Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 15, 2022

Asymmetric CPW-fed hexagonal monopole antenna with Boomerang-shaped Fractals for ultra-wideband applications

  • Muthu Ramya C. EMAIL logo and R. Boopathi Rani
From the journal Frequenz

Abstract

In recent days, miniaturized antennas have gained significance in portable ultra-wideband (UWB) applications owing to its broad coverage spectrum. Fractal antennas have become popular in this context owing to the three properties: self-similarity, space-filling, and lacunarity, thereby producing miniaturization with a broad spectrum. Conventional Fractal antennas achieve a good impedance bandwidth, relatively high gain, at the cost of trade-off between compact size, radiation characteristics and broad spectrum. In this paper, an asymmetric coplanar waveguide–fed hexagonal monopole antenna with Boomerang-shaped Fractals is proposed for UWB characteristics with relatively high antenna gain and wide bandwidth. The miniaturization of the antenna is realized by the Fractal structure. The size of the antenna is to be 0.287 λ r × 0.287 λ r × 0.009 λ r, where λ r is the resonating wavelength at 3.45 GHz. The proposed antenna is printed on a 0.8-mm-thick FR-4 substrate with relative dielectric constant of 4.4 and a loss tangent of 0.02. From frequency-domain analysis, the experimental results reveal that the fractional bandwidth is 101.7% and the peak antenna gain detected is 5.1 dBi. The radiation performance of the antenna was nearly omnidirectional. From the time-domain analysis, group delay and three different Fidelity Factors i.e. Fidelity Factor (FF), System Fidelity Factor (SFF), and Fidelity Factor of System (FFS), the proposed antenna is found to have negligible distortion. As the bandwidth meets up to fractional bandwidth above 20% and absolute bandwidth greater than 500 MHz, the proposed antenna is suitable for 3.45–10.6 GHz UWB applications.


Corresponding author: Muthu Ramya C., Department of ECE, National Institute of Technology Puducherry, Karaikal 609 609, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Revision of Part 15 of the Commission’s Rules Regarding UltraWideband Transmission Systems,” Federal Communications Commission, 2017 [Online]. Available at: https://apps.fcc.gov/edocs_public/attachmatch/FCC-02-48A1.pdf [accessed: Aug. 24, 2017].Search in Google Scholar

[2] J. B. B. Aucapina, R. A. L. Guartan, L. F. G. Vasquez, P. A. C. Pesantez, J. O. O. Ordonez, and P. E. Vintimilla-Tapia, “Recents designs of ultra wide band antennas Using fractal geometry: a review,” in 2018 IEEE Biennial Congress of Argentina (ARGENCON), IEEE, 2018, pp. 1–8.Search in Google Scholar

[3] D. Stoyan. “Mandelbrot, BB, fractals: Form, chance, and dimension. San Francisco. W.H. Freeman and Company. 1977, 352 S., 68 Abb., $14.95,” Z. Angew. Math. Mech., vol. 59, pp. 402–403, 1979, https://doi.org/10.1002/zamm.19790590830.Search in Google Scholar

[4] R. Ghatak, A. Karmakar, and D. R. Poddar, “Hexagonal boundary Sierpinski carpet fractal shaped compact ultrawideband antenna with band rejection functionality,” AEU Int. J. Electron. Commun., vol. 67, pp. 250–255, 2013, https://doi.org/10.1016/j.aeue.2012.08.007.Search in Google Scholar

[5] S. Tripathi, A. Mohan, and S. Yadav, “Hexagonal fractal ultra‐wideband antenna using Koch geometry with bandwidth enhancement,” IET Microw. Antennas Propag., vol. 8, pp. 1445–1450, 2014, https://doi.org/10.1049/iet-map.2014.0326.Search in Google Scholar

[6] D. Aissaoui, N. B. Hacen, and T. A. Denidni, “UWB hexagonal monopole fractal antenna with additional trapezoidal elements,” in 2015 IEEE Int. Conf. on Ubiquitous Wireless Broadband (ICUWB), IEEE, 2015, pp. 1–4.10.1109/ICUWB.2015.7324526Search in Google Scholar

[7] D. Aissaoui, L. M. Abdelghani, N. Boukli‐Hacen, and T. A. Denidni, “CPW‐fed UWB hexagonal shaped antenna with additional fractal elements,” Microw. Opt. Technol. Lett., vol. 58, pp. 2370–2374, 2016, https://doi.org/10.1002/mop.30053.Search in Google Scholar

[8] R. Kumar and P. N. Chaubey, “On the design of CPW-feed pentagonal-cut UWB fractal antenna,” Int. J. Microw. Opt. Technol., vol. 6, pp. 249–254, 2011.10.1049/iet-map.2011.0188Search in Google Scholar

[9] R. Ghatak, A. Karmakar, and D. R. Poddar, “A circular shaped Sierpinski carpet fractal UWB monopole antenna with band rejection capability,” Prog. Electromagn. Res., vol. 24, pp. 221–234, 2011, https://doi.org/10.2528/pierc11082801.Search in Google Scholar

[10] R. Ghatak, B. Biswas, A. Karmakar, and D. Poddar, “A circular fractal UWB antenna based on descartes circle theorem with band rejection capability,” Prog. Electromagn. Res. C, vol. 37, pp. 235–248, 2013, https://doi.org/10.2528/pierc13011607.Search in Google Scholar

[11] R. K. Garg, M. V. D. Nair, S. Singhal, and R. Tomar, “A new type of compact ultra‐wideband planar fractal antenna with WLAN band rejection,” Microw. Opt. Technol. Lett., vol. 62, pp. 2537–2545, 2020, https://doi.org/10.1002/mop.32304.Search in Google Scholar

[12] M. Gupta, and V. Mathur, “Wheel shaped modified fractal antenna realization for wireless communications,” AEU Int. J. Electron. Commun., vol. 79, pp. 257–266, 2017, https://doi.org/10.1016/j.aeue.2017.06.017.Search in Google Scholar

[13] Y. K. Choukiker and S. K. Behera, “Modified Sierpinski square fractal antenna covering ultra-wide band application with band notch characteristics,” IET Microw. Antennas Propag., vol. 8, pp. 506–512, 2014, https://doi.org/10.1049/iet-map.2013.0235.Search in Google Scholar

[14] T. Ali, B. K. Subhash, and R. C. Biradar, “A miniaturized decagonal Sierpinski UWB fractal antenna,” Prog. Electromagn. Res. C, vol. 84, pp. 161–174, 2018, https://doi.org/10.2528/pierc18040605.Search in Google Scholar

[15] K. P. Ray, M. D. Pandey, R. Rashmi, and S. P. Duttagupta, “Compact configurations of hexagonal microstrip antennas,” Microw. Opt. Technol. Lett., vol. 55, pp. 604–608, 2013, https://doi.org/10.1002/mop.27396.Search in Google Scholar

[16] C. A. Balanis, Antenna Theory: Analysis and Design, 4th ed. Hoboken, NJ, John Wiley & Sons, 2015.Search in Google Scholar

[17] M. R. Haji-hashemi, M. Moradian, and H. Mirmohammad-Sadeghi, “Space-filling patch antennas with CPW feed,” PIERS Online, vol. 2, pp. 69–73, 2006, https://doi.org/10.2529/piers050905035108.Search in Google Scholar

[18] S. Singhal, P. Singh, and A. Kumar Singh, “Asymmetrically CPW‐fed octagonal Sierpinski UWB fractal antenna,” Microw. Opt. Technol. Lett., vol. 58, pp. 1738–1745, 2016, https://doi.org/10.1002/mop.29903.Search in Google Scholar

[19] Ansoft Corp., HFSS, Ver. 14.0, Pittsburgh, PA, USA [Online]. Available at: http://www.ansys.com.Search in Google Scholar

[20] CST Commercial Software Package. [Online]. Available at: http://www.cst.com.Search in Google Scholar

[21] MATLAB Version R2019a. The MathWorks Inc., 2019 [Online]. Available at: http://www.mathworks.com.Search in Google Scholar

[22] M. Koohestani, A. A. Moreira, and A. K. Skrivervik, “Fidelity concepts used in UWB systems,” in 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), IEEE, 2014, pp. 824–825.10.1109/APS.2014.6904740Search in Google Scholar

[23] D. Lamensdorf and L. Susman, “Baseband-pulse-antenna techniques,” IEEE Antennas Wirel. Propag. Mag., vol. 36, no. 1, pp. 20–30, 1994, https://doi.org/10.1109/74.262629.Search in Google Scholar

[24] R. B. Simorangkir, A. Kiourti, and K. P. Esselle, “UWB wearable antenna with a full ground plane based on PDMS-embedded conductive fabric,” IEEE Antenn. Wireless Propag. Lett., vol. 17, no. 3, pp. 493–496, 2018, https://doi.org/10.1109/lawp.2018.2797251.Search in Google Scholar

[25] G. P. Gao, B. Hu, and J. S. Zhang, “Design of a miniaturization printed circular-slot UWB antenna by the half-cutting method,” IEEE Antenn. Wireless Propag. Lett., vol. 12, pp. 567–570, 2013, https://doi.org/10.1109/lawp.2013.2259790.Search in Google Scholar

Received: 2021-11-08
Accepted: 2022-03-28
Published Online: 2022-04-15
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2021-0276/html
Scroll to top button