Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 10, 2022

Effective factors on performance of zeolite based metal catalysts in light hydrocarbon aromatization

  • Khashayar Sharifi , Rouein Halladj ORCID logo EMAIL logo , Seyed Javid Royaee , Farshid Towfighi , Sepideh Firoozi and Hamidreza Yousefi

Abstract

Aromatic hydrocarbons are essential compounds, that the presence of which in fuels can improve the octane number. The conversion of the light alkanes to high value aromatics is vital from theoretical and industrial standpoints. Zeolites such as ZSM-5 play an essential role in the aromatization of light alkanes. This paper highlights the mechanism of aromatization of light alkanes such as methane, ethane, propane, butane, and its isomers. Furthermore, effective factors on the aromatization of light alkanes including metal type, crystallinity, acidity, space velocity, pretreatment of zeolites, co-feeding of light hydrocarbon, and operating factors such as temperature have been investigated to determine how a system of zeolite with metals can be useful to reach aromatization with high conversion.


Corresponding author: Rouein Halladj, Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abedin, M.A., Kanitkar, S., Bhattar, S., and Spivey, J.J. (2020). Mo oxide supported on sulfated hafnia: novel solid acid catalyst for activation of ethane & propane. Appl. Catal. A: Gen.: 117696, https://doi.org/10.1016/j.apcata.2020.117696.Search in Google Scholar

Akolekar, D., Chaffee, A., and Howe, R.F. (1997). The transformation of kaolin to low-silica X zeolite. Zeolites 19: 359–365, https://doi.org/10.1016/s0144-2449(97)00132-2.Search in Google Scholar

Baradaran, S., Sohrabi, M., Bijani, P., Royaee, S., and Sahebdelfar, S. (2014). An investigation on isobutane aromatization over an H-Zsm-5 catalyst. Petrol. Sci. Technol. 32: 2889–2895, https://doi.org/10.1080/10916466.2014.913622.Search in Google Scholar

Baradaran, S., Sohrabi, M., Bijani, P.M., and Royaee, S.J. (2015a). Isobutane aromatization in the presence of propane as a co-reactant over H-Zsm-5 catalysts using different crystallization times. J. Ind. Eng. Chem. 27: 354–361, https://doi.org/10.1016/j.jiec.2015.01.014.Search in Google Scholar

Baradaran, S., Sohrabi, M., Moghimpour Bijani, P., Royaee, S.J., and Sahebdelfar, S. (2015b). Experimental and modelling study of propane aromatization over H-Zsm-5 catalysts prepared by different silica sources. Can. J. Chem. Eng. 93: 727–735, https://doi.org/10.1002/cjce.22160.Search in Google Scholar

Barthos, R., Bánsági, T., Zakar, T.S., and Solymosi, F. (2007). Aromatization of methanol and methylation of benzene over Mo2 C/Zsm-5 catalysts. J. Catal. 247: 368–378, https://doi.org/10.1016/j.jcat.2007.02.017.Search in Google Scholar

Bayense, C. and Van Hooff, J. (1991). Aromatization of propane over gallium-containing H-Zsm-5 zeolites: influence of the preparation method on the product selectivity and the catalytic stability. Appl. Catal. Gen. 79: 127–140, https://doi.org/10.1016/0926-860x(91)85011-l.Search in Google Scholar

Bhan, A. and Nicholas Delgass, W. (2008). Propane aromatization over Hzsm-5 and Ga/Hzsm-5 catalysts. Catal. Rev. 50: 19–151, https://doi.org/10.1080/01614940701804745.Search in Google Scholar

Bi, Y., Wang, Y., Chen, X., Yu, Z., and Xu, L. (2014). Methanol aromatization over Hzsm-5 catalysts modified with different zinc salts. Chin. J. Catal. 35: 1740–1751, https://doi.org/10.1016/s1872-2067(14)60145-5.Search in Google Scholar

Biscardi, J.A. and Iglesia, E. (1996). Structure and function of metal cations in light alkane reactions catalyzed by modified H-Zsm-5. Catal. Today 31: 207–231, https://doi.org/10.1016/s0920-5861(96)00028-4.Search in Google Scholar

Biscardi, J.A., Meitzner, G.D., and Iglesia, E. (1998). Structure and density of active Zn species in Zn/H-Zsm-5 propane aromatization catalysts. J. Catal. 179: 192–202, https://doi.org/10.1006/jcat.1998.2177.Search in Google Scholar

Borry, R.W., Kim, Y.H., Huffsmith, A., Reimer, J.A., and Iglesia, E. (1999). Structure and density of Mo and acid sites in Mo-exchanged H-Zsm-5 catalysts for nonoxidative methane conversion. J. Phys. Chem. B 103: 5787–5796, https://doi.org/10.1021/jp990866v.Search in Google Scholar

British, P. (2013). Bp statistical review of world energy. London: British Petroleum.Search in Google Scholar

Caeiro, G., Carvalho, R., Wang, X., Lemos, M., Lemos, F., Guisnet, M., and Ribeiro, F.R. (2006). Activation of C2–C4 alkanes over acid and bifunctional zeolite catalysts. J. Mol. Catal. Chem. 255: 131–158, https://doi.org/10.1016/j.molcata.2006.03.068.Search in Google Scholar

Chandrasekhar, S. (1996). Influence of metakaolinization temperature on the formation of zeolite 4a from kaolin. Clay Miner. 31: 253–261, https://doi.org/10.1180/claymin.1996.031.2.11.Search in Google Scholar

Chen, L., Lin, L., Xu, Z., Li, X., and Zhang, T. (1995). Dehydro-oligomerization of methane to ethylene and aromatics over molybdenum/Hzsm-5 catalyst. J. Catal. 157: 190–200, https://doi.org/10.1006/jcat.1995.1279.Search in Google Scholar

Cheng, C.-H. and Shantz, D.F. (2005). Silicalite-1 growth from clear solution: effect of the structure-directing agent on growth kinetics. J. Phys. Chem. B 109: 13912–13920, https://doi.org/10.1021/jp050733b.Search in Google Scholar PubMed

Choudhary, T., Kinage, A., Banerjee, S., and Choudhary, V. (2005). Influence of hydrothermal pretreatment on acidity and activity of H-Gaalmfi zeolite for the propane aromatization reaction. Microporous Mesoporous Mater. 87: 23–32, https://doi.org/10.1016/j.micromeso.2005.07.028.Search in Google Scholar

Choudhary, V., Kinage, A., and Choudhary, T. (1996a). Simultaneous aromatization of propane and higher alkanes or alkenes over H-Gaaimfi zeolite. Chem. Commun.: 2545–2546, https://doi.org/10.1039/cc9960002545.Search in Google Scholar

Choudhary, V., Kinage, A., Sivadinarayana, C., and Guisnet, M. (1996b). Pulse reaction studies on variations of initial activity/selectivity of O2 and H2 pretreated ga-modified Zsm-5 type zeolite catalysts in propane aromatization. J. Catal. 158: 23–33, https://doi.org/10.1006/jcat.1996.0003.Search in Google Scholar

Choudhary, V., Kinage, A., and Choudhary, T. (1997a). Direct aromatization of natural gas over H-gallosilicate (Mfi), H-galloaluminosilicate (Mfi) and Gah-Zsm-5 zeolites. Appl. Catal. Gen. 162: 239–248, https://doi.org/10.1016/s0926-860x(97)00102-6.Search in Google Scholar

Choudhary, V.R., Kinage, A.K., and Choudhary, T.V. (1997b). Effective low-temperature aromatization of ethane over H-galloaluminosilicate (Mfi) zeolites in the presence of higher alkanes or olefins. Angew. Chem. Int. Ed. 36: 1305–1308, https://doi.org/10.1002/anie.199713051.Search in Google Scholar

Choudhary, V.R., Mantri, K., and Sivadinarayana, C. (2000). Influence of zeolite factors affecting zeolitic acidity on the propane aromatization activity and selectivity of Ga/H–Zsm-5. Microporous Mesoporous Mater. 37: 1–8, https://doi.org/10.1016/s1387-1811(99)00185-7.Search in Google Scholar

Choudhary, V.R., Devadas, P., Banerjee, S., and Kinage, A.K. (2001). Aromatization of dilute ethylene over Ga-modified Zsm-5 type zeolite catalysts. Microporous Mesoporous Mater. 47: 253–267, https://doi.org/10.1016/s1387-1811(01)00385-7.Search in Google Scholar

Choudhary, V.R., Panjala, D., and Banerjee, S. (2002). Aromatization of propene and n-butene over H-galloaluminosilicate (Zsm-5 type) zeolite. Appl. Catal. Gen. 231: 243–251, https://doi.org/10.1016/s0926-860x(02)00061-3.Search in Google Scholar

Dauda, I.B., Yusuf, M., Gbadamasi, S., Bello, M., Atta, A.Y., Aderemi, B.O., and Jibril, B.Y. (2020). Highly selective hierarchical Zno/Zsm-5 catalysts for propane aromatization. ACS Omega 5: 2725–2733, https://doi.org/10.1021/acsomega.9b03343.Search in Google Scholar PubMed PubMed Central

Davis, B.H., Ertl, G., Knözinger, H., SchÜth, F., and Weitkamp, J. (2008). Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 16–32.Search in Google Scholar

Erofeev, V.I., Medvedev, A., Khomyakov, I., and Erofeeva, E. (2013). Conversion of gas-condensate straight-run gasolines to high-octane gasolines over zeolite catalysts modified with metal nanopowders. Russ. J. Appl. Chem. 86: 979–985, https://doi.org/10.1134/s1070427213070069.Search in Google Scholar

Fan, Y., Lei, D., Shi, G., and Bao, X. (2006). Synthesis of Zsm-5/Sapo-11 composite and its application in Fcc gasoline hydro-upgrading catalyst. Catal. Today 114: 388–396, https://doi.org/10.1016/j.cattod.2006.02.050.Search in Google Scholar

Flanigen, E.M., Broach, R.W., and Wilson, S.T. (2010). Introduction. In: Kulprathipanja, S. (Ed.). Zeolites in industrial separation and catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Great Britain, pp. 1–26.10.1002/9783527629565.ch1Search in Google Scholar

Fling, J. and Wang, I. (1991). Dehydrocyclization of C6-C8 n-paraffins to aromatics over Tio2-Zro2 catalysts. J. Catal. 130: 577–587, https://doi.org/10.1016/0021-9517(91)90137-s.Search in Google Scholar

Frey, K., Lubango, L.M., Scurrell, M.S., and Guczi, L. (2011). Light alkane aromatization over modified Zn-Zsm-5 catalysts: characterization of the catalysts by hydrogen/deuterium isotope exchange. React. Kinet. Mech. Catal. 104: 303–309, https://doi.org/10.1007/s11144-011-0382-4.Search in Google Scholar

Fricke, R., Kosslick, H., Lischke, G., and Richter, M. (2000). Incorporation of gallium into zeolites: syntheses, properties and catalytic application. Chem. Rev. 100: 2303–2406, https://doi.org/10.1021/cr9411637.Search in Google Scholar PubMed

Fu, Z., Yin, D., Yang, Y., and Guo, X. (1995). Characterization of modified Zsm-5 catalysts for propane aromatization prepared by a solid state reaction. Appl. Catal. Gen. 124: 59–71, https://doi.org/10.1016/0926-860x(94)00243-6.Search in Google Scholar

Gnep, N., Doyemet, J., Seco, A., Ribeiro, F.R., and Guisnet, M. (1988). Conversion of light alkanes to aromatic hydrocarbons: Ii. Role of gallium species in propane transformation on Gazsm-5 catalysts. Appl. Catal. 43: 155–166, https://doi.org/10.1016/s0166-9834(00)80908-2.Search in Google Scholar

Godwin, O.G., Atta, A.Y., Bello, M., Yakubu, J.B., and Olorunfemi, A.B. (2020). Highly selective and stable Zn–Fe/Zsm-5 catalyst for aromatization of propane. Appl. Petrochem. Res. 10: 55–65.10.1007/s13203-020-00245-9Search in Google Scholar

Groen, J.C., Moulijn, J.A., and Pérez-Ramírez, J. (2007a). Alkaline posttreatment of Mfi zeolites. From accelerated screening to scale-up. Ind. Eng. Chem. Res. 46: 4193–4201, https://doi.org/10.1021/ie061146v.Search in Google Scholar

Groen, J.C., Zhu, W., Brouwer, S., Huynink, S.J., Kapteijn, F., Moulijn, J.A., and Pérez-Ramírez, J. (2007b). Direct demonstration of enhanced diffusion in mesoporous Zsm-5 zeolite obtained via controlled desilication. J. Am. Chem. Soc. 129: 355–360, https://doi.org/10.1021/ja065737o.Search in Google Scholar PubMed

Hagen, J. (2015). Industrial catalysis: a practical approach. John Wiley & Sons, Weinheim, Germany, pp. 267–319.10.1002/9783527684625Search in Google Scholar

He, T.-C., Cheng, X.-H., Li, L., and Meng, G.-Y. (2009). Study of methanol-to-gasoline process for production of gasoline from coal. J. Coal Sci. Eng. 15: 104–107, https://doi.org/10.1007/s12404-009-0121-x.Search in Google Scholar

Holmen, A. (2009). Direct conversion of methane to fuels and chemicals. Catal. Today 142: 2–8, https://doi.org/10.1016/j.cattod.2009.01.004.Search in Google Scholar

Iglesia, E., Baumgartner, J.E., and Price, G.L. (1992). Kinetic coupling and hydrogen surface fugacities in heterogeneous catalysis. I. Alkane reactions on Te/Nax, H-Zsm-5, and Ga/H-Zsm-5. J. Catal. 134: 549–571, https://doi.org/10.1016/0021-9517(92)90342-f.Search in Google Scholar

Inui, T., Makino, Y., Okazumi, F., Nagano, S., and Miyamoto, A. (1987). Selective aromatization of light paraffins on platinum-ion-exchanged gallium-silicate bifunctional catalysts. Ind. Eng. Chem. Res. 26: 647–652, https://doi.org/10.1021/ie00064a002.Search in Google Scholar

Ismagilov, Z.R., Matus, E.V., and Tsikoza, L.T. (2008). Direct conversion of methane on Mo/Zsm-5 catalysts to produce benzene and hydrogen: achievements and perspectives. Energy Environ. Sci. 1: 526–541, https://doi.org/10.1039/b810981h.Search in Google Scholar

Jiang, H., Wang, L., Cui, W., and Xu, Y. (1999). Study on the induction period of methane aromatization over Mo/Hzsm-5: partial reduction of Mo species and formation of carbonaceous deposit. Catal. Lett. 57: 95–102, https://doi.org/10.1023/a:1019087313679.10.1023/A:1019087313679Search in Google Scholar

Kanitkar, S.R. and Spivey, J.J. (2019). Light alkane aromatization: efficient use of natural gas. In: Elbashir, N.O., EL-Halwagi, M.M., Economou, I.G., and Hall, K.R. (Eds.). Natural gas processing from midstream to downstream, 1st ed. John Wiley and Sons Ltd, West Sussex, U.K., pp. 379–402.10.1002/9781119269618.ch14Search in Google Scholar

Kecskeméti, A., Barthos, R., and Solymosi, F. (2008). Aromatization of dimethyl and diethyl ethers on Mo2 C-promoted Zsm-5 catalysts. J. Catal. 258: 111–120, https://doi.org/10.1016/j.jcat.2008.06.003.Search in Google Scholar

Keipert, O.P., Wolf, D., Schulz, P., and Baerns, M. (1995). Kinetics of ethane aromatization over a gallium-doped H-Zsm-5 catalyst. Appl. Catal. Gen. 131: 347–365, https://doi.org/10.1016/0926-860x(95)00148-4.Search in Google Scholar

Kim, Y.H., Lee, K.H., Nam, C.M., and Lee, J.S. (2012). Formation of hierarchical pore structures in Zn/Zsm-5 to improve the catalyst stability in the aromatization of branched olefins. ChemCatChem 4: 1143–1153, https://doi.org/10.1002/cctc.201200007.Search in Google Scholar

Kitagawa, H., Sendoda, Y., and Ono, Y. (1986). Transformation of propane into aromatic hydrocarbons over Zsm-5 zeolites. J. Catal. 101: 12–18, https://doi.org/10.1016/0021-9517(86)90223-x.Search in Google Scholar

Kuhlmann, A., Roessner, F., Schwieger, W., Gravenhorst, O., and Selvam, T. (2004). New bifunctional catalyst based on Pt containing layered silicate Na-ilerite. Catal. Today 97: 303–306, https://doi.org/10.1016/j.cattod.2004.07.014.Search in Google Scholar

Kwak, B. and Sachtler, W. (1994). Effect of Ga/proton balance in Ga/Hzsm-5 catalysts on C3 conversion to aromatics. J. Catal. 145: 456–463, https://doi.org/10.1006/jcat.1994.1056.Search in Google Scholar

Lacheen, H.S. and Iglesia, E. (2005). Isothermal activation of Mo2O52+–Zsm-5 precursors during methane reactions: effects of reaction products on structural evolution and catalytic properties. Phys. Chem. Chem. Phys. 7: 538–547, https://doi.org/10.1039/b415166f.Search in Google Scholar PubMed

Lee, B.J., Hur, Y.G., Kim, D.H., Lee, S.H., and Lee, K.-Y. (2019). Non-oxidative aromatization and ethylene formation over Ga/Hzsm-5 catalysts using a mixed feed of methane and ethane. Fuel 253: 449–459, https://doi.org/10.1016/j.fuel.2019.05.014.Search in Google Scholar

Li, B., Li, S., Li, N., Chen, H., Zhang, W., Bao, X., and Lin, B. (2006). Structure and acidity of Mo/Zsm-5 synthesized by solid state reaction for methane dehydrogenation and aromatization. Microporous Mesoporous Mater. 88: 244–253, https://doi.org/10.1016/j.micromeso.2005.09.016.Search in Google Scholar

Liu, R.-L., Zhu, H.-Q., Wu, Z.-W., Qin, Z.-F., Fan, W.-B., and Wang, J.-G. (2015). Aromatization of propane over Ga-modified Zsm-5 catalysts. J. Fuel Chem. Technol. 43: 961–969, https://doi.org/10.1016/s1872-5813(15)30027-x.Search in Google Scholar

Liu, S., Wang, L., Ohnishi, R., and Lchikawa, M. (2000). Bifunctional catalysis of Mo/Hzsm-5 in the dehydroaromatization of methane with CO/CO2 to benzene and naphthalene. Kinet. Catal. 41: 132–144, https://doi.org/10.1007/bf02756152.Search in Google Scholar

Masiero, S.S., Marcilio, N.R., and Perez-Lopez, O.W. (2009). Aromatization of methane over Mo-Fe/Zsm-5 catalysts. Catal. Lett. 131: 194–202, https://doi.org/10.1007/s10562-009-0032-x.Search in Google Scholar

Matar, S. and Hatch, L. (2001). Chemistry of petrochemical processes, 2nd ed. Elsevier Houston, Texas, pp. 213–236.10.1016/B978-088415315-3/50009-2Search in Google Scholar

McCusker, L. B. and Baerlocher, C. (2007). Zeolite structures. In: Ejka, J.C., Bekkum, H.V., Corma, A., and Schüth, F. (Eds.). Introduction to zeolite science and practice, 3rd Revised ed. Elsevier B.V., Amsterdam, The Netherlands, pp. 13–36.10.1016/S0167-2991(07)80790-7Search in Google Scholar

Melian-Cabrera, I., Espinosa, S., Groen, J., Kapteijn, F., and Moulijn, J. (2006). Utilizing full-exchange capacity of zeolites by alkaline leaching: preparation of Fe-Zsm-5 and application in N2O decomposition. J. Catal. 238: 250–259, https://doi.org/10.1016/j.jcat.2005.11.034.Search in Google Scholar

Meriaudeau, P. and Naccache, C. (1990). The role of Ga2O3 and proton acidity on the dehydrogenating activity of Ga2O3-Hzsm-5 catalysts: evidence of a bifunctional mechanism. J. Mol. Catal. 59: L31–L36, https://doi.org/10.1016/0304-5102(90)85100-v.Search in Google Scholar

Miyamoto, M., Mabuchi, K., Kamada, J., Hirota, Y., Oumi, Y., Nishiyama, N., and Uemiya, S. (2015). Para-selectivity of silicalite-1 coated Mfi type galloaluminosilicate in aromatization of light alkanes. J. Porous Mater. 22: 769–778, https://doi.org/10.1007/s10934-015-9950-8.Search in Google Scholar

Montes, A. and Giannetto, G. (2000). A new way to obtain acid or bifunctional catalysts: V. Considerations on bifunctionality of the propane aromatization reaction over [Ga, Al]-Zsm-5 catalysts. Appl. Catal. A: Gen. 197: 31–39, https://doi.org/10.1016/s0926-860x(99)00530-x.Search in Google Scholar

Negelein, D.L., Lin, R., and White, R.L. (1998). Effects of catalyst acidity and structure on polymer cracking mechanisms. J. Appl. Polym. Sci. 67: 341–349.10.1002/(SICI)1097-4628(19980110)67:2<341::AID-APP15>3.0.CO;2-0Search in Google Scholar

Nguyen, L.H., Vazhnova, T., Kolaczkowski, S.T., and Lukyanov, D.B. (2006). Combined experimental and kinetic modelling studies of the pathways of propane and n-butane aromatization over H-Zsm-5 catalyst. Chem. Eng. Sci. 61: 5881–5894, https://doi.org/10.1016/j.ces.2006.05.017.Search in Google Scholar

Ogura, M., Shinomiya, S.-Y., Tateno, J., Nara, Y., Kikuchi, E., and Matsukata, M. (2000). Formation of uniform mesopores in Zsm-5 zeolite through treatment in alkaline solution. Chem. Lett.: 882–883, https://doi.org/10.1246/cl.2000.882.Search in Google Scholar

Ohnishi, R., Liu, S., Dong, Q., Wang, L., and Ichikawa, M. (1999). Catalytic dehydrocondensation of methane with CO and CO2 toward benzene and naphthalene on Mo/Hzsm-5 and Fe/Co-modified Mo/Hzsm-5. J. Catal. 182: 92–103, https://doi.org/10.1006/jcat.1998.2319.Search in Google Scholar

Ono, Y., Nakatani, H., Kitagawa, H., and Suzuki, E. (1989). The role of metal cations in the transformation of lower alkanes into aromatic hydrocarbons. Stud. Surf. Sci. Catal. 44: 279–290, https://doi.org/10.1016/s0167-2991(09)61303-3.Search in Google Scholar

Payra, P. and Dutta, P.K. (2003). Zeolites: a primer: In Auerbac, S., Carrad, K.A. and Dutta, P.K. (Eds.). Handbook of zeolite science and technology. CRC press, New York, USA, pp. 13–36.10.1201/9780203911167.pt1Search in Google Scholar

Perego, C., Bortolo, R., and Zennaro, R. (2009). Gas to liquids technologies for natural gas reserves valorization: the Eni experience. Catal. Today 142: 9–16, https://doi.org/10.1016/j.cattod.2009.01.006.Search in Google Scholar

Pidko, E.A., Hensen, E.J., and Van Santen, R.A. (2007). Dehydrogenation of light alkanes over isolated gallyl ions in Ga/Zsm-5 zeolites. J. Phys. Chem. C 111: 13068–13075, https://doi.org/10.1021/jp072110z.Search in Google Scholar

Rodrigues, V.D.O., Vasconcellos, F.J.Jr, and Júnior, A.D.C.F. (2016). Mechanistic studies through H–D exchange reactions: propane aromatization in Hzsm-5 and Ga/Hzsm-5 catalysts. J. Catal. 344: 252–262, https://doi.org/10.1016/j.jcat.2016.09.009.Search in Google Scholar

Roessner, F., Hagen, A., Mroczek, U., Karge, H., and Steinberg, K.-H. (1993). Conversion of ethane into aromatic compounds on Zsm-5 zeolites modified by zinc. Stud. Surf. Sci. Catal. 75: 1707–1710, https://doi.org/10.1016/s0167-2991(08)64515-2.Search in Google Scholar

Rostrup-Nielsen, J.R. (2002). Syngas in perspective. Catal. Today 71: 243–247, https://doi.org/10.1016/s0920-5861(01)00454-0.Search in Google Scholar

Rownaghi, A.A., Rezaei, F., and Hedlund, J. (2011). Yield of gasoline-range hydrocarbons as a function of uniform Zsm-5 crystal size. Catal. Commun. 14: 37–41, https://doi.org/10.1016/j.catcom.2011.07.015.Search in Google Scholar

Scire, S., Maggiore, R., Galvagno, S., Crisafulli, C., and Toscano, G. (1993). Propane aromatization over Pt-T1/Zsm-5. Appl. Catal. A: Gen. 103: 123–134, https://doi.org/10.1016/0926-860x(93)85178-r.Search in Google Scholar

Seddon, D. (1990). Paraffin oligomerisation to aromatics. Catal. Today 6: 351–372, https://doi.org/10.1016/0920-5861(90)85009-d.Search in Google Scholar

Shirazi, L., Jamshidi, E., and Ghasemi, M. (2008). The effect of Si/Al ratio of Zsm-5 zeolite on its morphology, acidity and crystal size. Cryst. Res. Technol.: J. Exp. Ind. Crystallogr. 43: 1300–1306, https://doi.org/10.1002/crat.200800149.Search in Google Scholar

Shu, J., Adnot, A., and Grandjean, B.P. (1999). Bifunctional behavior of Mo/Hzsm-5 catalysts in methane aromatization. Ind. Eng. Chem. Res. 38: 3860–3867, https://doi.org/10.1021/ie990145i.Search in Google Scholar

Shu, Y., Xu, Y., Wong, S.-T., Wang, L., and Guo, X. (1997). Promotional effect of Ru on the dehydrogenation and aromatization of methane in the absence of oxygen over Mo/Hzsm-5 catalysts. J. Catal. 170: 11–19, https://doi.org/10.1006/jcat.1997.1726.Search in Google Scholar

Shu, Y., Ohnishi, R., and Ichikawa, M. (2002). Stable and selective dehydrocondensation of methane towards benzene on modified Mo/Hmcm-22 catalyst by the dealumination treatment. Catal. Lett. 81: 9–17, https://doi.org/10.1023/a:1016016307893.10.1023/A:1016016307893Search in Google Scholar

Smiešková, A., Hudec, P., Kumar, N., Salmi, T., Murzin, D.Y., and Jorík, V. (2010). Aromatization of methane on Mo modified zeolites: influence of the surface and structural properties of the carriers. Appl. Catal. Gen. 377: 83–91.10.1016/j.apcata.2010.01.021Search in Google Scholar

Solymosi, F. and Szechenyi, A. (2004). Aromatization of isobutane and isobutene over Mo2C/Zsm-5 catalyst. Appl. Catal. Gen. 278: 111–121, https://doi.org/10.1016/j.apcata.2004.09.036.Search in Google Scholar

Solymosi, F., Erdöhelyi, A., and Szöke, A. (1995). Dehydrogenation of methane on supported molybdenum oxides. Formation of benzene from methane. Catal. Lett. 32: 43–53, https://doi.org/10.1007/bf00806100.Search in Google Scholar

Solymosi, F., Cserenyi, J., Szöke, A., Bansagi, T., and Oszko, A. (1997). Aromatization of methane over supported and unsupported Mo-based catalysts. J. Catal. 165: 150–161, https://doi.org/10.1006/jcat.1997.1478.Search in Google Scholar

Song, Y., Zhu, X., Xie, S., Wang, Q., and Xu, L. (2004). The effect of acidity on olefin aromatization over potassium modified Zsm-5 catalysts. Catal. Lett. 97: 31–36, https://doi.org/10.1023/b:catl.0000034281.58853.76.10.1023/B:CATL.0000034281.58853.76Search in Google Scholar

Song, Y., Zhu, X., Song, Y., Wang, Q., and Xu, L. (2006). An effective method to enhance the stability on-stream of butene aromatization: post-treatment of Zsm-5 by alkali solution of sodium hydroxide. Appl. Catal. Gen. 302: 69–77, https://doi.org/10.1016/j.apcata.2005.12.023.Search in Google Scholar

Sousa-Aguiar, E.F., Appel, L.G., and Mota, C. (2005). Natural gas chemical transformations: the path to refining in the future. Catal. Today 101: 3–7, https://doi.org/10.1016/j.cattod.2004.12.003.Search in Google Scholar

Su, L., Liu, L., Zhuang, J., Wang, H., Li, Y., Shen, W., Xu, Y., and Bao, X. (2003). Creating mesopores in Zsm-5 zeolite by alkali treatment: a new way to enhance the catalytic performance of methane dehydroaromatization on Mo/Hzsm-5 catalysts. Catal. Lett. 91: 155–167, https://doi.org/10.1023/b:catl.0000007149.48132.5a.10.1023/B:CATL.0000007149.48132.5aSearch in Google Scholar

Su, X., Wang, G., Bai, X., Wu, W., Xiao, L., Fang, Y., and Zhang, J. (2016). Synthesis of nanosized Hzsm-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization. Chem. Eng. J. 293: 365–375, https://doi.org/10.1016/j.cej.2016.02.088.Search in Google Scholar

Tagliabue, M., Carati, A., Flego, C., Millini, R., Perego, C., Pollesel, P., Stocchi, B., and Terzoni, G. (2004). Study on the stability of a Ga/Nd/Zsm-5 aromatisation catalyst. Appl. Catal. Gen. 265: 23–33, https://doi.org/10.1016/j.apcata.2003.12.056.Search in Google Scholar

Tan, P. (2016). Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane. J. Catal. 338: 21–29, https://doi.org/10.1016/j.jcat.2016.01.027.Search in Google Scholar

Tan, P., Au, C., and Lai, S. (2007). Effects of acidification and basification of impregnating solution on the performance of Mo/Hzsm-5 in methane aromatization. Appl. Catal. Gen. 324: 36–41, https://doi.org/10.1016/j.apcata.2007.03.002.Search in Google Scholar

Tempelman, C.H., Zhu, X., and Hensen, E.J. (2015). Activation of Mo/Hzsm-5 for methane aromatization. Chin. J. Catal. 36: 829–837, https://doi.org/10.1016/s1872-2067(14)60301-6.Search in Google Scholar

Treesukol, P., Srisuk, K., Limtrakul, J., and Truong, T.N. (2005). Nature of the metal-support interaction in bifunctional catalytic Pt/H-Zsm-5 zeolite. J. Phys. Chem. B 109: 11940–11945, https://doi.org/10.1021/jp0511348.Search in Google Scholar PubMed

Tshabalala, T.E. and Scurrell, M.S. (2015). Aromatization of n-hexane over Ga, Mo and Zn modified H-Zsm-5 zeolite catalysts. Catal. Commun. 72: 49–52, https://doi.org/10.1016/j.catcom.2015.06.022.Search in Google Scholar

Tshabalala, T.E., Coville, N.J., Anderson, J.A., and Scurrell, M.S. (2015). Dehydroaromatization of methane over Sn–Pt modified Mo/H-Zsm-5 zeolite catalysts: effect of preparation method. Appl. Catal. Gen. 503: 218–226, https://doi.org/10.1016/j.apcata.2015.06.035.Search in Google Scholar

Van Grieken, R., Sotelo, J., Menéndez, J., and Melero, J. (2000). Anomalous crystallization mechanism in the synthesis of nanocrystalline Zsm-5. Microporous Mesoporous Mater. 39: 135–147, https://doi.org/10.1016/s1387-1811(00)00190-6.Search in Google Scholar

Venkatathri, N. (2008). A novel route to synthesis Aluminum silicate hollow spheres having Zsm-5 structure in absence of template. Mater. Lett. 62: 462–465, https://doi.org/10.1016/j.matlet.2007.05.064.Search in Google Scholar

Viswanadham, N., Muralidhar, G., and Rao, T.P. (2004). Cracking and aromatization properties of some metal modified Zsm-5 catalysts for light alkane conversions. J. Mol. Catal. A: Chem. 223: 269–274, https://doi.org/10.1016/j.molcata.2003.11.045.Search in Google Scholar

Viswanadham, N., Saxena, S.K., and Garg, M. (2013). Octane number enhancement studies of naphtha over noble metal loaded zeolite catalysts. J. Ind. Eng. Chem. 19: 950–955, https://doi.org/10.1016/j.jiec.2012.11.014.Search in Google Scholar

Vosmerikova, L., Volynkina, A., Zaikovskii, V., and Vosmerikov, A. (2017). Physicochemical and catalytic properties of Ga and In pentasils in the reaction of propane aromatization. Russ. J. Phys. Chem. A 91: 856–861, https://doi.org/10.1134/s0036024417050302.Search in Google Scholar

Wallenstein, D. and Harding, R. (2001). The dependence of Zsm-5 additive performance on the hydrogen-transfer activity of the Reusy base catalyst in fluid catalytic cracking. Appl. Catal. Gen. 214: 11–29, https://doi.org/10.1016/s0926-860x(01)00482-3.Search in Google Scholar

Wan, H. and Chitta, P. (2016). Catalytic conversion of propane to Btx over Ga, Zn, Mo, and Re impregnated Zsm-5 catalysts. J. Anal. Appl. Pyrol. 121: 369–375, https://doi.org/10.1016/j.jaap.2016.08.018.Search in Google Scholar

Wang, D., Lunsford, J.H., and Rosynek, M.P. (1997a). Characterization of a Mo/Zsm-5 catalyst for the conversion of methane to benzene. J. Catal. 169: 347–358, https://doi.org/10.1006/jcat.1997.1712.Search in Google Scholar

Wang, G.-L., Wei, W., Wang, Z., Bai, X.-F., Wang, W.-J., Xin, Q., and Kikhtyanin, O. (2015a). Preparation of Zn-modified nano-Zsm-5 zeolite and its catalytic performance in aromatization of 1-hexene. Trans. Nonferrous Metals Soc. China 25: 1580–1586, https://doi.org/10.1016/s1003-6326(15)63761-x.Search in Google Scholar

Wang, L., Tao, L., Xie, M., Xu, G., Huang, J., and Xu, Y. (1993). Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catal. Lett. 21: 35–41, https://doi.org/10.1007/bf00767368.Search in Google Scholar

Wang, L., Xu, Y., Wong, S.-T., Cui, W., and Guo, X. (1997b). Activity and stability enhancement of Mohzsm-5-based catalysts for methane non-oxidative transformation to aromatics and C2 hydrocarbons: effect of additives and pretreatment conditions. Appl. Catal. A: Gen. 152: 173–182, https://doi.org/10.1016/s0926-860x(96)00366-3.Search in Google Scholar

Wang, P., Shen, B., and Gao, J. (2007). Synthesis of Zsm-5 zeolite from expanded perlite and its catalytic performance in Fcc gasoline aromatization. Catal. Today 125: 155–162, https://doi.org/10.1016/j.cattod.2007.03.010.Search in Google Scholar

Wang, Y., Yokoi, T., Namba, S., Kondo, J.N., and Tatsumi, T. (2015b). Catalytic cracking of n-hexane for producing propylene on Mcm-22 zeolites. Appl. Catal. A: Gen. 504: 192–202, https://doi.org/10.1016/j.apcata.2014.12.018.Search in Google Scholar

Weckhuysen, B.M., Wang, D., Rosynek, M.P., and Lunsford, J.H. (1998). Conversion of methane to benzene over transition metal ion Zsm-5 zeolites: Ii. Catalyst characterization by X-ray photoelectron spectroscopy. J. Catal. 175: 347–351, https://doi.org/10.1006/jcat.1998.2011.Search in Google Scholar

Wu, W. and Weitz, E. (2014). Modification of acid sites in Zsm-5 by ion-exchange: an in-situ Ftir study. Appl. Surf. Sci. 316: 405–415, https://doi.org/10.1016/j.apsusc.2014.07.194.Search in Google Scholar

Xu, Y. and Lin, L. (1999). Recent advances in methane dehydro-aromatization over transition metal ion-modified zeolite catalysts under non-oxidative conditions. Appl. Catal. A: Gen. 188: 53–67, https://doi.org/10.1016/s0926-860x(99)00210-0.Search in Google Scholar

Xu, Y., Bao, X., and Lin, L. (2003). Direct conversion of methane under nonoxidative conditions. J. Catal. 216: 386–395, https://doi.org/10.1016/s0021-9517(02)00124-0.Search in Google Scholar

Xue, N., Olindo, R., and Lercher, J.A. (2010). Impact of forming and modification with phosphoric acid on the acid sites of Hzsm-5. J. Phys. Chem. C 114: 15763–15770, https://doi.org/10.1021/jp106621d.Search in Google Scholar

Yang, K., Yin, Y., Lai, S., Zhu, L., Zhang, J., Lai, W., Lian, Y., and Fang, W. (2018). Aromatization of n-butane and i-butane over Ptsnk/Zsm-5 catalysts: influence of Sio2/Al2O3 Ratio. Catal. Lett. 148: 3570–3582, https://doi.org/10.1007/s10562-018-2548-4.Search in Google Scholar

Yin, C. and Liu, C. (2004). Hydrodesulfurization of cracked naphtha over zeolite-supported Ni-Mo-S catalysts. Appl. Catal. A: Gen. 273: 177–184, https://doi.org/10.1016/j.apcata.2004.06.029.Search in Google Scholar

Zhang, Q., Yu, J., and Corma, A. (2020). Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities. Adv. Mater. 32: 2002927.10.1002/adma.202002927Search in Google Scholar PubMed

Zhao, G., Teng, J., Zhang, Y., Xie, Z., Yue, Y., Chen, Q., and Tang, Y. (2006). Synthesis of ZSM-48 zeolites and their catalytic performance in C4-olefin cracking reactions. Appl. Catal. A: Gen. 299: 167–174, https://doi.org/10.1016/s1003-9953(06)60007-8.Search in Google Scholar

Zheng, L., Xuan, D., Guo, J., Lou, H., and Zheng, X. (2006). Non-oxidative aromatization of CH4-C3H8 over La-promoted Zn/Hzsm-5 catalysts. J. Nat. Gas Chem. 15: 52–57, https://doi.org/10.1016/s1003-9953(06)60007-8.Search in Google Scholar

Zhou, W., Liu, J., Wang, J., Lin, L., Zhang, X., He, N., Liu, C., and Guo, H. (2019). Enhancing propane aromatization performance of Zn/H-Zsm-5 zeolite catalyst with Pt promotion: effect of the third metal additive-Sn. Catal. Lett. 149: 2064–2077, https://doi.org/10.1007/s10562-019-02832-5.Search in Google Scholar

Zhu, X., Wang, Y., Li, X., Li, H., Zeng, P., An, J., Chen, F., Xie, S., Lan, H., and Wang, D. (2013). Co-feeding with Dme: an effective way to enhance gasoline production via low temperature aromatization of Lpg. J. Energy Chem. 22: 755–760, https://doi.org/10.1016/s2095-4956(13)60100-x.Search in Google Scholar

Received: 2020-12-08
Accepted: 2021-11-04
Published Online: 2022-01-10
Published in Print: 2023-04-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2020-0082/html
Scroll to top button