Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 2, 2022

Recent developments in MIL-101 metal organic framework for heterogeneous catalysis

  • Majid Taghizadeh

    Majid Taghizadeh is a professor of chemical engineering at Babol Noshirvani University of Technology (Babol, Iran). He has obtained his BSc (Tehran University, Iran, 1988), MSc (Amirkabir University of Technology, Iran, 1991), and PhD (University of Claude Bernard Lyon1, France, 1998) in chemical engineering. His research areas focus on catalysis, kinetics and reactor design, hydrogen production and purification, separation processes and molecularly imprinted polymers. He has published 100 journal papers, and more than 170 conference presentations.

    ORCID logo EMAIL logo
    and Saba Tahami

    Saba Tahami received a Bachelor’s degree from Mazandaran University, Iran, in 2016 and a Master’s degree from Babol Noshirvani University of Technology, Iran, in 2019, both in chemical engineering. She is currently pursuing a PhD degree in chemical engineering at Babol Noshirvani University of Technology, Iran. Her research interests include estimation methods of the critical constants and the acentric factor, risk assessment in chemical processes, and heterogeneous catalysis.

Abstract

Metal organic frameworks (MOFs) are currently gaining considerable attention as heterogeneous catalysts. Since the functionality of the framework and the pore size of the MOFs can be adjusted over a wide range for various catalytic reactions, the usage of these materials as solid catalysts is attractive. One of the preferred catalytic mesoMOFs is MIL-101 (MIL: Material of Institute Lavoisier) family which has been mainly investigated. The large surface area, high pore volumes, and acceptable solvent/thermal stability (MIL-101(Cr) up to 300 °C) have led the MIL-101 family to be considered an ideal and widespread MOF for use as a great heterogeneous catalyst or solid support for a variety of reactions. The objective of this review is to present recent research on the use of the MIL-101 family for heterogeneous catalysis in gas and liquid phase reactions.


Corresponding author: Majid Taghizadeh, Chemical Engineering Department, Babol Noshirvani University of Technology, P.O. Box 484, Babol, 4714871167, Iran, E-mail:

Award Identifier / Grant number: BNUT/370152/400

About the authors

Majid Taghizadeh

Majid Taghizadeh is a professor of chemical engineering at Babol Noshirvani University of Technology (Babol, Iran). He has obtained his BSc (Tehran University, Iran, 1988), MSc (Amirkabir University of Technology, Iran, 1991), and PhD (University of Claude Bernard Lyon1, France, 1998) in chemical engineering. His research areas focus on catalysis, kinetics and reactor design, hydrogen production and purification, separation processes and molecularly imprinted polymers. He has published 100 journal papers, and more than 170 conference presentations.

Saba Tahami

Saba Tahami received a Bachelor’s degree from Mazandaran University, Iran, in 2016 and a Master’s degree from Babol Noshirvani University of Technology, Iran, in 2019, both in chemical engineering. She is currently pursuing a PhD degree in chemical engineering at Babol Noshirvani University of Technology, Iran. Her research interests include estimation methods of the critical constants and the acentric factor, risk assessment in chemical processes, and heterogeneous catalysis.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge the financial support of Babol Noshirvani University of Technology through grant program BNUT/370152/400.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abd El Salam, H.M. and Abd El-Hafiz, D.R. (2020). Single site MIL-101 for novel low-temperature liquid-phase toluene methylation. J. Chem. Sci. 132: 1–9, https://doi.org/10.1007/s12039-020-1759-6.Search in Google Scholar

Akiyama, G., Matsuda, R., Sato, H., Takata, M., and Kitagawa, S. (2011). Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. J. Adv. Mater. 23: 3294–3297, https://doi.org/10.1002/adma.201101356.Search in Google Scholar PubMed

Akiyama, G., Matsuda, R., Sato, H., Hori, A., Takata, M., and Kitagawa, S. (2012). Effect of functional groups in MIL-101 on water sorption behavior. Microporous Mesoporous Mater. 157: 89–93, https://doi.org/10.1016/j.micromeso.2012.01.015.Search in Google Scholar

Anbia, M. and Hoseini, V. (2012). Development of MWCNT@ MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide. Chem. Eng. J. 191: 326–330, https://doi.org/10.1016/j.cej.2012.03.025.Search in Google Scholar

Anılır, G., Sert, E., Yılmaz, E., and Atalay, F.S. (2020). Preparation and performance of functionalized metal organic framework, MIL-101, for Knoevenagel reaction. J. Solid State Chem. 283: 121138.10.1016/j.jssc.2019.121138Search in Google Scholar

Asaula, V., Lytvynenko, A., Mishura, A., Kurmach, M., Buryanov, V., Gavrilenko, K., Ryabukhin, S., Volochnyuk, D., and Kolotilov, S. (2020). In situ formation of NixB/MIL-101 (Cr) and Pd/MIL-101 (Cr) composites for catalytic hydrogenation of quinoline. Inorg. Chem. Commun. 121: 108203, https://doi.org/10.1016/j.inoche.2020.108203.Search in Google Scholar

Babaee, S., Zarei, M., Sepehrmansourie, H., Zolfigol, M.A., and Rostamnia, S. (2020). Synthesis of metal–organic frameworks MIL-101 (Cr)-NH2 containing phosphorous acid functional groups: application for the synthesis of N-Amino-2-pyridone and pyrano [2, 3-c] pyrazole derivatives via a cooperative vinylogous anomeric-based oxidation. ACS Omega 5: 6240–6249, https://doi.org/10.1021/acsomega.9b02133.Search in Google Scholar PubMed PubMed Central

Bagabas, A.A., Frasconi, M., Iehl, J., Hauser, B., Farha, O.K., Hupp, J.T., Hartlieb, K.J., Botros, Y.Y., and Stoddart, J.F. (2013). γ-cyclodextrin cuprate sandwich-type complexes. Inorg. Chem. 52: 2854–2861, https://doi.org/10.1021/ic301795j.Search in Google Scholar PubMed

Baguc, I.B., Ertas, I.E., Yurderi, M., Bulut, A., Zahmakiran, M., and Kaya, M. (2018). Nanocrystalline metal organic framework (MIL-101) stabilized copper Nanoparticles: highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane. Inorg. Chim. Acta. 483: 431–439, https://doi.org/10.1016/j.ica.2018.08.056.Search in Google Scholar

Bao, C., Jiang, Y., Zhao, L., Li, D., Xu, P., and Sun, J. (2021). Aminoethylimidazole ionic liquid-grafted MIL-101-NH2 heterogeneous catalyst for the conversion of CO2 and epoxide without solvent and cocatalyst. New J. Chem. 45: 13893–13901, https://doi.org/10.1039/d1nj02590b.Search in Google Scholar

Bernt, S., Guillerm, V., Serre, C., and Stock, N. (2011). Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chem. Commun. 47: 2838–2840, https://doi.org/10.1039/c0cc04526h.Search in Google Scholar PubMed

Bhattacharjee, S., Chen, C., and Ahn, W.-S. (2014). Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv. 4: 52500–52525, https://doi.org/10.1039/c4ra11259h.Search in Google Scholar

Cao, X., Tan, C., Sindoro, M., and Zhang, H. (2017). Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46: 2660–2677, https://doi.org/10.1039/c6cs00426a.Search in Google Scholar PubMed

Chen, H., Chen, S., Zhao, W., and ZHANG, Y.-c. (2014). Influence of seed crystals and crystallization mode on the synthesis of metal-organic framework MIL-101. J. Funct. Mater. 45: 23115–23120.Search in Google Scholar

Dao, X.-Y., Guo, J.-H., Wei, Y.-P., Guo, F., Liu, Y., and Sun, W.-Y. (2019). Solvent-free photoreduction of CO2 to CO catalyzed by Fe-MOFs with superior selectivity. Inorg. Chem. 58: 8517–8524, https://doi.org/10.1021/acs.inorgchem.9b00824.Search in Google Scholar PubMed

Dao, X.-Y., Guo, J.-H., Zhang, X.-Y., Wang, S.-Q., Cheng, X.-M., and Sun, W.-Y. (2020a). Structure-dependent iron-based metal–organic frameworks for selective CO2-to-CH4 photocatalytic reduction. J. Mater. Chem. A8: 25850–25856, https://doi.org/10.1039/d0ta10278d.Search in Google Scholar

Dao, X.-Y., Xie, X.-F., Guo, J.-H., Zhang, X.-Y., Kang, Y.-S., and Sun, W.-Y. (2020b). Boosting photocatalytic CO2 reduction efficiency by heterostructures of NH2-MIL-101 (Fe)/g-C3N4. ACS Appl. Energy Mater. 3: 3946–3954, https://doi.org/10.1021/acsaem.0c00352.Search in Google Scholar

Dao, X.-Y. and Sun, W.-Y. (2021). Single-and mixed-metal–organic framework photocatalysts for carbon dioxide reduction. Inorg. Chem. Front. 8: 3178–3204.10.1039/D1QI00411ESearch in Google Scholar

Demessence, A., Horcajada, P., Serre, C., Boissière, C., Grosso, D., Sanchez, C., and Férey, G. (2009). Elaboration and properties of hierarchically structured optical thin films of MIL-101 (Cr). Chem. Commun. 46: 7149–7151, https://doi.org/10.1039/b915011k.Search in Google Scholar PubMed

Dhakshinamoorthy, A., Alvaro, M., and Garcia, H. (2012). Commercial metal–organic frameworks as heterogeneous catalysts. Chem. Commun. 48: 11275–11288, https://doi.org/10.1039/c2cc34329k.Search in Google Scholar PubMed

Dhakshinamoorthy, A., Santiago‐Portillo, A., Asiri, A.M., and Garcia, H. (2019). Engineering UiO-66 metal organic framework for heterogeneous catalysis. ChemCatChem 11: 899–923, https://doi.org/10.1002/cctc.201801452.Search in Google Scholar

Ding, C., Zhu, T., Wang, F., Zhang, Z., Dong, Y., Yang, M., Cheng, G., Ke, H., and Cheng, H. (2020). High active pd@ mil-101 catalyst for dehydrogenation of liquid organic hydrogen carrier. Int. J. Hydrogen Energy 45: 16144–16152, https://doi.org/10.1016/j.ijhydene.2020.04.081.Search in Google Scholar

Ertas, I.E., Gulcan, M., Bulut, A., Yurderi, M., and Zahmakiran, M. (2016). Metal-organic framework (MIL-101) stabilized ruthenium nanoparticles: highly efficient catalytic material in the phenol hydrogenation. Microporous Mesoporous Mater. 226: 94–103, https://doi.org/10.1016/j.micromeso.2015.12.048.Search in Google Scholar

Farrusseng, D. (2011). Metal-organic frameworks: applications from catalysis to gas storage. John Wiley & Sons, Weinheim.10.1002/9783527635856Search in Google Scholar

Fazaeli, R., Aliyan, H., Moghadam, M., and Masoudinia, M. (2013). Nano-rod catalysts: building MOF bottles (MIL-101 family as heterogeneous single-site catalysts) around vanadium oxide ships. J. Mol. Catal. Chem. 374: 46–52, https://doi.org/10.1016/j.molcata.2013.03.020.Search in Google Scholar

Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., and Margiolaki, I. (2005). A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309: 2040–2042, https://doi.org/10.1126/science.1116275.Search in Google Scholar PubMed

Gangu, K.K., Maddila, S., Mukkamala, S.B., and Jonnalagadda, S.B. (2016). A review on contemporary metal–organic framework materials. Inorg. Chim. Acta. 446: 61–74, https://doi.org/10.1016/j.ica.2016.02.062.Search in Google Scholar

Goesten, M.G., Gupta, K.B.S.S., Ramos-Fernandez, E.V., Khajavi, H., Gascon, J., and Kapteijn, F. (2012). Chloromethylation as a functionalisation pathway for metal–organic frameworks. CrystEngComm 14: 4109–4111, https://doi.org/10.1039/c2ce06594k.Search in Google Scholar

Granadeiro, C.M., Silva, P., Saini, V.K., Paz, F.A.A., Pires, J., Cunha-Silva, L., and Balula, S.S. (2013). Novel heterogeneous catalysts based on lanthanopolyoxometalates supported on MIL-101 (Cr). Catal. Today 218: 35–42, https://doi.org/10.1016/j.cattod.2013.03.042.Search in Google Scholar

Granadeiro, C.M., Barbosa, A.D., Ribeiro, S., Santos, I.C., de Castro, B., Cunha-Silva, L., and Balula, S.S. (2014). Oxidative catalytic versatility of a trivacant polyoxotungstate incorporated into MIL-101 (Cr). Catal. Sci. Technol. 4: 1416–1425, https://doi.org/10.1039/c3cy00853c.Search in Google Scholar

Gumus, I., Karataş, Y., and Gülcan, M. (2020). Silver nanoparticles stabilized by a metal–organic framework (MIL-101 (Cr)) as an efficient catalyst for imine production from the dehydrogenative coupling of alcohols and amines. Catal. Sci. Technol. 10: 4990–4999, https://doi.org/10.1039/d0cy00974a.Search in Google Scholar

Guo, F., Yang, S., Liu, Y., Wang, P., Huang, J., and Sun, W.-Y. (2019). Size engineering of metal–organic framework MIL-101 (Cr)–Ag hybrids for photocatalytic CO2 reduction. ACS Catal. 9: 8464–8470, https://doi.org/10.1021/acscatal.9b02126.Search in Google Scholar

Hartmann, M. and Fischer, M. (2012). Amino-functionalized basic catalysts with MIL-101 structure. Microporous Mesoporous Mater. 164: 38–43, https://doi.org/10.1016/j.micromeso.2012.06.044.Search in Google Scholar

Hasan, Z., Jun, J.W., and Jhung, S.H. (2015). Sulfonic acid-functionalized MIL-101 (Cr): an efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol. Chem. Eng. J. 278: 265–271, https://doi.org/10.1016/j.cej.2014.09.025.Search in Google Scholar

He, L., Dong, Y., Zheng, Y., Jia, Q., Shan, S., and Zhang, Y. (2019). A novel magnetic MIL-101 (Fe)/TiO2 composite for photo degradation of tetracycline under solar light. J. Hazard Mater. 361: 85–94, https://doi.org/10.1016/j.jhazmat.2018.08.079.Search in Google Scholar PubMed

Henschel, A., Gedrich, K., Kraehnert, R., and Kaskel, S. (2008). Catalytic properties of MIL-101. Chem. Commun. 35: 4192–4194, https://doi.org/10.1039/b718371b.Search in Google Scholar PubMed

Hermannsdörfer, J., Friedrich, M., Miyajima, N., Albuquerque, R.Q., Kümmel, S., and Kempe, R. (2012). Ni/Pd@ MIL-101: synergistic catalysis with cavity-conform Ni/Pd nanoparticles. Angew. Chem. Int. Ed. 51: 11473–11477, https://doi.org/10.1002/anie.201205078.Search in Google Scholar PubMed

Hong, D.Y., Hwang, Y.K., Serre, C., Ferey, G., and Chang, J.S. (2009). Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis. Adv. Funct. Mater. 19: 1537–1552, https://doi.org/10.1002/adfm.200801130.Search in Google Scholar

Hu, X., Lu, Y., Dai, F., Liu, C., and Liu, Y. (2013). Host–guest synthesis and encapsulation of phosphotungstic acid in MIL-101 via “bottle around ship”: an effective catalyst for oxidative desulfurization. Microporous Mesoporous Mater. 170: 36–44, https://doi.org/10.1016/j.micromeso.2012.11.021.Search in Google Scholar

Huang, C.-Y., Song, M., Gu, Z.-Y., Wang, H.-F., and Yan, X.-P. (2011). Probing the adsorption characteristic of metal–organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance. Environ. Sci. Technol. 45: 4490–4496, https://doi.org/10.1021/es200256q.Search in Google Scholar PubMed

Huang, Y.-B., Liang, J., Wang, X.-S., and Cao, R. (2017). Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chem. Soc. Rev. 46: 126–157, https://doi.org/10.1039/c6cs00250a.Search in Google Scholar PubMed

Huo, Q., Qi, X., Li, J., Liu, G., Ning, Y., Zhang, X., Zhang, B., Fu, Y., and Liu, S. (2019). Preparation of a direct Z-scheme α-Fe2O3/MIL-101 (Cr) hybrid for degradation of carbamazepine under visible light irradiation. Appl. Catal., B 255: 117751, https://doi.org/10.1016/j.apcatb.2019.117751.Search in Google Scholar

Hwang, Y.K., Hong, D.-Y., Chang, J.-S., Seo, H., Yoon, M., Kim, J., Jhung, S.H., Serre, C., and Férey, G. (2009). Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101. Appl. Catal.: A-Gen. 358: 249–253, https://doi.org/10.1016/j.apcata.2009.02.018.Search in Google Scholar

Jhung, S.H., Lee, J.H., Yoon, J.W., Serre, C., Férey, G., and Chang, J.S. (2007). Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. J. Adv. Mater. 19: 121–124, https://doi.org/10.1002/adma.200601604.Search in Google Scholar

Jiang, J. (2015). Metal-organic frameworks: materials modeling towards engineering applications. CRC Press, Boca Raton.10.1201/b18039Search in Google Scholar

Kaskel, S. (2016). The Chemistry of metal-organic frameworks, 2 volume set: synthesis, characterization, and applications. John Wiley & Sons, Dresden.10.1002/9783527693078Search in Google Scholar

Khan, N.A., Kang, I.J., Seok, H.Y., and Jhung, S.H. (2011). Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101. Chem. Eng. J. 166: 1152–1157, https://doi.org/10.1016/j.cej.2010.11.098.Search in Google Scholar

Kholdeeva, O.A., Skobelev, I.Y., Ivanchikova, I.D., Kovalenko, K.A., Fedin, V.P., and Sorokin, A.B. (2014). Hydrocarbon oxidation over Fe-and Cr-containing metal-organic frameworks MIL-100 and MIL-101–a comparative study. Catal. Today 238: 54–61, https://doi.org/10.1016/j.cattod.2014.01.010.Search in Google Scholar

Kim, S.-N., Yang, S.-T., Kim, J., Park, J.-E., and Ahn, W.-S. (2012). Post-synthesis functionalization of MIL-101 using diethylenetriamine: a study on adsorption and catalysis. CrystEngComm 14: 4142–4147, https://doi.org/10.1039/c2ce06608d.Search in Google Scholar

Lebedev, O., Millange, F., Serre, C., Van Tendeloo, G., and Férey, G. (2005). First direct imaging of giant pores of the metal− organic framework MIL-101. Chem. Mater. 17: 6525–6527, https://doi.org/10.1021/cm051870o.Search in Google Scholar

Lee, J., Farha, O.K., Roberts, J., Scheidt, K.A., Nguyen, S.T., and Hupp, J.T. (2009). Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38: 1450–1459, https://doi.org/10.1039/b807080f.Search in Google Scholar PubMed

Lee, Y.-R., Kim, J., and Ahn, W.-S. (2013). Synthesis of metal-organic frameworks: a mini review. Kor. J. Chem. Eng. 30: 1667–1680, https://doi.org/10.1007/s11814-013-0140-6.Search in Google Scholar

Lee, Y.-R., Chung, Y.-M., and Ahn, W.-S. (2014). A new site-isolated acid–base bifunctional metal–organic framework for one-pot tandem reaction. RSC Adv. 4: 23064–23067, https://doi.org/10.1039/c4ra02683g.Search in Google Scholar

Li, B., Zhang, Y., Ma, D., Li, L., Li, G., Li, G., Shi, Z., and Feng, S. (2012). A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chem. Commun. 48: 6151–6153, https://doi.org/10.1039/c2cc32384b.Search in Google Scholar PubMed

Li, B., Wen, H.-M., Zhou, W., and Chen, B. (2014). Porous metal–organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 5: 3468–3479, https://doi.org/10.1021/jz501586e.Search in Google Scholar PubMed

Li, D., Shustova, N.B., Martin, C.R., Taylor-Pashow, K., Seaman, J.C., Kaplan, D.I., Amoroso, J.W., and Chernikov, R. (2020). Anion-exchanged and quaternary ammonium functionalized MIL-101-Cr metal-organic framework (MOF) for ReO4−/TcO4− sequestration from groundwater. J. Environ. Radioact. 222: 106372, https://doi.org/10.1016/j.jenvrad.2020.106372.Search in Google Scholar PubMed

Li, J.-R., Kuppler, R.J., and Zhou, H.-C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38: 1477–1504, https://doi.org/10.1039/b802426j.Search in Google Scholar PubMed

Li, S.J., Wang, H.L., Wulan, B.R., Zhang, X.b., Yan, J.M., and Jiang, Q. (2018). Complete dehydrogenation of N2H4BH3 over noble-metal-free Ni0.5Fe0.5–CeOx/MIL-101 with high activity and 100% H2 selectivity. Adv. Energy Mater. 8: 1800625.10.1002/aenm.201800625Search in Google Scholar

Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., and Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43: 6011–6061, https://doi.org/10.1039/c4cs00094c.Search in Google Scholar PubMed

Liu, X., Liu, Z., Zhang, Q., Wu, H., and Wang, R. (2020). Hydrothermal catalytic conversion of glucose into lactic acid with acidic MIL-101(Fe). J. Chem. 2020: 1–7, https://doi.org/10.1155/2020/1341563.Search in Google Scholar

Llabrés i Xamena, F.X. and Gascon, J. (2013). Metal organic frameworks as heterogeneous catalysts. Royal Society of Chemistry, Cambridge.10.1039/9781849737586Search in Google Scholar

Lu, W., Yuan, D., Makal, T.A., Wei, Z., Li, J.-R., and Zhou, H.-C. (2013). Highly porous metal–organic framework sustained with 12-connected nanoscopic octahedra. Dalton Trans. 42: 1708–1714, https://doi.org/10.1039/c2dt32479b.Search in Google Scholar PubMed

Lu, Y., Yue, C., Liu, B., Zhang, M., Li, Y., Yang, W., Lin, Y., Pan, Y., Sun, D., and Liu, Y. (2021). The encapsulation of POM clusters into MIL-101 (Cr) at molecular level: LaW10O36@MIL-101(Cr), an efficient catalyst for oxidative desulfurization. Microporous Mesoporous Mater. 311: 110694, https://doi.org/10.1016/j.micromeso.2020.110694.Search in Google Scholar

MacGillivray, L.R. (2010). Metal-organic frameworks: design and application. John Wiley & Sons, Hoboken.10.1002/9780470606858Search in Google Scholar

MacGillivray, L.R. and Lukehart, C.M. (2014). Metal-organic framework materials. John Wiley & Sons, Chichester.Search in Google Scholar

Maksimchuk, N.V., Kovalenko, K.A., Arzumanov, S.S., Chesalov, Y.A., Melgunov, M.S., Stepanov, A.G., Fedin, V.P., and Kholdeeva, O.A. (2010a). Hybrid polyoxotungstate/MIL-101 materials: synthesis, characterization, and catalysis of H2O2-based alkene epoxidation. Inorg. Chem. 49: 2920–2930, https://doi.org/10.1021/ic902459f.Search in Google Scholar PubMed

Maksimchuk, N.V., Kovalenko, K.A., Fedin, V.P., and Kholdeeva, O.A. (2010b). Heterogeneous selective oxidation of alkenes to α, β-unsaturated ketones over coordination polymer MIL-101. Adv. Synth. Catal. 352: 2943–2948, https://doi.org/10.1002/adsc.201000516.Search in Google Scholar

Maksimchuk, N.V., Kovalenko, K.A., Fedin, V.P., and Kholdeeva, O.A. (2012a). Cyclohexane selective oxidation over metal–organic frameworks of MIL-101 family: superior catalytic activity and selectivity. Chem. Commun. 48: 6812–6814, https://doi.org/10.1039/c2cc31877f.Search in Google Scholar PubMed

Maksimchuk, N.V., Zalomaeva, O.V., Skobelev, I.Y., Kovalenko, K.A., Fedin, V.P., and Kholdeeva, O.A. (2012b). Metal–organic frameworks of the MIL-101 family as heterogeneous single-site catalysts. Proc. Math. Phys. Eng. Sci. 468: 2017–2034, https://doi.org/10.1098/rspa.2012.0072.Search in Google Scholar

Melitz, M.J. (2003). The impact of trade on intra‐industry reallocations and aggregate industry productivity. Econometrica 71: 1695–1725, https://doi.org/10.1111/1468-0262.00467.Search in Google Scholar

Mortazavi, S.S., Abbasi, A., Masteri‐Farahani, M., and Farzaneh, F. (2019). Sulfonic acid functionalized MIL-101(Cr) metal-organic framework for catalytic production of acetals. ChemistrySelect 4: 7495–7501, https://doi.org/10.1002/slct.201901070.Search in Google Scholar

Nagarjun, N., Concepcion, P., and Dhakshinamoorthy, A. (2020). MIL-101(Fe) as an active heterogeneous solid acid catalyst for the regioselective ring opening of epoxides by indoles. Mol. Catal. 482: 110628, https://doi.org/10.1016/j.mcat.2019.110628.Search in Google Scholar

Nguyen, H.G.T., Weston, M.H., Farha, O.K., Hupp, J.T., and Nguyen, S.T. (2012). A catalytically active vanadyl (catecholate)-decorated metal organic framework via post-synthesis modifications. CrystEngComm 14: 4115–4118, https://doi.org/10.1039/c2ce06666a.Search in Google Scholar

Niknam, E., Panahi, F., and Khalafi‐Nezhad, A. (2020). Immobilized Pd on a NHC functionalized metal–organic framework MIL-101(Cr): an efficient heterogeneous catalyst in Suzuki–Miyaura coupling reaction in water. Appl. Organomet. Chem. 34: e5470, https://doi.org/10.1002/aoc.5470.Search in Google Scholar

Pan, H., Li, X., Zhang, D., Guan, Y., and Wu, P. (2013). Pt nanoparticles entrapped in mesoporous metal–organic frameworks MIL-101 as an efficient and recyclable catalyst for the asymmetric hydrogenation of α-ketoesters. J. Mol. Catal. Chem. 377: 108–114, https://doi.org/10.1016/j.molcata.2013.04.025.Search in Google Scholar

Ponomareva, V.G., Kovalenko, K.A., Chupakhin, A.P., Dybtsev, D.N., Shutova, E.S., and Fedin, V.P. (2012). Imparting high proton conductivity to a metal–organic framework material by controlled acid impregnation. J. Am. Chem. Soc. 134: 15640–15643, https://doi.org/10.1021/ja305587n.Search in Google Scholar PubMed

Pourebrahimi, S. and Kazemeini, M. (2018). A kinetic study of facile fabrication of MIL-101(Cr) metal-organic framework: effect of synthetic method. Inorg. Chim. Acta. 471: 513–520, https://doi.org/10.1016/j.ica.2017.11.033.Search in Google Scholar

Remya, V. and Kurian, M. (2019). Synthesis and catalytic applications of metal–organic frameworks: a review on recent literature. Int. Nano Lett. 9: 17–29, https://doi.org/10.1007/s40089-018-0255-1.Search in Google Scholar

Saedi, Z., Tangestaninejad, S., Moghadam, M., Mirkhani, V., and Mohammadpoor-Baltork, I. (2012). MIL-101 metal–organic framework: a highly efficient heterogeneous catalyst for oxidative cleavage of alkenes with H2O2. Catal. Commun. 17: 18–22, https://doi.org/10.1016/j.catcom.2011.10.005.Search in Google Scholar

Safaei, M., Foroughi, M.M., Ebrahimpoor, N., Jahani, S., Omidi, A., and Khatami, M. (2019). A review on metal-organic frameworks: synthesis and applications. Trends Anal. Chem. 118: 401–425, https://doi.org/10.1016/j.trac.2019.06.007.Search in Google Scholar

Saikia, M., Bhuyan, D., and Saikia, L. (2015). Facile synthesis of Fe3O4 nanoparticles on metal organic framework MIL-101(Cr): characterization and catalytic activity. New J. Chem. 39: 64–67, https://doi.org/10.1039/c4nj01312c.Search in Google Scholar

Santiago-Portillo, A., Navalón, S., Cirujano, F.G., Xamena, F.X.L.s.i., Alvaro, M., and Garcia, H. (2015). MIL-101 as reusable solid catalyst for autoxidation of benzylic hydrocarbons in the absence of additional oxidizing reagents. ACS Catal. 5: 3216–3224, https://doi.org/10.1021/acscatal.5b00411.Search in Google Scholar

Sculley, J., Yuan, D., and Zhou, H.-C. (2011). The current status of hydrogen storage in metal–organic frameworks—updated. Energy Environ. Sci. 4: 2721–2735, https://doi.org/10.1039/c1ee01240a.Search in Google Scholar

Serra-Crespo, P., Ramos-Fernandez, E.V., Gascon, J., and Kapteijn, F. (2011). Synthesis and characterization of an amino functionalized MIL-101(Al): separation and catalytic properties. Chem. Mater. 23: 2565–2572, https://doi.org/10.1021/cm103644b.Search in Google Scholar

Somayajulu Rallapalli, P., Raj, M.C., Patil, D.V., Prasanth, K., Somani, R.S., and Bajaj, H.C. (2013). Activated carbon@MIL-101(Cr): a potential metal‐organic framework composite material for hydrogen storage. Int. J. Energy Res. 37: 746–753, https://doi.org/10.1002/er.1933.Search in Google Scholar

Srirambalaji, R., Hong, S., Natarajan, R., Yoon, M., Hota, R., Kim, Y., Ko, Y.H., and Kim, K. (2012). Tandem catalysis with a bifunctional site-isolated Lewis acid–Brønsted base metal–organic framework, NH2-MIL-101(Al). Chem. Commun. 48: 11650–11652, https://doi.org/10.1039/c2cc36678a.Search in Google Scholar PubMed

Sun, D., Ye, L., and Li, Z. (2015). Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti). Appl. Catal., B 164: 428–432, https://doi.org/10.1016/j.apcatb.2014.09.054.Search in Google Scholar

Sun, J., Yu, G., Huo, Q., Kan, Q., and Guan, J. (2014). Epoxidation of styrene over Fe (Cr)-MIL-101 metal–organic frameworks. RSC Adv. 4: 38048–38054, https://doi.org/10.1039/c4ra05402d.Search in Google Scholar

Sun, W.-J. and Gao, E.-Q. (2019). MIL-101 supported highly active single-site metal catalysts for tricomponent coupling. Appl. Catl.: A-Gen. 569: 110–116, https://doi.org/10.1016/j.apcata.2018.10.020.Search in Google Scholar

Tang, J., Yang, M., Yang, M., Wang, J., Dong, W., and Wang, G. (2015). Heterogeneous Fe-MIL-101 catalysts for efficient one-pot four-component coupling synthesis of highly substituted pyrroles. New J. Chem. 39: 4919–4923, https://doi.org/10.1039/c5nj00632e.Search in Google Scholar

Vallés-García, C., Santiago-Portillo, A., Álvaro, M., Navalón, S., and García, H. (2020). MIL-101(Cr)-NO2 as efficient catalyst for the aerobic oxidation of thiophenols and the oxidative desulfurization of dibenzothiophenes. Appl. Catl.: A-Gen. 590: 117340.10.1016/j.apcata.2019.117340Search in Google Scholar

Wang, H., Zhu, Q.-L., Zou, R., and Xu, Q. (2017). Metal-organic frameworks for energy applications. Inside Chem. 2: 52–80, https://doi.org/10.1016/j.chempr.2016.12.002.Search in Google Scholar

Wang, S., Bromberg, L., Schreuder-Gibson, H., and Hatton, T.A. (2013). Organophosphorous ester degradation by chromium (III) terephthalate metal–organic framework (MIL-101) chelated to N, N-dimethylaminopyridine and related aminopyridines. ACS Appl. Mater. Interfaces 5: 1269–1278, https://doi.org/10.1021/am302359b.Search in Google Scholar PubMed

Wang, Y. and Zhao, D. (2017). Beyond equilibrium: metal–organic frameworks for molecular sieving and kinetic gas separation. Cryst. Growth Des. 17: 2291–2308, https://doi.org/10.1021/acs.cgd.7b00287.Search in Google Scholar

Wee, L.H., Bonino, F., Lamberti, C., Bordiga, S., and Martens, J.A. (2014). Cr-MIL-101 encapsulated Keggin phosphotungstic acid as active nanomaterial for catalysing the alcoholysis of styrene oxide. Green Chem. 16: 1351–1357, https://doi.org/10.1039/c3gc41988f.Search in Google Scholar

Wu, Y., Wang, W., Liu, L., Zhu, S., Wang, X., Hu, E., and Hu, K. (2019). Novel synthesis of Cu-Schiff base complex@metal-organic framework MIL-101 via a mild method: a comparative study for rapid catalytic effects. ChemistryOpen 8: 333, https://doi.org/10.1002/open.201900032.Search in Google Scholar PubMed PubMed Central

Xie, Z., Chen, W., Chen, X., Zhou, X., Hu, W., and Shu, X. (2019). Platinum on 2-aminoethanethiol functionalized MIL-101 as a catalyst for alkene hydrosilylation. RSC Adv. 9: 20314–20322, https://doi.org/10.1039/c9ra01408j.Search in Google Scholar PubMed PubMed Central

Yaghi, O.M., Kalmutzki, M.J., and Diercks, C.S. (2019). Introduction to reticular chemistry. metal–organic frameworks and covalent organic frameworks. Wiley-VCH, Weinheim.10.1002/9783527821099Search in Google Scholar

Yan, D., Hu, H., Gao, N., Ye, J., and Ou, H. (2019). Fabrication of carbon nanotube functionalized MIL-101(Fe) for enhanced visible-light photocatalysis of ciprofloxacin in aqueous solution. Appl. Surf. Sci. 498: 143836, https://doi.org/10.1016/j.apsusc.2019.143836.Search in Google Scholar

Yang, J., Zhao, Q., Li, J., and Dong, J. (2010). Synthesis of metal–organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior. Microporous Mesoporous Mater. 130: 174–179, https://doi.org/10.1016/j.micromeso.2009.11.001.Search in Google Scholar

Zalomaeva, O.V., Kovalenko, K.A., Chesalov, Y.A., Mel’gunov, M.S., Zaikovskii, V.I., Kaichev, V.V., Sorokin, A.B., Kholdeeva, O.A., and Fedin, V.P. (2011). Iron tetrasulfophthalocyanine immobilized on metal organic framework MIL-101: synthesis, characterization and catalytic properties. Dalton Trans. 40: 1441–1444, https://doi.org/10.1039/c0dt01474e.Search in Google Scholar PubMed

Zalomaeva, O.V., Chibiryaev, A.M., Kovalenko, K.A., Kholdeeva, O.A., Balzhinimaev, B.S., and Fedin, V.P. (2013). Cyclic carbonates synthesis from epoxides and CO2 over metal–organic framework Cr-MIL-101. J. Catal. 298: 179–185, https://doi.org/10.1016/j.jcat.2012.11.029.Search in Google Scholar

Zang, Y., Shi, J., Zhang, F., Zhong, Y., and Zhu, W. (2013). Sulfonic acid-functionalized MIL-101 as a highly recyclable catalyst for esterification. Catal. Sci. Technol. 3: 2044–2049, https://doi.org/10.1039/c3cy00044c.Search in Google Scholar

Zhang, D., Guan, Y., Hensen, E.J., Chen, L., and Wang, Y. (2013). Porous MOFs supported palladium catalysts for phenol hydrogenation: a comparative study on MIL-101 and MIL-53. Catal. Commun. 41: 47–51, https://doi.org/10.1016/j.catcom.2013.06.035.Search in Google Scholar

Zhang, F., Jin, Y., Fu, Y., Zhong, Y., Zhu, W., Ibrahim, A.A., and El-Shall, M.S. (2015). Palladium nanoparticles incorporated within sulfonic acid-functionalized MIL-101(Cr) for efficient catalytic conversion of vanillin. J. Mater. Chem. A 3: 17008–17015, https://doi.org/10.1039/c5ta03524d.Search in Google Scholar

Zhang, M.-W., Lin, K.-Y.A., Huang, C.-F., and Tong, S. (2019a). Enhanced degradation of toxic azo dye, amaranth, in water using oxone catalyzed by MIL-101-NH2 under visible light irradiation. Sep. Purif. Technol. 227: 115632, https://doi.org/10.1016/j.seppur.2019.05.074.Search in Google Scholar

Zhang, T. and Lin, W. (2014). Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43: 5982–5993, https://doi.org/10.1039/c4cs00103f.Search in Google Scholar PubMed

Zhang, X., Li, F., Ren, J., Feng, H., Hou, X., and Ma, C. (2019b). Synthesis of metal organic framework material MIL-101. IOP conference series: earth and environmental science. IOP Publishing, Kuala Lumpur, p. 032022.10.1088/1755-1315/295/3/032022Search in Google Scholar

Zhang, Z., Li, X., Liu, B., Zhao, Q., and Chen, G. (2016). Hexagonal microspindle of NH2-MIL-101(Fe) metal–organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene. RSC Adv. 6: 4289–4295, https://doi.org/10.1039/c5ra23154j.Search in Google Scholar

Zhao, X., Jin, Y., Zhang, F., Zhong, Y., and Zhu, W. (2014). Catalytic hydrogenation of 2, 3, 5-trimethylbenzoquinone over Pd nanoparticles confined in the cages of MIL-101(Cr). Chem. Eng. J. 239: 33–41, https://doi.org/10.1016/j.cej.2013.11.003.Search in Google Scholar

Zhou, X., Huang, W., Shi, J., Zhao, Z., Xia, Q., Li, Y., Wang, H., and Li, Z. (2014a). A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone. J. Mater. Chem. A 2: 4722–4730, https://doi.org/10.1039/c3ta15086k.Search in Google Scholar

Zhou, Y.X., Chen, Y.Z., Hu, Y., Huang, G., Yu, S.H., and Jiang, H.L. (2014b). MIL-101-SO3H: a highly efficient Brønsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions. Chem. Eur. J. 20: 14976–14980, https://doi.org/10.1002/chem.201404104.Search in Google Scholar PubMed

Received: 2021-06-04
Revised: 2021-09-12
Accepted: 2021-12-03
Published Online: 2022-03-02
Published in Print: 2023-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2021-0050/html
Scroll to top button