuits Signal Process., vol. 101, no. 1, pp. 57–66, 2019, https://doi.org/10.1007/s10470-019-01510-1.Search in Google Scholar

[32] E. Nazemi, G. H. Roshani, S. A. H. Feghhi, S. Setayeshi, E. E. Zadeh, and A. Fatehi, “Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique,” Int. J. Hydrogen Energy, vol. 41, no. 18, pp. 7438–7444, 2016. https://doi.org/10.1016/j.ijhydene.2015.12.098.Search in Google Scholar

[33] E. Nazemi, S. A. H. Feghhi, G. H. Roshani, R. Gholipour Peyvandi, and S. Setayeshi, “Precise void fraction measurement in two-phase flows independent of the flow regime using gamma-ray attenuation,” Nucl. Eng. Technol., vol. 48, no. 1, pp. 64–71, 2016. https://doi.org/10.1016/j.net.2015.09.005.Search in Google Scholar

[34] P. Kurgan and M. Kitliński, “Novel doubly perforated broadband microstrip branch‐line couplers,” Microw. Opt. Technol. Lett., vol. 51, no. 9, pp. 2149–2152, 2009, https://doi.org/10.1002/mop.24566.Search in Google Scholar

[35] P. Mondal and A. Chakrabarty, “Design of miniaturised branch-line and rat-race hybrid couplers with harmonics suppression,” IET Microw., Antennas Propag., vol. 3, no. 1, pp. 109–116, 2009, https://doi.org/10.1049/iet-map:20070202.10.1049/iet-map:20070202Search in Google Scholar

[36] H. Liu, C. Xun, S. Fang, Z. Wang, and D. Liu, “Coupled‐line trans‐directional coupler with arbitrary power divisions for equal complex termination impedances,” IET Microw., Antennas Propag., vol. 13, no. 1, pp. 92–98, 2019, https://doi.org/10.1049/iet-map.2018.5432.Search in Google Scholar

[37] S. Johnosono, T. Fujii, and I. Ohta, “Design of broadband CPW branch-line 3-dB couplers,” in 2006 European Microwave Conference, IEEE, 2006, pp. 36–39.10.1109/EUMC.2006.281175Search in Google Scholar

[38] Z. Qamar, S. Y. Zheng, W. S. Chan, and D. Ho, “Coupling coefficient reconfigurable wideband branch-line coupler topology with harmonic suppression,” IEEE Trans. Microw. Theor. Tech., vol. 66, no. 4, pp. 1912–1920, 2018, https://doi.org/10.1109/tmtt.2018.2791933.Search in Google Scholar

[39] H. W. Deng, L. Sun, J. M. Zhu, Y. K. Han, and Y. F. Xue, “High CM suppression balanced SIW BPF and HMSIW directional coupler utilising perfect electric conductor/perfect magnetic conductor characteristic,” IET Microw., Antennas Propag., vol. 14, no. 10, pp. 1061–1068, 2020, https://doi.org/10.1049/iet-map.2019.0950.Search in Google Scholar

[40] G. H. Pei and H. K. Choi, “A Miniaturized 3‐dB hybrid coupler using the comb line,” Microw. Opt. Technol. Lett., vol. 57, no. 11, pp. 2641–2645, 2015, https://doi.org/10.1002/mop.29410.Search in Google Scholar

[41] M. Ramesh, D. Packiaraj, and A. T. Kalghatgi, “A compact branch line coupler using defected ground structure,” J. Electromagn. Waves Appl., vol. 22, nos 2–3, pp. 267–276, 2008, https://doi.org/10.1163/156939308784160659.Search in Google Scholar

Received: 2021-07-21
Revised: 2021-11-03
Accepted: 2021-12-21
Published Online: 2022-02-14
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2021-0172/html
Scroll to top button