Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 30, 2021

Synthesis and Characterization of an Amphoteric Asphalt Emulsifier

Synthese und Charakterisierung eines amphoteren Asphaltemulgators
  • Laishun Shi

    Laishun Shi is a professor at the School of Chemistry and Chemical Engineering, Shandong University, Jinan, China. His research interests are focused on synthesis and application of asphalt emulsifier. Tel.: 13605316520

    EMAIL logo
    , Tong Ji

    Tong Ji is a postgraduate student at the School of Chemistry and Chemical Engineering, Shandong University, Jinan, China. His research interests are focused on synthesis and application of asphalt emulsifier.

    , Jingqiu Ma

    Jingqiu Ma is a postgraduate student at the School of Chemistry and Chemical Engineering, Shandong University, Jinan, China. His research interests are focused on synthesis and application of asphalt emulsifier.

    , Xiaomeng Yu

    Xiaomeng Yu is a postgraduate student at the School of Chemistry and Chemical Engineering, Shandong University, Jinan, China. Her research interests are focused on synthesis and application of asphalt emulsifier.

    and Yawen Chen

    Yawen Chen is a postgraduate student at the School of Chemistry and Chemical Engineering, Shandong University, Jinan, China. Her research interests are focused on synthesis and application of asphalt emulsifier.

Abstract

A novel amphoteric asphalt emulsifier of octadecylbis(propanamide)-(3’-sodium phosphate-2’-hydroxypropyl)ammonium chloride was synthesised from the raw materials octadecylamine, acrylamide, epichlorohydrin and sodium dihydrogen phosphate. The tertiary amine octadecyl-bis(propanamide) was synthesised from octadecylamine and acrylamide (step 1). Sodium 3-chloro-2-hydroxypropyl phosphate (intermediate) was obtained from epichlorohydrin and sodium dihydrogen phosphate (step 2). The asphalt emulsifier was obtained from octadecyl-bis(propanamide)-tertiary amine and the intermediate by quaternisation reaction (step 3). The yield of the final product reached 94.90%. The structure was identified by FTIR, 1H-NMR and elemental analysis. The critical micelle concentration of the product is 1.46 × 10–5 mol L–1. The surface tension at CMC is 37.78 mN ν–1. The saturated adsorption amount of asphalt emulsifier is 2.72 × 10–3 mmol ν–2. The occupied area per asphalt emulsifier molecule at CMC is 0.611 nm2 mol–1. The surfactant is a fast-setting asphalt emulsifier.

Zusammenfassung

Ein neuartiger amphoterer Asphaltemulgator aus Octadecyl-bis(propanamid)-(3’-Natriumphosphat-2’-hydroxypropyl)ammoniumchlorid wurde aus den Rohstoffen Octadecylamin, Acrylamid, Epichlorhydrin und Natriumdihydrogenphosphat synthetisiert. Das tertiäre Amin Octadecyl-bis(propanamid) wurde aus Octadecylamin und Acrylamid synthetisiert (Schritt 1). Natrium-3-chloro-2-hydroxypropylphosphat (Zwischenprodukt) wurde aus Epichlorhydrin und Natriumdihydrogenphosphat gewonnen (Schritt 2). Der Asphaltemulgator wurde aus tertiärem Octadecyl-bis(propanamid) Amin und dem Zwischenprodukt durch Quaternisierungsreaktion erhalten (Schritt 3). Die Ausbeute des Endprodukts erreicht 94,90%. Die Struktur wurde durch FTIR, 1H-NMR und Elementaranalyse identifiziert. Die kritische Mizellenkonzentration des Produkts (CMC) beträgt 1.46 × 10–5 mol L–1. Die Oberflächenspannung bei CMC beträgt 37,78 mN ν–1. Die gesättigte Adsorptionsmenge des Asphaltemulgators beträgt 2,72 × 10–3 mmol ν–2. Die belegte Fläche pro Asphaltemulgatormolekül an der CMC beträgt 0,611 nm2 mol–1. Das Tensid ist ein schnell abbindender Asphaltemulgator.


Prof. Dr. Laishun Shi School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China Tel.: +86 531 88392980 Fax: +86 531 88392980

About the authors

Prof. Dr. Laishun Shi

Laishun Shi is a professor at the School of Chemistry and Chemical Engineering, Shandong University, Jinan, China. His research interests are focused on synthesis and application of asphalt emulsifier. Tel.: 13605316520

Tong Ji

Tong Ji is a postgraduate student at the School of Chemistry and Chemical Engineering, Shandong University, Jinan, China. His research interests are focused on synthesis and application of asphalt emulsifier.

Jingqiu Ma

Jingqiu Ma is a postgraduate student at the School of Chemistry and Chemical Engineering, Shandong University, Jinan, China. His research interests are focused on synthesis and application of asphalt emulsifier.

Xiaomeng Yu

Xiaomeng Yu is a postgraduate student at the School of Chemistry and Chemical Engineering, Shandong University, Jinan, China. Her research interests are focused on synthesis and application of asphalt emulsifier.

Yawen Chen

Yawen Chen is a postgraduate student at the School of Chemistry and Chemical Engineering, Shandong University, Jinan, China. Her research interests are focused on synthesis and application of asphalt emulsifier.

References

1 Mercado, R. A., Salager, J. L., Sadtler, V., Marchal, P. and Choplin, L.: Breaking of a cationic amine oil-in-water emulsion by pH increasing: Rheological monitoring to modelize asphalt emulsion rupture [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 458 (2014), 63–68. 10.1016/j.colsurfa.2014.03.109Search in Google Scholar

2 Yang, F., Li, G., Qi, J., Zhang, S. M. and Liu, R.: Synthesis and surface activity properties of alkylphenol polyoxyethylene nonionic trimeric surfactants [J]. Applied Surface Science, 257(1) (2010), 312–318. DOI 10.1016/j.apsusc.2010.06.094. DOI:10.1016/j.apsusc.2010.06.09410.1016/j.apsusc.2010.06.094Search in Google Scholar

3 Isobe, K. and Tamaki, R.: Nonionic emulsifier for asphalt [P]. U.S. Patent 6,114,418. 2000–09–05.Search in Google Scholar

4 Xie, Y., Liu, J., Liu, F. and Xu, H.: Synthesis and properties of a novel Gemini surfactant with bis-piperidinium [J]. Tenside Surf. Det., 54(5) (2017) 437–442. DOI 10.3139/113.110521. DOI:10.3139/113.11052110.3139/113.110521Search in Google Scholar

5 Liu, J., Xie, Y. and Xu, H.: Synthesis and properties of a cationic Gemini asphalt emulsifier [J]. J. Surfact. Deterg., 21 (2018), 455–460. DOI 10.1002/jsde.12048. DOI:10.1002/jsde.1204810.1002/jsde.12048Search in Google Scholar

6 Cai, Y., Chen, X. and Xu, H.: Synthesis and properties of amide Gemini surfactants [J]. Tenside Surf. Det., 57(5) (2020), 414–419. DOI 10.3139/113.110688. DOI:10.3139/113.11068810.3139/113.110688Search in Google Scholar

7 Wang, Y., Gao, Y., Zhang, Q. and Meng, Q.: A novel cationic emulsifier used for preparing slow-cracking and rapid-setting asphalt: Synthesis, surface activity, and emulsification ability [J]. J. Disper. Sci. Technol., 39(4) (2018), 478–483. DOI 10.1080/01932691.2015.1120676. DOI:10.1080/01932691.2015.112067610.1080/01932691.2015.1120676Search in Google Scholar

8 Xu, M., Xie, Y., Jin, Y. and Cheng, X.: Study on synthesis of enzymatic hydrolysis lignin modified amine as an asphalt emulsifier [J]. International Conference on Remote Sensing, Environment and Transportation Engineering. IEEE, 2011:5394–5396.Search in Google Scholar

9 Shi, L., Sun, M., Li, N. and Zhang, B.: A novel betaine type asphalt emulsifier synthesized and investigated by online FTIR spectrophotometric method [J]. Chem. Ind. Chem. Eng. Q., 21(1) (2015) 113–121. DOI 10.2298/CICEQ140223014S. DOI:10.2298/CICEQ140223014S10.2298/CICEQ140223014SSearch in Google Scholar

10 Li, N., Shi, L., Gong, X., Xu, Q., Liu, X. and Wang, X.: Synthesis of a novel cationic asphalt emulsifier and its investigation by online FTIR spectrophotometry [J]. Res. Chem. Intermed., 41(4) (2015) 1935–1950. DOI 10.1007/s11164–013–1321-y.10.1007/s11164-013-1321-ySearch in Google Scholar

11 Huai, C., Shi, L. and Li, N.: Synthesis of a novel betaine-type asphalt emulsifier and its investigation by online FTIR spectrophotometry [J]. Res. Chem. Intermed., 39(2) (2013) 597–614. DOI 10.1007/s11164–012–0582–1. DOI:10.1007/s11164-012-0582-110.1007/s11164–012–0582–1Search in Google Scholar

12 Shi, L., Chen, Y., Gong, X. and Yu, X.: Synthesis and characterization of quaternary ammonium salt tertiary amide type sodium hydroxypropyl phosphate asphalt emulsifier [J]. Res. Chem. Intermed., 45(10) (2019) 5183–5201. DOI 10.1007/s11164–019–03907-z. DOI:10.1007/s11164-019-03907-z10.1007/s11164–019–03907-zSearch in Google Scholar

13 Geng, X. F., Hu, X. Q., Xia, J. J. and Jia, X. C.: Synthesis and surface activities of a novel di-hydroxyl-sulfate-betaine-type zwitterionic gemini surfactants [J]. Applied Surface Science, 271(8) (2013) 284–290. DOI 10.1016/j.apsusc.2013.01.185. DOI:10.1016/j.apsusc.2013.01.18510.1016/j.apsusc.2013.01.185Search in Google Scholar

14 Seredyuk, V., Alami, E., Nydén, M., Holmberg, K., Peresypkin, A. V., Menger, F. M.: Micellization and adsorption properties of novel zwitterionic surfactants [J]. Langmuir, 17(17) (2001) 5160–5165. DOI 10.1021/la010182q. DOI:10.1021/la010182q10.1021/la010182qSearch in Google Scholar

15 Eastoe, J., Nave, S., Downer, A., Paul, A., Rankin, A., Tribe, K. and Penfold, J.: Adsorption of ionic surfactants at the air–solution interface [J]. Langmuir, 16(10) (2000) 4511–4518. DOI 10.1021/la991564n. DOI:10.1021/la991564n10.1021/la991564nSearch in Google Scholar

16 Kabir-ud-Din, Sheikh, M. S. and Dar A. A.: Interaction of a cationic gemini surfactant with conventional surfactants in the mixed micelle and monolayer formation in aqueous medium [J]. Journal of Colloid & Interface Science, 333(2) (2009) 605. DOI 10.1016/j.jcis.2009.01.041. PMid:19246049; DOI:10.1016/j.jcis.2009.01.04110.1016/j.jcis.2009.01.041Search in Google Scholar

17 Galán, J. J., Gonzáles-Pérez, A., Cactillo, J. L. D. and Rodríguez, J. R.: Thermal parameters associated to micellization of dodecylpyridinium bromide and chloride in aqueous solution [J]. Journal of Thermal Analysis & Calorimetry, 70(1) (2002) 229–234. DOI 10.1023/a:1020678222376. DOI:10.1023/A:102067822237610.1023/a:1020678222376Search in Google Scholar

18 Zana, R.: Critical micellization concentration of surfactants in aqueous solution and free energy of micellization [J]. Langmuir, 12(5) (1996) 1208–1211. DOI 10.1021/la950691q. DOI:10.1021/la950691q10.1021/la950691qSearch in Google Scholar

19 Zielin´ski, R., Ikeda, S., Nomura, H. and Kato, S.: Effect of temperature on micelle formation in aqueous solutions of alkyltrimethylammonium bromides [J]. J Colloid Interface Sci, 129(1) (1989) 175–184. DOI 10.1016/0021–9797(89)90428–1. DOI:10.1016/0021-9797(89)90428-110.1016/0021-9797(89)90428-1Search in Google Scholar

20 Di Michele, A., Brinchi, L., Di Profio, P., Germani, R., Savelli, G. and Onori, G.: Effect of head group size, temperature and counterion specificity on cationic micelles [J]. J Colloid Interface Sci, 358(1) (2011) 160–166. DOI 10.1016/j.jcis.2010.12.028. PMid:21440896; DOI:10.1016/j.jcis.2010.12.02810.1016/j.jcis.2010.12.028Search in Google Scholar PubMed

Received: 2021-02-06
Accepted: 2021-04-14
Published Online: 2021-11-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/tsd-2021-2352/html
Scroll to top button