Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 6, 2022

A circular monopole antenna with uniquely packed quad T-shaped strips for WLAN/WiMAX application

  • Ranjeet Kumar EMAIL logo , Rashmi Sinha , Arvind Choubey and Santosh Kumar Mahto
From the journal Frequenz

Abstract

This paper presents a circular monopole antenna with uniquely packed quad T-shaped strips etched on FR4 epoxy substrate having material permittivity 4.4, loss tangent 0.02, and thickness 1.6 mm. The 3.5 GHz band is achieved through this arrangement, which has return loss less than −10 dB while maintaining VSWR <2. It provides a peak gain of 2.65 dBi at 3.5 GHz and average gain of 2.52 dBi in the entire operating frequency band. The radiation pattern is almost omnidirectional in E plane and bidirectional in H plane. The proposed antenna has a compact size of 41.25 mm × 30.55 mm. The simulated results of S11 parameters, gain, VSWR, radiation pattern, and efficiency are studied and verified with the measured results of fabricated antenna as well as its equivalent lumped circuit model. Investigation shows that the proposed antenna can be employed for WLAN/WiMAX applications efficiently.


Corresponding author: Ranjeet Kumar, Department of Electronics & Communication Engineering, National Institute of Technology, Jamshedpur, India, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] M. NejatiJahromi, M. NagshvarianJahromi, and M. Rahman, “A new compact planar antenna for switching between UWB, narrow band and UWB with tunable-notch behaviors for UWB and WLAN applications,” Appl. Comput. Electromagn. Soc. J., vol. 33, no. 4, pp. 400–06, 2018.Search in Google Scholar

[2] S. K. Mishra, R. K. Gupta, A. Vaidya, and J. Mukherjee, “A compact dual-band fork-shaped monopole antenna for Bluetooth and UWB applications,” IEEE Antenn. Wireless Propag. Lett., vol. 10, pp. 627–30, 2011. https://doi.org/10.1109/lawp.2011.2159572.Search in Google Scholar

[3] Y. F. Liu, P. Wang, and H. Qin, “Compact ACS-fed UWB monopole antenna with extra Bluetooth band,” Electron. Lett., vol. 50, no. 18, pp. 1263–4, 2014. https://doi.org/10.1049/el.2014.1038.Search in Google Scholar

[4] M. Rahanandeh, A. S. Amin, M. Hosseinzadeh, P. Rezai, and M. S. Rostami, “A compact elliptical slot antenna for covering Bluetooth/WiMAX/WLAN/ITU,” IEEE Antenn. Wireless Propag. Lett., vol. 11, pp. 857–60, 2012. https://doi.org/10.1109/lawp.2012.2209109.Search in Google Scholar

[5] M. Bod, H. R. Hassani, and M. S. Taheri, “Compact UWB printed slot antenna with extra bluetooth, GSM, and GPS bands,” IEEE Antenn. Wireless Propag. Lett., vol. 11, pp. 531–4, 2012. https://doi.org/10.1109/lawp.2012.2197849.Search in Google Scholar

[6] G. N. Malheiros-Silveira, R. T. Yoshioka, J. E. Bertuzzo, and H. E. Hernandez-Figueroa, “Printed monopole antenna with triangular-shape groove at ground plane for bluetooth and UWB applications,” Microw. Opt. Technol. Lett., vol. 57, no. 1, pp. 28–31, 2015. https://doi.org/10.1002/mop.28763.Search in Google Scholar

[7] S. Yadav, A. K. Gautam, B. K. Kanaujia, and K. Rambabu, “Design of band-rejected UWB planar antenna with integrated Bluetooth band. IET Microwaves,” Antenn. Propag., vol. 10, no. 14, pp. 1528–33, 2016. https://doi.org/10.1049/iet-map.2016.0118.Search in Google Scholar

[8] T. Li, H. Zhai, X. Wang, L. Li, and C. Liang, “Frequency-reconfigurable bow-tie antenna for Bluetooth, WiMAX, and WLAN applications,” IEEE Antenn. Wireless Propag. Lett., vol. 14, pp. 171–4, 2014.10.1109/LAWP.2014.2359199Search in Google Scholar

[9] C. Singh and G. Kumawat, “A compact rectangular ultra-wideband microstrip patch antenna with double band notch feature at Wi-Max and WLAN,” Wireless Pers. Commun., vol. 114, pp. 2063–77, 2020. https://doi.org/10.1007/s11277-020-07465-1.Search in Google Scholar

[10] R. Patel and T. K. Upadhyaya, “Compact planar dual band antenna for WLAN application,” Prog. Electromagn. Res. Lett., vol. 70, pp. 89–97, 2017. https://doi.org/10.2528/pierl17062704.Search in Google Scholar

[11] K. Srivastava, A. Kumar, B. K. Kanaujia, S. Dwari, and S. Kumar, “Multiband integrated wideband antenna for bluetooth/WLAN applications,” AEU-Int. J. Electron. Commun., vol. 89, pp. 77–84, 2018. https://doi.org/10.1016/j.aeue.2018.03.027.Search in Google Scholar

[12] S. A. Shah, M. F. Khan, S. Ullah, A. Basir, U. Ali, and U. Naeem, “Design and measurement of planar monopole antennas for multi-band wireless applications,” IETE J. Res., vol. 63, no. 2, pp. 194–204, 2017. https://doi.org/10.1080/03772063.2016.1261049.Search in Google Scholar

[13] T. K. Upadhyaya, A. Desai, and R. Patel, “Design of printed monopole antenna for wireless energy meter and smart applications,” Prog. Electromagn. Res. Lett., vol. 77, pp. 27–33, 2018. https://doi.org/10.2528/pierl18042203.Search in Google Scholar

[14] R. Patel, A. Desai, and T. K. Upadhyaya, “An electrically small antenna using defected ground structure for RFID, GPS and IEEE 802.11 a/b/g/s applications,” Prog. Electromagn. Res. Lett., vol. 75, pp. 75–81, 2018. https://doi.org/10.2528/pierl18021901.Search in Google Scholar

[15] H. B. Chu and H. Shirai, “A compact metamaterial quad-band antenna based on asymmetric E-CRLH unit cells,” Prog. Electromagn. Res. C, vol. 81, pp. 171–9, 2018. https://doi.org/10.2528/pierc17111605.Search in Google Scholar

[16] A. Kumar, B. Paul, and P. Mohanan, “Compact triband dual f-shaped antenna for DCS/WiMAX/WLAN applications,” Prog. Electromagn. Res. Lett., vol. 78, pp. 97–104, 2018. https://doi.org/10.2528/pierl18062806.Search in Google Scholar

[17] H. Ahmad, W. Zaman, S. Bashir, and M. Rahman, “Compact triband slotted printed monopole antenna for WLAN and WiMAX applications,” Int. J. RF Microw. Computer-Aided Eng., vol. 30, no. 1, e21986, 2020.10.1002/mmce.21986Search in Google Scholar

[18] S. Ullah, F. Faisal, A. Ahmad, U. Ali, F. A. Tahir, and J. A. Flint, “Design and analysis of a novel tri-band flower-shaped planar antenna for GPS and WiMAX applications,” J. Electromagn. Waves Appl., vol. 31, no. 9, pp. 927–40, 2017. https://doi.org/10.1080/09205071.2017.1330160.Search in Google Scholar

[19] C. A. Balanis, Antenna Theory: Analysis and Design, Hoboken, New Jersey, John Wiley & Sons, 2015.Search in Google Scholar

[20] S. Doddipalli and A. Kothari, “Compact UWB antenna with integrated triple notch bands for WBAN applications,” IEEE Access, vol. 7, pp. 183–90, 2018.10.1109/ACCESS.2018.2885248Search in Google Scholar

[21] A. Nella and A. Gandhi, “Lumped equivalent models of narrowband antennas and isolation enhancement in a three antennas system,” Radio Eng., vol. 27, no. 3, p. 647, 2018.10.13164/re.2018.0646Search in Google Scholar

[22] Y. Wang, J. Li, and L. X. Ran, “An equivalent circuit modeling method for ultra-wideband antennas,” Prog. Electromagn. Res., vol. 82, pp. 433–45, 2008. https://doi.org/10.2528/pier08032303.Search in Google Scholar

[23] R. Kumar, R. Sinha, A. Choubey, and S. K. Mahto, “An ultrawide band monopole antenna using hexagonal-square shaped fractal geometry,” J. Electromagn. Waves Appl., vol. 35, no. 2, pp. 233–44, 2021. https://doi.org/10.1080/09205071.2020.1829094.Search in Google Scholar

[24] R. Kumar, R. Sinha, A. Choubey, and S. K. Mahto, “A compact microstrip feedline printed antenna with perturbed partial ground plane for UWB applications,” Int. J. RF Microw. Computer-Aided Eng., vol. 31, no. 9, e22764, 2021.10.1002/mmce.22764Search in Google Scholar

Received: 2022-01-19
Revised: 2022-03-25
Accepted: 2022-04-21
Published Online: 2022-05-06
Published in Print: 2023-04-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2022-0017/html
Scroll to top button