Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 18, 2021

Advances in seawater membrane distillation (SWMD) towards stand-alone zero liquid discharge (ZLD) desalination

  • Helen Julian , Novesa Nurgirisia , Putu Doddy Sutrisna and I. Gede Wenten ORCID logo EMAIL logo

Abstract

Seawater membrane distillation (SWMD) is a promising separation technology due to its ability to operate as a stand-alone desalination unit operation. This paper reviews approaches to improve laboratory-to-pilot-scale MD performance, which comprise operational strategies, module design, and specifically tailored membranes. A detailed comparison of SWMD and sea water reverse osmosis is presented to further analyze the critical shortcomings of SWMD. The unique features of SWMD, namely the ability to operate with extremely high salt rejection and at extreme feed concentration, highlight the SWMD potential to be operated under zero liquid discharge (ZLD) conditions, which results in the production of high-purity water and simultaneous salt recovery, as well as the elimination of the brine disposal cost. However, technical challenges, such as thermal energy requirements, inefficient heat transfer and integration, low water recovery factors, and lack of studies on real-case valuable-salt recovery, are impeding the commercialization of ZLD SWMD. This review highlights the possibility of applying selected strategies to push forward ZLD SWMD commercialization. Suggestions are projected to include intermittent removal of valuable salts, in-depth study on the robustness of novel membranes, module and configuration, utilization of a low-cost heat exchanger, and capital cost reduction in a renewable-energy-integrated SWMD plant.


Corresponding author: I. Gede Wenten, Chemical Engineering Department, Institut Teknologi Bandung (ITB), Jalan Ganesha 10, Bandung 40132, Indonesia; and Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia, E-mail:

Funding source: Institut Teknologi Bandung

Award Identifier / Grant number: Riset ITB 2020

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors gratefully acknowledge the financial support from the Research Program provided by the Institut Teknologi Bandung (Riset ITB).

  3. Conflict of interest statement: The authors declare that there is no conflict of interest regarding this article.

References

Abdel-Karim, A., Luque-Alled, J.M., Leaper, S., Alberto, M., Fan, X., Vijayaraghavan, A., Gad-Allah, T.A., El-Kalliny, A.S., Szekely, G., Ahmed, S.I.A., et al.. (2019). PVDF membranes containing reduced graphene oxide: effect of degree of reduction on membrane distillation performance. Desalination 452: 196–207, https://doi.org/10.1016/j.desal.2018.11.014.Search in Google Scholar

Abdelrasoul, A., Doan, H., and Lohi, A. (2017). Sustainable water technology and water-energy nexus. In: Biomimetic and bioinspired membranes for new frontiers in sustainable water treatment technology. IntechOpen, London, UK, pp. 1–12.10.5772/65691Search in Google Scholar

Abu-zeid, M.A.E., Zhang, L., Jin, W., Feng, T., Wu, Y., and Chen, H. (2016). Improving the performance of the air gap membrane distillation process by using a supplementary vacuum pump. Desalination 384: 31–42, https://doi.org/10.1016/j.desal.2016.01.020.Search in Google Scholar

Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard, J.P., and Criquet, J. (2019). Natural organic matter-cations complexation and its impact on water treatment: a critical review. Water Res. 160: 130–147, https://doi.org/10.1016/j.watres.2019.05.064.Search in Google Scholar PubMed

Ahmad, A., Irfan, M., Lee, C., Park, C., and Kim, J. (2019). Hybrid organic-inorganic functionalized polyethersulfone membrane for hyper-saline feed with humic acid in direct contact membrane distillation. Separ. Purif. Technol. 210: 20–28, https://doi.org/10.1016/j.seppur.2018.07.087.Search in Google Scholar

Albeirutty, M., Turkmen, N., Al-sharif, S., Bouguecha, S., Malik, A., and Faruki, O. (2018). An experimental study for the characterization of fl uid dynamics and heat transport within the spacer- fi lled channels of membrane distillation modules. Desalination 430: 136–146, https://doi.org/10.1016/j.desal.2017.12.043.Search in Google Scholar

Ali, A., Quist-Jensen, C.A., Macedonio, F., and Drioli, E. (2015). Application of membrane crystallization for minerals’ recovery from produced water. Membranes 5: 772–792. https://doi.org/10.3390/membranes5040772.Search in Google Scholar PubMed PubMed Central

Ali, A., Tufa, R.A., Macedonio, F., Curcio, E., and Drioli, E. (2018). Membrane technology in renewable-energy-driven desalination. Renew. Sustain. Energy Rev. 81: 1–21, https://doi.org/10.1016/j.rser.2017.07.047.Search in Google Scholar

Alkhudhiri, A., Darwish, N., and Hilal, N. (2012). Membrane distillation: a comprehensive review. Desalination 287: 2–18, https://doi.org/10.1016/j.desal.2011.08.027.Search in Google Scholar

Alklaibi, A.M. and Lior, N. (2005). Membrane-distillation desalination: status and potential. Desalination 171: 111–131, https://doi.org/10.1016/j.desal.2004.03.024.Search in Google Scholar

Alklaibi, A.M. and Lior, N. (2006). Heat and mass transfer resistance analysis of membrane distillation. J. Membr. Sci. 282: 362–369. https://doi.org/10.1016/j.memsci.2006.05.040.Search in Google Scholar

Alnouri, S.Y., Linke, P., and El-halwagi, M.M. (2018). Accounting for central and distributed zero liquid discharge options in interplant water network design. J. Clean. Prod. 171: 644–661, https://doi.org/10.1016/j.jclepro.2017.09.236.Search in Google Scholar

Andrés-Mañas, J.A., Ruiz-Aguirre, A., Acién, F.G., and Zaragoza, G. (2018). Assessment of a pilot system for seawater desalination based on vacuum multi-effect membrane distillation with enhanced heat recovery. Desalination 443: 110–121, https://doi.org/10.1016/j.desal.2018.05.025.Search in Google Scholar

Andrés-Mañas, J.A., Ruiz-Aguirre, A., Acién, F.G., and Zaragoza, G. (2020). Performance increase of membrane distillation pilot scale modules operating in vacuum-enhanced air-gap configuration. Desalination 475: 114202, https://doi.org/10.1016/j.desal.2019.114202.Search in Google Scholar

Angel, M., Bonnélye, V., and Cremer, G. (2006). Fujairah reverse osmosis plant: 2 years of operation. Desalination 3: 91–99, https://doi.org/10.1016/j.desal.2006.03.526.Search in Google Scholar

Antony, A., How, J., Gray, S., Childress, A.E., Le-clech, P., and Leslie, G. (2011). Scale formation and control in high pressure membrane water treatment systems: a review. J. Membr. Sci. 383: 1–16, https://doi.org/10.1016/j.memsci.2011.08.054.Search in Google Scholar

Ashoor, B.B., Mansour, S., Giwa, A., Dufour, V., and Hasan, S.W. (2016). Principles and applications of direct contact membrane distillation (DCMD): a comprehensive review. Desalination 398: 222–246, https://doi.org/10.1016/j.desal.2016.07.043.Search in Google Scholar

Asim, M., Uday Kumar, N.T., and Martin, A.R. (2016). Feasibility analysis of solar combi-system for simultaneous production of pure drinking water via membrane distillation and domestic hot water for single-family villa: pilot plant setup in Dubai. Desal. Water Treat. 57: 21674–21684. https://doi.org/10.1080/19443994.2015.1125806.Search in Google Scholar

Atkinson, S. (2020). Memsift explores further markets for its technologies by focusing on North America. New York: Elsevier.10.1016/S0958-2118(20)30171-3Search in Google Scholar

Banat, F. and Jwaied, N. (2008). Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units. Desalination 220: 566–573, https://doi.org/10.1016/j.desal.2007.01.057.Search in Google Scholar

Banat, F., Jwaied, N., Rommel, M., and Koschikowski, J. (2007a). Desalination by a “compact SMADES” autonomous solar-powered membrane distillation unit. Desalination 217: 29–37, https://doi.org/10.1016/j.desal.2006.11.028.Search in Google Scholar

Banat, F., Jwaied, N., Rommel, M., and Koschikowski, J. (2007b). Performance evaluation of the “ large SMADES ” autonomous desalination solar-driven membrane distillation plant in Aqaba , Jordan. Desalination 217: 17–28 https://doi.org/10.1016/j.desal.2006.11.027.Search in Google Scholar

Bartholomew, T.V., Dudchenko, A.V., Siefert, N.S., and Mauter, S. (2020). Cost optimization of high recovery single stage gap membrane distillation. J. Membr. Sci. 611: 118370, https://doi.org/10.1016/j.memsci.2020.118370.Search in Google Scholar

Bennett, A. (2009). High and ultra-high purity water. Filtrat. Separ. 46: 24–27, https://doi.org/10.1016/S0015-1882(09)70034-5.Search in Google Scholar

Bernardes, P.C., de Andrade, N.J., da Silva, L.H.M., de Carvalho, A.F., Fernandes, P.É., Araújo, E.A., Lelis, C.A., Mol, P.C.G., and de Sá, J.P.N. (2014). Modification of polysulfone membrane used in the water filtration process to reduce biofouling. J. Nanosci. Nanotechnol. 14: 6355–6367, https://doi.org/10.1166/jnn.2014.8863.Search in Google Scholar PubMed

Bindels, M., Carvalho, J., Bayona, C., Brand, N., and Nelemans, B. (2020). Techno-economic assessment of seawater reverse osmosis (SWRO) brine treatment with air gap membrane distillation ( AGMD ). Desalination 489: 114532, https://doi.org/10.1016/j.desal.2020.114532.Search in Google Scholar

Boo, C., Lee, J., and Elimelech, M. (2016). Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation. Environ. Sci. Technol. 50: 12275–12282, https://doi.org/10.1021/acs.est.6b03882.Search in Google Scholar PubMed

Bouguecha, S., Hamrouni, B., and Dhahbi, M. (2005). Small scale desalination pilots powered by renewable energy sources: case studies. Desalination 183: 151–165, https://doi.org/10.1016/j.desal.2005.03.032.Search in Google Scholar

Burgoyne, A. and Vahdati, M.M. (2005). Direct contact membrane distillation. Separ. Sci. Technol. 2005: 98–110.10.1081/SS-100100224Search in Google Scholar

Camacho, L.M., Dumée, L., Zhang, J., Li, J., Duke, M., Gomez, J., and Gray, S. (2013). Advances in membrane distillation for water desalination and purification applications. Water, https://doi.org/10.3390/w50x000x.Search in Google Scholar

Cath, T.Y., Adams, V.D., and Childress, A.E. (2004). Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement. J. Membr. Sci. 228: 5–16, https://doi.org/10.1016/j.memsci.2003.09.006.Search in Google Scholar

Chang, J., Zuo, J., Zhang, L., Brien, G.S.O., and Chung, T. (2017). Using green solvent , triethyl phosphate (TEP), to fabricate highly porous PVDF hollow fiber membranes for membrane distillation. J. Membr. Sci. 539: 295–304 https://doi.org/10.1016/j.memsci.2017.06.002.Search in Google Scholar

Chen, X., Gao, X., Fu, K., Qiu, M., Xiong, F., Ding, D., Cui, Z., Wang, Z., Fan, Y., and Drioli, E. (2018). Tubular hydrophobic ceramic membrane with asymmetric structure for water desalination via vacuum membrane distillation process. Desalination 443: 212–220, https://doi.org/10.1016/j.desal.2018.05.027.Search in Google Scholar

Chen, T. and Ho, C. (2010). Immediate assisted solar direct contact membrane distillation in saline water desalination. J. Membr. Sci. 358: 122–130, https://doi.org/10.1016/j.memsci.2010.04.037.Search in Google Scholar

Chen, Y., Li, Y., and Chang, H. (2012). Optimal design and control of solar driven air gap membrane distillation desalination systems. Appl. Energy 100: 193–204, https://doi.org/10.1016/j.apenergy.2012.03.003.Search in Google Scholar

Chen, Y., Lu, K.J., and Chung, T. (2020a). An omniphobic slippery membrane with simultaneous anti-wetting and anti-scaling properties for robust membrane distillation. J. Membr. Sci. 595: 117572, https://doi.org/10.1016/j.memsci.2019.117572.Search in Google Scholar

Chen, Y., Lu, Y., Japip, S., and Chung, T. (2020b). Can composite Janus membranes with an ultrathin dense hydrophilic layer resist wetting in membrane distillation? Environ. Sci. Technol. 54: 12713–12722, doi:https://doi.org/10.1021/acs.est.0c04242.Search in Google Scholar PubMed

Chen, Y., Tian, M., Li, X., Wang, Y., An, A.K., Fang, J., and He, T. (2017). Anti-wetting behavior of negatively charged superhydrophobic PVDF membranes in direct contact membrane distillation of emulsified wastewaters. J. Membr. Sci. 535: 230–238, https://doi.org/10.1016/j.memsci.2017.04.040.Search in Google Scholar

Cheng, L., Zhao, Y., Li, P., Li, W., and Wang, F. (2018). Comparative study of air gap and permeate gap membrane distillation using internal heat recovery hollow fiber membrane module. Desalination 426: 42–49, https://doi.org/10.1016/j.desal.2017.10.039.Search in Google Scholar

Chen, G., Yang, X., Lu, Y., Wang, R., and Fane, A.G. (2014). Heat transfer intensification and scaling mitigation in bubbling-enhanced membrane distillation for brine concentration. J. Membr. Sci. 470: 60–69, https://doi.org/10.1016/j.memsci.2014.07.017.Search in Google Scholar

Choi, S., Kim, B., Nayar, K.G., Yoon, J., Al-hammadi, S., V., J.H.L., Han, J., and Al-anzi, B. (2019a). Techno-economic analysis of ion concentration polarization desalination for high salinity desalination applications. Water Res. 155: 162–174, https://doi.org/10.1016/j.watres.2019.02.023.Search in Google Scholar PubMed

Choi, Y., Naidu, G., Jeong, S., Lee, S., and Vigneswaran, S. (2018). Fractional-submerged membrane distillation crystallizer (F-SMDC) for treatment of high salinity solution. Desalination 440: 59–67, https://doi.org/10.1016/j.desal.2018.01.027.Search in Google Scholar

Choi, Y., Ryu, S., Naidu, G., and Lee, S. (2019b). Integrated submerged membrane distillation-adsorption system for rubidium recovery. Separ. Purif. Technol. 218: 146–155, https://doi.org/10.1016/j.seppur.2019.02.050.Search in Google Scholar

Choo, K. and Stensel, H.D. (1998). Sequencing batch membrane reactor treatment: nitrogen removal and membrane fouling evaluation. Water Environ. Res. 72(4).10.2175/106143000X138049Search in Google Scholar

Christ, A., Regenauer-lieb, K., and Tong, H. (2014). Thermodynamic optimisation of multi effect distillation driven by sensible heat sources. Desalination 336: 160–167, https://doi.org/10.1016/j.desal.2013.12.006.Search in Google Scholar

Chung, H.W., Swaminathan, J., Warsinger, D.M., and J.H.L., V. (2016). Multistage vacuum membrane distillation ( MSVMD ) systems for high salinity applications. J. Membr. Sci. 497: 128–141, https://doi.org/10.1016/j.memsci.2015.09.009.Search in Google Scholar

Chung, S., Seo, C.D., Lee, H., Choi, J., and Chung, J. (2014). Design strategy for networking membrane module and heat exchanger for direct contact membrane distillation process in seawater desalination. Desalination 349: 126–135, https://doi.org/10.1016/j.desal.2014.07.001.Search in Google Scholar

Chunrui, W., Yue, J., Huayan, C., Xuan, W., Qijun, G., and Xiaolong, L. (2011). Study on air-bubbling strengthened membrane distillation process. Desal. Water Treat. 2011: 37–41, https://doi.org/10.5004/dwt.2011.2785.Search in Google Scholar

Cipollina, A., Miceli, A. Di, Koschikowski, J., Micale, G., and Rizzuti, L. (2009). CFD simulation of a membrane distillation module channel. Desal. Water Treat. 2009: 177–183. https://doi.org/10.5004/dwt.2009.664.Search in Google Scholar

Criscuoli, A. (2016). Improvement of the membrane distillation performance through the integration of different configurations. Chem. Eng. Res. Des. 111: 316–322, https://doi.org/10.1016/j.cherd.2016.05.020.Search in Google Scholar

Curcio, E., Ji, X., Di, G., Obaidani, A., Fontananova, E., and Drioli, E. (2010). Membrane distillation operated at high seawater concentration factors: role of the membrane on CaCO3 scaling in presence of humic acid. J. Membr. Sci. 346: 263–269, https://doi.org/10.1016/j.memsci.2009.09.044.Search in Google Scholar

Deng, L., Ngo, H.H., Guo, W., and Zhang, H. (2019). Pre-coagulation coupled with sponge-membrane filtration for organic matter removal and membrane fouling control during drinking water treatment. Water Res. 157: 155–166, https://doi.org/10.1016/j.watres.2019.03.052.Search in Google Scholar

Dirach, J. Le, Nisan, S., and Poletiko, C. (2005). Extraction of strategic materials from the concentrated brine rejected by integrated nuclear desalination systems. Desalination 182: 449–460, https://doi.org/10.1016/j.desal.2005.02.037.Search in Google Scholar

Dizge, N., Shaulsky, E., and Karanikola, V. (2019). Electrospun cellulose nanofibers for superhydrophobic and oleophobic membrane. J. Membr. Sci. 2019: 117271.10.1016/j.memsci.2019.117271Search in Google Scholar

Dotremont, C., Kregersman, B., Sih, R., Lai, K.C., Koh, K., and Seah, H. (2010). Seawater desalination with memstill technology – a sustainable solution for the industry. Water Pract. Technol. 5: 1–7.https://doi.org/10.2166/wpt.2010.026.Search in Google Scholar

Drioli, E., Laganà, F., Criscuoli, A., and Barbieri, G. (1999). Integrated membrane operations in desalination processes. Desalination 122: 141–145. https://doi.org/10.1016/s0011-9164(99)00034-x.Search in Google Scholar

Drioli, E., Curcio, E., Criscuoli, A., Di Profio, and Di, G. (2004). Integrated system for recovery of CaCO3, NaCl and MgSO4·7H2O from nanofiltration retentate. J. Membr. Sci. 239: 27–38, https://doi.org/10.1016/j.memsci.2003.09.028.Search in Google Scholar

Drioli, E., Ali, A., and Macedonio, F. (2015). Membrane distillation: recent developments and perspectives. Desalination 356: 56–84. https://doi.org/10.1016/j.desal.2014.10.028.Search in Google Scholar

Duong, H.C., Cooper, P., Nelemans, B., Cath, T.Y., and Nghiem, L.D. (2016). Evaluating energy consumption of air gap membrane distillation for seawater desalination at pilot scale level. Separ. Purif. Technol. 166: 55–62, https://doi.org/10.1016/j.seppur.2016.04.014.Search in Google Scholar

El-Bourawi, M.S., Ding, Z., Ma, R., and Khayet, M. (2006). A framework for better understanding membrane distillation separation process. J. Membr. Sci. 285: 4–29, https://doi.org/10.1016/j.memsci.2006.08.002.Search in Google Scholar

Eltawil, M.A., Zhengming, Z., and Yuan, L. (2009). A review of renewable energy technologies integrated with desalination systems. Renew. Sustain. Energy Rev. 13: 2245–2262, https://doi.org/10.1016/j.rser.2009.06.011.Search in Google Scholar

Fan, H. and Peng, Y. (2012). Application of PVDF membranes in desalination and comparison of the VMD and DCMD processes. Chem. Eng. Sci. 79: 94–102, https://doi.org/10.1016/j.ces.2012.05.052.Search in Google Scholar

Flemming, H.C. (1997). Reverse osmosis membrane biofouling. Exp. Therm. Fluid Sci. 14: 382–391, https://doi.org/10.1016/S0894-1777(96)00140-9.Search in Google Scholar

Francis, L., Ghaffour, N., Alsaadi, A.A., and Amy, G.L. (2013). Material gap membrane distillation : a new design for water vapor flux enhancement. J. Membr. Sci. 448: 240–247, https://doi.org/10.1016/j.memsci.2013.08.013.Search in Google Scholar

Fritzmann, C., Löwenberg, J., Wintgens, T., and Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination 216: 1–76, https://doi.org/10.1016/j.desal.2006.12.009.Search in Google Scholar

Gil, J.D., Roca, L., Ruiz-Aguirre, A., Zaragoza, G., and Berenguel, M. (2018a). Optimal operation of a solar membrane distillation pilot plant via nonlinear model predictive control. Comput. Chem. Eng. 109: 151–165, https://doi.org/10.1016/j.compchemeng.2017.11.012.Search in Google Scholar

Gil, J.D., Roca, L., Zaragoza, G., and Berenguel, M. (2018b). A feedback control system with reference governor for a solar membrane distillation pilot facility. Renew. Energy 120: 536–549, https://doi.org/10.1016/j.renene.2017.12.107.Search in Google Scholar

Glueckstern, P., Priel, M., and Wilf, M. (2002). Field evaluation of capillary UF technology as a pretreatment for large seawater RO systems. Desalination 147: 55–62. https://doi.org/10.1016/s0011-9164(02)00576-3.Search in Google Scholar

González, D., Amigo, J., and Suárez, F. (2017). Membrane distillation: perspectives for sustainable and improved desalination. Renew. Sustain. Energy Rev. 80: 238–259, https://doi.org/10.1016/j.rser.2017.05.078.Search in Google Scholar

Gopi, G., Arthanareeswaran, G., and Ismail, A.F. (2019). Perspective of renewable desalination by using membrane distillation. Chem. Eng. Res. Des. 144: 520–537, https://doi.org/10.1016/j.cherd.2019.02.036.Search in Google Scholar

Gordon, J.M. and Hui, T.C. (2016). Thermodynamic perspective for the specific energy consumption of seawater desalination. Desalination 386: 13–18, https://doi.org/10.1016/j.desal.2016.02.030.Search in Google Scholar

Gryta, M. (2005). Long-term performance of membrane distillation process. J. Membr. Sci. 265: 153–159, https://doi.org/10.1016/j.memsci.2005.04.049.Search in Google Scholar

Gryta, M. (2008a). Alkaline scaling in the membrane distillation process. Desalination 228: 128–134, https://doi.org/10.1016/j.desal.2007.10.004.Search in Google Scholar

Gryta, M. (2008b). Fouling in direct contact membrane distillation process. J. Membr. Sci. 325: 383–394, https://doi.org/10.1016/j.memsci.2008.08.001.Search in Google Scholar

Gryta, M. (2009). Calcium sulphate scaling in membrane distillation process. Chem. Pap. 63: 146–151, https://doi.org/10.2478/s11696-008-0095-y.Search in Google Scholar

Guan, G., Yang, X., Wang, R., and Fane, A.G. (2015). Evaluation of heat utilization in membrane distillation desalination system integrated with heat recovery. Desalination 366: 80–93, https://doi.org/10.1016/j.desal.2015.01.013.Search in Google Scholar

Guillén-Burrieza, E., Alarcón-padilla, D., Palenzuela, P., and Zaragoza, G. (2015). Techno-economic assessment of a pilot-scale plant for solar desalination based on existing plate and frame MD technology. Desalination 374: 70–80, https://doi.org/10.1016/j.desal.2015.07.014.Search in Google Scholar

Guillén-Burrieza, E., Blanco, J., Zaragoza, G., Alarcón, D.C., Palenzuela, P., Ibarra, M., and Gernjak, W. (2011). Experimental analysis of an air gap membrane distillation solar desalination pilot system. J. Membr. Sci. 379: 386–396, https://doi.org/10.1016/j.memsci.2011.06.009.Search in Google Scholar

Hagedorn, A., Fieg, G., Winter, D., Koschikowski, J., Grabowski, A., and Mann, T. (2017). Membrane and spacer evaluation with respect to future module design in membrane distillation. Desalination 413: 154–167, https://doi.org/10.1016/j.desal.2017.03.016.Search in Google Scholar

He, F., Sirkar, K.K., and Gilron, J. (2009). Studies on scaling of membranes in desalination by direct contact membrane distillation : CaCO3 and mixed CaCO3/CaSO4 systems. Chem. Eng. Sci. 64: 1844–1859, https://doi.org/10.1016/j.ces.2008.12.036.Search in Google Scholar

Hettiarachchi, T.R. (2015). Applications study of membrane distillation for the dairy industry, Master of Science thesis. Melbourne: Institute for Sustainability and Innovation, Victoria University.Search in Google Scholar

Hickenbottom, K.L. and Cath, T.Y. (2014). Sustainable operation of membrane distillation for enhancement of mineral recovery from hypersaline solutions. J. Membr. Sci. 454: 426–435, https://doi.org/10.1016/j.memsci.2013.12.043.Search in Google Scholar

Huang, Y.X., Wang, Z., Hou, D., and Lin, S. (2017a). Coaxially electrospun super-amphiphobic silica-based membrane for anti-surfactant-wetting membrane distillation. J. Membr. Sci. 531: 122–128, https://doi.org/10.1016/j.memsci.2017.02.044.Search in Google Scholar

Huang, Y.X., Wang, Z., Jian Jin, A., and Lin, S. (2017b). A novel Janus membrane for membrane distillation with simultaneous fouling and wetting resistance. Environ. Sci. Technol. 51: 13304–13310, doi:https://doi.org/10.1021/acs.est.7b02848.Search in Google Scholar

Hubadillah, S.K., Othman, M.H.D., Matsuura, T., Rahman, M.A., Jaafar, J., Ismail, A.F., and Amin, S.Z.M. (2018). Green silica-based ceramic hollow fiber membrane for seawater desalination via direct contact membrane distillation. Separ. Purif. Technol. 205: 22–31, https://doi.org/10.1016/j.seppur.2018.04.089.Search in Google Scholar

Hubadillah, S.K., Othman, M.H.D., Ismail, A.F., Rahman, M.A., and Jaafar, J. (2019). A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation. Separ. Purif. Technol. 214: 31–39, https://doi.org/10.1016/j.seppur.2018.04.025.Search in Google Scholar

Im, B.G., Lee, J.G., Kim, Y.D., and Kim, W.S. (2018). Theoretical modeling and simulation of AGMD and LGMD desalination processes using a composite membrane. J. Membr. Sci. 565: 14–24, https://doi.org/10.1016/j.memsci.2018.08.006.Search in Google Scholar

Ismail, F., Khulbe, K.C., and Matsuura, T. (2018). Reverse osmosis. New York: Elsevier.Search in Google Scholar

Izquierdo-Gil, M.A., and Jonsson, G. (2003). Factors affecting flux and ethanol separation performance in vacuum membrane distillation (VMD). J. Membr. Sci. 214: 113–130. https://doi.org/10.1016/s0376-7388(02)00540-9.Search in Google Scholar

Jaafar, S. and Sarbatly, R. (2015). Geothermal water desalination by using nanofiber membrane. International Conference on Chemical, Environmental and Biological Sciences (ICCEBS’2012) Penang, Malaysia.Search in Google Scholar

Jabed, M., Bappy, P., Bahar, R., and Ariff, T.F. (2016). Effect of air gap in the performance of AGMD system. J. Eng. Appl. Sci. 11: 4087–4093.Search in Google Scholar

Jacob, C. (2007). Seawater desalination: boron removal by ion exchange technology. Desalination 205: 47–52, https://doi.org/10.1016/j.desal.2006.06.007.Search in Google Scholar

Jansen, A.E., Assink, J.W., Hanemaaijer, J.H., Medevoort, J. Van, and Sonsbeek, E. Van. (2013). Development and pilot testing of full-scale membrane distillation modules for deployment of waste heat. Desalination 323: 55–65, https://doi.org/10.1016/j.desal.2012.11.030.Search in Google Scholar

Ji, X., Curcio, E., Al, S., Di, G., Fontananova, E., and Drioli, E. (2010). Membrane distillation-crystallization of seawater reverse osmosis brines. Separ. Purif. Technol. 71: 76–82, https://doi.org/10.1016/j.seppur.2009.11.004.Search in Google Scholar

Jiang, L., Chen, L., and Zhu, L. (2020). Fouling process of membrane distillation for seawater desalination : an especial focus on the thermal-effect and concentrating-effect during biofouling. Desalination 485: 114457, https://doi.org/10.1016/j.desal.2020.114457.Search in Google Scholar

Jiang, X., Tuo, L., Lu, D., Hou, B., Chen, W., and He, G. (2017). Progress in membrane distillation crystallization: process models, crystallization control and innovative applications. Front. Chem. Sci. Eng. 11: 647–662, https://doi.org/10.1007/s11705-017-1649-8.Search in Google Scholar

Joo, H.J. and Kwak, H.Y. (2016). Freshwater production characteristics of vacuum membrane distillation module for seawater desalination using a solar thermal system by seawater feed conditions. Desal. Water Treat. 57: 24645–24653. https://doi.org/10.1080/19443994.2016.1152639.Search in Google Scholar

Julian, H. (2018). Process optimization and study of fouling in submerged vacuum membrane distillation and crystallization, PhD thesis. Sydney: School of Chemical Engineering, UNSW.Search in Google Scholar

Julian, H., Meng, S., Li, H., Ye, Y., and Chen, V. (2016). Effect of operation parameters on the mass transfer and fouling in submerged vacuum membrane distillation crystallization (VMDC) for inland brine water treatment. J. Membr. Sci. 520: 679–692, https://doi.org/10.1016/j.memsci.2016.08.032.Search in Google Scholar

Julian, H., Ye, Y., Li, H., and Chen, V. (2018). Scaling mitigation in submerged vacuum membrane distillation and crystallization (VMDC) with periodic air-backwash. J. Membr. Sci. 547: 19–33, https://doi.org/10.1016/j.memsci.2017.10.035.Search in Google Scholar

Karakulski, K., Gryta, M., and Morawski, A. (2002). Membrane processes used for potable water quality improvement. Desalination 145: 1–5. https://doi.org/10.1016/s0011-9164(02)00429-0.Search in Google Scholar

Karakulski, K., Gryta, M., and Sasim, M. (2006). Production of process water using integrated membrane processes. In: 33rd International Conference of the Slovak Society of Chemical Engineering, 22—26 May 2006. Tatranské Matliare.10.2478/s11696-006-0076-ySearch in Google Scholar

Karbasi, E., Karimi-Sabet, J., Mohammadi-Rovshandeh, J., Ali Moosavian, M., Ahadi, H., and Amini, Y. (2017). Experimental and numerical study of air-gap membrane distillation (AGMD): novel AGMD module for Oxygen-18 stable isotope enrichment. Chem. Eng. J. 322: 667–678, https://doi.org/10.1016/j.cej.2017.03.031.Search in Google Scholar

Kayvani, A., Rhad, T., Khraisheh, M., Atieh, M.A., Khraisheh, M., and Hilal, N. (2016). Reducing flux decline and fouling of direct contact membrane distillation by utilizing thermal brine from MSF desalination plant. Desalination 379: 172–181, https://doi.org/10.1016/j.desal.2015.11.004.Search in Google Scholar

Khadijah, S., Ha, M., Othman, D., and Matsuura, T. (2018). Green silica-based ceramic hollow fiber membrane for seawater desalination via direct contact membrane distillation. Separ. Purif. Technol. 205: 22–31, https://doi.org/10.1016/j.seppur.2018.04.089.Search in Google Scholar

Khalifa, A.E. and Alawad, S.M. (2018). Air gap and water gap multistage membrane distillation for water desalination. Desalination 437: 175–183, https://doi.org/10.1016/j.desal.2018.03.012.Search in Google Scholar

Khalifa, A.E., Alawad, S.M., and Antar, M.A. (2017). Parallel and series multistage air gap membrane distillation. Desalination 417: 69–76, https://doi.org/10.1016/j.desal.2017.05.003.Search in Google Scholar

Khan, A.A., Siyal, M.I., Lee, C.K., Park, C., and Kim, J.O. (2019). Hybrid organic-inorganic functionalized polyethersulfone membrane for hyper-saline feed with humic acid in direct contact membrane distillation. Separ. Purif. Technol. 210: 20–28, https://doi.org/10.1016/j.seppur.2018.07.087.Search in Google Scholar

Khayet, M. (2011). Membranes and theoretical modeling of membrane distillation: a review. Adv. Colloid Interface Sci. 164: 56–88, https://doi.org/10.1016/j.cis.2010.09.005.Search in Google Scholar

Khayet, M., Mengual, J.I., and Matsuura, T. (2005). Porous hydrophobic/hydrophilic composite membranes Application in desalination using direct contact membrane distillation. J. Membr. Sci. 252: 101–113, https://doi.org/10.1016/j.memsci.2004.11.022.Search in Google Scholar

Khayet, M., García-Payo, C., and Matsuura, T. (2019). Superhydrophobic nanofibers electrospun by surface segregating fluorinated amphiphilic additive for membrane distillation. J. Membr. Sci. 588: 117215, https://doi.org/10.1016/j.memsci.2019.117215.Search in Google Scholar

Kiefer, F., Spinnler, M., and Sattelmayer, T. (2018). Multi-effect vacuum membrane distillation systems: model derivation and calibration. Desalination 438: 97–111, https://doi.org/10.1016/j.desal.2018.03.024.Search in Google Scholar

Kim, J. and Hong, S. (2018). A novel single-pass reverse osmosis con fi guration for high-purity water production and low energy consumption in seawater desalination. Desalination 429: 142–154, https://doi.org/10.1016/j.desal.2017.12.026.Search in Google Scholar

Kola, A., Ye, Y., Ho, A., Le-clech, P., and Chen, V. (2012). Application of low frequency transverse vibration on fouling limitation in submerged hollow fibre membranes. J. Membr. Sci.: 54–65, 409–410, https://doi.org/10.1016/j.memsci.2012.03.017.Search in Google Scholar

Koschikowski, J., Wieghaus, M., and Rommel, M. (2003). Solar thermal-driven desalination plants based on membrane distillation. Desalination 156: 295–304. https://doi.org/10.1016/s0011-9164(03)00360-6.Search in Google Scholar

Koschikowski, J.Ã., Wieghaus, M., Rommel, M., Subiela, V., Rosa, J., Rodrı, B., and Pen, B. (2009). Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas. Desalination 248: 125–131, https://doi.org/10.1016/j.desal.2008.05.047.Search in Google Scholar

Kuipers, N., Leerdam, R. Van, Medevoort, J. Van, Tongeren, W. Van, Verelst, L., Vermeersch, M., and Corbisier, D. (2014). Techno-economic assessment of boiler feed water production by membrane distillation with reuse of thermal waste energy from cooling water. Desal. Treat 2014: 37–41.10.1080/19443994.2014.946722Search in Google Scholar

Kujawa, J. (2019). From nanoscale modification to separation - the role of substrate and modifiers in the transport properties of ceramic membranes in membrane distillation. J. Membr. Sci. 580: 296–306, https://doi.org/10.1016/j.memsci.2019.03.029.Search in Google Scholar

Kullab, A. (2011). Desalination using membrane distillation experimental and numerical study, Doctoral Thesis. Stockholm: Royal Institute of Technology.Search in Google Scholar

Laganà, F., Barbieri, G., and Drioli, E. (2000). Direct contact membrane distillation: modelling and concentration experiments. J. Membr. Sci. 166: 1–11. https://doi.org/10.1016/s0376-7388(99)00234-3.Search in Google Scholar

Lawson, K.W. and Lloyd, D.R. (1996). Membrane distillation. II. Direct contact MD. J. Membr. Sci. 120: 123–133. https://doi.org/10.1016/0376-7388(96)00141-x.Search in Google Scholar

Lawson, K.W. and Lloyd, D.R. (1997). Membrane distillation. J. Membr. Sci. 124: 1–25. https://doi.org/10.1016/s0376-7388(96)00236-0.Search in Google Scholar

Leaper, S., Abdel-Karim, A., Faki, B., Luque-Alled, J.M., Alberto, M., Vijayaraghavan, A., Holmes, S.M., Szekely, G., Badawy, M.I., Shokri, N., et al.. (2018). Flux-enhanced PVDF mixed matrix membranes incorporating APTS-functionalized graphene oxide for membrane distillation. J. Membr. Sci. 554: 309–323, https://doi.org/10.1016/j.memsci.2018.03.013.Search in Google Scholar

Lee, J., Kim, W., Choi, J., Ghaffour, N., and Kim, Y. (2016). A novel multi-stage direct contact membrane distillation module: design , experimental and theoretical approaches. Water Res. 107: 47–56 https://doi.org/10.1016/j.watres.2016.10.059.Search in Google Scholar PubMed

Li, C., Goswami, Y., and Stefanakos, E. (2013). Solar assisted sea water desalination: a review. Renew. Sustain. Energy Rev. 19: 136–163, https://doi.org/10.1016/j.rser.2012.04.059.Search in Google Scholar

Li, X., Zhang, Y., Cao, J., Wang, X., Cui, Z., Zhou, S., Li, M., Drioli, E., Wang, Z., and Zhao, S. (2019). Enhanced fouling and wetting resistance of composite Hyflon AD/poly (vinylidene fluoride) membrane in vacuum membrane distillation. Separ. Purif. Technol. 211: 135–140, https://doi.org/10.1016/j.seppur.2018.09.071.Search in Google Scholar

Liu, R., Qin, Y., Li, X., and Liu, L. (2012). Concentrating aqueous hydrochloric acid by multiple-effect membrane distillation. Front. Chem. Sci. Eng. 6: 311–321. https://doi.org/10.1007/s11705-012-1207-3.Search in Google Scholar

Lorain, O., Hersant, B., Persin, F., Grasmick, A., Brunard, N., and Espenan, J.M. (2007). Ultrafiltration membrane pre-treatment benefits for reverse osmosis process in seawater desalting. Quantification in terms of capital investment cost and operating cost reduction. Desalination 203: 277–285, https://doi.org/10.1016/j.desal.2006.02.022.Search in Google Scholar

Lu, K.J., Zuo, J., Chang, J., Kuan, H.N., and Chung, T.-S. (2018). Omniphobic hollow fiber membranes for vacuum membrane distillation. Environ. Sci. Technol. 52: 4472–4480.10.1021/acs.est.8b00766Search in Google Scholar

Lu, K.J., Zuo, J., and Chung, T.S. (2017). Novel PVDF membranes comprising n-butylamine functionalized graphene oxide for direct contact membrane distillation. J. Membr. Sci. 539: 34–42, https://doi.org/10.1016/j.memsci.2017.05.064.Search in Google Scholar

Lu, K.J., Chen, Y., and Chung, T. (2019a). Design of omniphobic interfaces for membrane distillation: a review. Water Res. 162: 64–77, https://doi.org/10.1016/j.watres.2019.06.056.Search in Google Scholar

Lu, K.J., Cheng, Z.L., Chang, J., Luo, L., and Chung, T. (2019b). Design of zero liquid discharge desalination (ZLDD) systems consisting of freeze desalination, membrane distillation, and crystallization powered by green energies. Desalination 458: 66–75, https://doi.org/10.1016/j.desal.2019.02.001.Search in Google Scholar

Lu, X., Peng, Y., Ge, L., Lin, R., Zhu, Z., and Liu, S. (2016). Amphiphobic PVDF composite membranes for anti-fouling direct contact membrane distillation. J. Membr. Sci. 505: 61–69, https://doi.org/10.1016/j.memsci.2015.12.042.Search in Google Scholar

Luo, L., Zhao, J., and Chung, T.S. (2018). Integration of membrane distillation (MD) and solid hollow fiber cooling crystallization (SHFCC) systems for simultaneous production of water and salt crystals. J. Membr. Sci. 564: 905–915, https://doi.org/10.1016/j.memsci.2018.08.001.Search in Google Scholar

Ma, H., Hakim, L.F., Bowman, C.N., and Davis, R.H. (2001). Factors affecting membrane fouling reduction by surface modification and backpulsing. J. Membr. Sci. 189: 255–270. https://doi.org/10.1016/s0376-7388(01)00422-7.Search in Google Scholar

Ma, Q., Ahmadi, A., and Cabassud, C. (2018). Direct integration of a vacuum membrane distillation module within a solar collector for small-scale units adapted to seawater desalination in remote places: design , modeling & evaluation of a fl at-plate equipment. J. Membr. Sci. 564: 617–633 https://doi.org/10.1016/j.memsci.2018.07.067.Search in Google Scholar

Macedonio, F., and Drioli, E. (2019). Membrane distillation development. Sustain. Water Wastewater Process 133–159, https://doi.org/10.1016/B978-0-12-816170-8.00005-3.Search in Google Scholar

Maddah, H. and Chogle, A. (2017). Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation. Appl. Water Sci. 7: 2637–2651, https://doi.org/10.1007/s13201-016-0493-1.Search in Google Scholar

Martinez-Diez, L. and Vazquez-Gonzalez, M.I. (1998). Study of membrane distillation using channel spacers. J. Membr. Sci. 144: 45–56.10.1016/S0376-7388(98)00024-6Search in Google Scholar

Martínez, L. and Rodríguez-Maroto, J.M. (2006). Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers. J. Membr. Sci. 274: 123–137, https://doi.org/10.1016/j.memsci.2005.07.045.Search in Google Scholar

Martínez, L. and Rodríguez-Maroto, J.M. (2007). Effects of membrane and module design improvements on flux in direct contact membrane distillation. Desalination 205: 97–103, https://doi.org/10.1016/j.desal.2006.02.050.Search in Google Scholar

Meindersma, G.W., Guijt, C.M., and Haan, A.B. De. (2006). Desalination and water recycling by air gap membrane distillation. Desalination 187: 291–301, https://doi.org/10.1016/j.desal.2005.04.088.Search in Google Scholar

Meng, F., Chae, S.R., Drews, A., Kraume, M., Shin, H.S., and Yang, F. (2009). Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res. 43: 1489–1512, https://doi.org/10.1016/j.watres.2008.12.044.Search in Google Scholar PubMed

Meng, S., Hsu, Y., Ye, Y., and Chen, V. (2015). Submerged membrane distillation for inland desalination applications. Desalination 361: 72–80, https://doi.org/10.1016/j.desal.2015.01.038.Search in Google Scholar

Mericq, J.P., Laborie, S., and Cabassud, C. (2010). Vacuum membrane distillation of seawater reverse osmosis brines. Water Res. 44: 5260–5273, https://doi.org/10.1016/j.watres.2010.06.052.Search in Google Scholar PubMed

Mericq, J., Laborie, S., and Cabassud, C. (2011). Evaluation of systems coupling vacuum membrane distillation and solar energy for seawater desalination. Chem. Eng. J. 166: 596–606, https://doi.org/10.1016/j.cej.2010.11.030.Search in Google Scholar

Mohamed, E.S., Boutikos, P., Mathioulakis, E., and Belessiotis, V. (2017). Experimental evaluation of the performance and energy efficiency of a vacuum multi-effect membrane distillation system. Desalination 408: 70–80, https://doi.org/10.1016/j.desal.2016.12.020.Search in Google Scholar

Naidu, G., Geun, W., Jeong, S., Choi, Y., Ghaffour, N., and Vigneswaran, S. (2017). Transport phenomena and fouling in vacuum enhanced direct contact membrane distillation: experimental and modelling. Separ. Purif. Technol. 172: 285–295, https://doi.org/10.1016/j.seppur.2016.08.024.Search in Google Scholar

Nghiem, L.D. and Cath, T. (2011). A scaling mitigation approach during direct contact membrane distillation. Separ. Purif. Technol. 80: 315–322, https://doi.org/10.1016/j.seppur.2011.05.013.Search in Google Scholar

Pantoja, C.E., Nariyoshi, Y.N., and Seckler, M.M. (2016). Membrane distillation crystallization applied to brine desalination: additional design criteria. Ind. Eng. Chem. Res. 55: 1004–1012.https://doi.org/10.1021/acs.iecr.5b03807.Search in Google Scholar

Patil, D.K. and Shirsat, S.P. (2017). Membrane distillation review and flux prediction in direct contact membrane distillation process. Int Res J Eng Technol (IRJET) 2017: 829–845.Search in Google Scholar

Phattaranawik, J., Jiraratananon, R., Fane, A.G., and Halim, C. (2001). Mass flux enhancement using spacer filled channels in direct contact membrane distillation. J. Membr. Sci. 187: 193–201. https://doi.org/10.1016/s0376-7388(01)00344-1.Search in Google Scholar

Phattaranawik, J., Jiraratananon, R., and Fane, A.G. (2003). Heat transport and membrane distillation coefficients in direct contact membrane distillation. J. Membr. Sci. 212: 177–193. https://doi.org/10.1016/s0376-7388(02)00498-2.Search in Google Scholar

Plattner, J., Naidu, G., Wintgens, T., Vigneswaran, S., and Kazner, C. (2017). Fluoride removal from groundwater using direct contact membrane distillation (DCMD) and vacuum enhanced DCMD (VEDCMD). Separ. Purif. Technol. 180: 125–132, https://doi.org/10.1016/j.seppur.2017.03.003.Search in Google Scholar

Quist-Jensen, C., Macedonio, F., and Drioli, E. (2016). Integrated membrane desalination systems with membrane crystallization units for resource recovery: a new approach for mining from the sea. Crystals 6: 36, https://doi.org/10.3390/cryst6040036.Search in Google Scholar

Ragunath, S., Roy, S., and Mitra, S. (2018). Carbon nanotube immobilized membrane with controlled nanotube incorporation via phase inversion polymerization for membrane distillation based desalination. Separ. Purif. Technol. 194: 249–255, https://doi.org/10.1016/j.seppur.2017.11.053.Search in Google Scholar

Rahmawati, K., Ghaffour, N., Aubry, C., and Amy, G.L. (2012). Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes. J. Membr. Sci. 423–424: 522–529, https://doi.org/10.1016/j.memsci.2012.09.004.Search in Google Scholar

Rattananurak, W., Chang, J., Wattanachira, S., Johir, M.A.H., and Vigneswaran, S. (2014). A novel plate settler in immersed membrane bioreactor (iMBR) in reducing membrane fouling. Desal. Water Treat 2014: 37–41.10.1080/19443994.2014.912155Search in Google Scholar

Ray, S.S., Chen, S., Chang, H., and Dan, N. (2018). Enhanced desalination using a three-layer OTMS based superhydrophobic membrane for a membrane distillation process. RSC Adv. 8: 9640–9650, https://doi.org/10.1039/C8RA01043A.Search in Google Scholar PubMed PubMed Central

Razmjou, A., Arifin, E., Dong, G., Mansouri, J., and Chen, V. (2012). Superhydrophobic modification of TiO 2 nanocomposite PVDF membranes for applications in membrane distillation. J. Membr. Sci. 415–416: 850–863, https://doi.org/10.1016/j.memsci.2012.06.004.Search in Google Scholar

Rezaei, M., Warsinger, D.M., Duke, M.C., Matsuura, T., and Samhaber, W.M. (2018). Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention. Water Res. 139: 329–352, https://doi.org/10.1016/j.watres.2018.03.058.Search in Google Scholar PubMed

Ruiz-Aguirre, A., Andrés-Mañas, J.A., Fernandez-Sevilla, J.M., and Zaragoza, G. (2017). Comparative characterization of three commercial spiral-wound membrane distillation modules. Desal. Water Treat. 61: 152–159, https://doi.org/10.5004/dwt.2017.11075.Search in Google Scholar

Ruiz-Aguirre, A., Andrés-Mañas, J.A., Fernández-Sevilla, J.M., and Zaragoza, G. (2018). Experimental characterization and optimization of multi-channel spiral wound air gap membrane distillation modules for seawater desalination. Separ. Purif. Technol. 205: 212–222, https://doi.org/10.1016/j.seppur.2018.05.044.Search in Google Scholar

Saffarini, R.B., Summers, E.K., Arafat, H.A., and V., J.H.L. (2012). Economic evaluation of stand-alone solar powered membrane distillation systems. Desalination 299: 55–62, https://doi.org/10.1016/j.desal.2012.05.017.Search in Google Scholar

Salmón, I.R. and Luis, P. (2018). Membrane crystallization via membrane distillation. Chem. Eng. Process 123: 258–271, https://doi.org/10.1016/j.cep.2017.11.017.Search in Google Scholar

Sarbatly, R., and Chiam, C. (2013). Evaluation of geothermal energy in desalination by vacuum membrane distillation. Appl. Energy 112: 737–746, https://doi.org/10.1016/j.apenergy.2012.12.028.Search in Google Scholar

Sauvet-Goichon, B. (2007). Ashkelon desalination plant - a successful challenge. Desalination 203: 75–81, https://doi.org/10.1016/j.desal.2006.03.525.Search in Google Scholar

Scaffold, E.N., Lee, J., Boo, C., Ryu, W., Taylor, A.D., and Elimelech, M. (2016). Development of omniphobic desalination membranes using a charged development of omniphobic desalination membranes using a charged electrospun nanofiber scaffold. Appl. Mater. Interfaces 2016: 2–10, https://doi.org/10.1021/acsami.6b02419.Search in Google Scholar

Schofield, R.W., Fane, A.G., and Fell, C.J.D. (1987). Heat and mass transfer in membrane distillation. J. Membr. Sci. 33: 299–313. https://doi.org/10.1016/s0376-7388(00)80287-2.Search in Google Scholar

Schwantes, R., Bauer, L., Chavan, K., Dücker, D., Felsmann, C., and Pfafferott, J. (2018). Air gap membrane distillation for hypersaline brine concentration: operational analysis of a full-scale module–New strategies for wetting mitigation. Desalination 444: 13–25, https://doi.org/10.1016/j.desal.2018.06.012.Search in Google Scholar

Seo, D.H., Woo, Y.C., Xie, M., Murdock, A.T., Ang, E.Y.M., Jiao, Y., Park, M.J., Lim, S. Il, Lawn, M., et al.. (2018). Anti-fouling graphene-based membranes for effective water desalination. Nat. Commun. 2018: 1–12, https://doi.org/10.1038/s41467-018-02871-3.Search in Google Scholar PubMed PubMed Central

Shahu, V.T. and Thombre, S.B. (2019). Air gap membrane distillation: a review. J. Renew. Sustain. Energy, https://doi.org/10.1063/1.5063766.Search in Google Scholar

Shahzad, M.W. (2019). A standard primary energy approach for comparing desalination processes. NPJ Clean Water 2019: 1–7, https://doi.org/10.1038/s41545-018-0028-4.Search in Google Scholar

Shan, H., Liu, J., Li, X., Li, Y., and Tezel, F.H. (2018). Nanocoated amphiphobic membrane for flux enhancement and comprehensive anti-fouling performance in direct contact membrane distillation. J. Membr. Sci. 567: 166–180, https://doi.org/10.1016/j.memsci.2018.09.038.Search in Google Scholar

Shimokawa, A. (2009). Desalination plant with unique methods in Fukuoka. In: Governmental Conference on Drinking Water Quality Management and Wastewater Control. FUKUOKA District Waterworks Agency, Japan, pp. 1–14.Search in Google Scholar

Stavrakakis, C., Sauvade, P., Coelho, F., and Moulin, P. (2018). Air backwash efficiency on organic fouling of UF membranes applied to shellfish hatchery effluents. Membranes, https://doi.org/10.3390/membranes8030048.Search in Google Scholar PubMed PubMed Central

Summers, E.K., Arafat, H.A., and V., J.H.L. (2012). Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations. Desalination 290: 54–66, https://doi.org/10.1016/j.desal.2012.01.004.Search in Google Scholar

Swaminathan, J., Won, H., Warsinger, D.M., Almarzooqi, F.A., Arafat, H.A., and V., J.H.L. (2016). Energy efficiency of permeate gap and novel conductive gap membrane distillation. J. Membr. Sci. 502: 171–178, https://doi.org/10.1016/j.memsci.2015.12.017.Search in Google Scholar

Thomas, N., Mavukkandy, M.O., Loutatidou, S., and Arafat, H.A. (2017). Membrane distillation research & implementation: lessons from the past five decades. Separ. Purif. Technol. 189: 108–127, https://doi.org/10.1016/j.seppur.2017.07.069.Search in Google Scholar

Tijing, L.D., Chul, Y., Choi, J., Lee, S., Kim, S., and Kyong, H. (2015). Fouling and its control in membrane distillation - a review. J. Membr. Sci. 475: 215–244, https://doi.org/10.1016/j.memsci.2014.09.042.Search in Google Scholar

Tijing, L.D., Woo, Y.C., Shim, W.G., He, T., Choi, J.S., Kim, S.H., and Shon, H.K. (2016). Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation. J. Membr. Sci. 502: 158–170, https://doi.org/10.1016/j.memsci.2015.12.014.Search in Google Scholar

Tun, C.M., Fane, A.G., Matheickal, J.T., and Sheikholeslami, R. (2005). Membrane distillation crystallization of concentrated salts - flux and crystal formation. J. Membr. Sci. 257: 144–155, https://doi.org/10.1016/j.memsci.2004.09.051.Search in Google Scholar

Ullah, I. and Rasul, M.G. (2019). Recent developments in solar thermal desalination technologies: a review. Energies 12.10.3390/en12010119Search in Google Scholar

Wang, J., Wang, S., and Jin, M. (2000). A study of the electrodeionization process high-purity water production with a RO/EDI system. Desalination 132: 349–352, https://doi.org/10.1016/s0011-9164(00)00171-5.Search in Google Scholar

Wang, P. and Chung, T. (2015). Recent advances in membrane distillation processes: membrane development , configuration design and application exploring. J. Membr. Sci. 474: 39–56 https://doi.org/10.1016/j.memsci.2014.09.016.Search in Google Scholar

Warsinger, D.M., Swaminathan, J., Guillen-Burrieza, E., Arafat, H.A., and V., J.H.L. (2015). Scaling and fouling in membrane distillation for desalination applications: a review. Desalination 356: 294–313, https://doi.org/10.1016/j.desal.2014.06.031.Search in Google Scholar

Winter, D., Koschikowski, J., and Ripperger, S. (2012). Desalination using membrane distillation : flux enhancement by feed water deaeration on spiral-wound modules. J. Membr. Sci. 423–424: 215–224, https://doi.org/10.1016/j.memsci.2012.08.018.Search in Google Scholar

Wu, Y., Kong, Y., Liu, J., Zhang, J., and Xu, J. (1991). An experimental study on membrane distillation-crystallization for treating waste water in taurine production. Desalination 80: 235–242, https://doi.org/10.1016/0011-9164(91)85160-V.Search in Google Scholar

Xu, K., Feng, B., Zhou, C., and Huang, A. (2016). Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination. Chem. Eng. Sci. 146: 159–165, https://doi.org/10.1016/j.ces.2016.03.003.Search in Google Scholar

Xu, Z., Liu, Z., Song, P., and Xiao, C. (2017). Fabrication of super-hydrophobic polypropylene hollow fiber membrane and its application in membrane distillation. Desalination 414: 10–17, https://doi.org/10.1016/j.desal.2017.03.029.Search in Google Scholar

Yan, K.K., Jiao, L., Lin, S., Ji, X., Lu, Y., and Zhang, L. (2018). Superhydrophobic electrospun nanofiber membrane coated by carbon nanotubes network for membrane distillation. Desalination 437: 26–33, https://doi.org/10.1016/j.desal.2018.02.020.Search in Google Scholar

Yao, M., Tijing, L.D., Naidu, G., Kim, S., Matsuyama, H., Fane, A.G., and Kyong, H. (2020). A review of membrane wettability for the treatment of saline water deploying membrane distillation. Desalination 479: 114312, https://doi.org/10.1016/j.desal.2020.114312.Search in Google Scholar

Zaragoza, G. (2018). Commercial scale membrane distillation for solar desalination. npj Clean Water 2018: 1–6, https://doi.org/10.1038/s41545-018-0020-z.Search in Google Scholar

Zaragoza, G., Ruiz-Aguirre, A., and Guillén-Burrieza, E. (2014). Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production. Appl. Energy 130: 491–499, https://doi.org/10.1016/j.apenergy.2014.02.024.Search in Google Scholar

Zarzo, D. and Prats, D. (2018). Desalination and energy consumption. What can we expect in the near future? Desalination 427: 1–9, https://doi.org/10.1016/j.desal.2017.10.046.Search in Google Scholar

Zhang, J.W., Fang, H., Wang, J.W., Hao, L.Y., Xu, X., and Chen, C.S. (2014). Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination. J. Membr. Sci. 450: 197–206, https://doi.org/10.1016/j.memsci.2013.08.042.Search in Google Scholar

Zhang, Y., Peng, Y., Ji, S., Li, Z., and Chen, P. (2015). Review of thermal efficiency and heat recycling in membrane distillation processes. Desalination 367: 223–239, https://doi.org/10.1016/j.desal.2015.04.013.Search in Google Scholar

Zhang, Y., Peng, Y., Ji, S., Qi, J., and Wang, S. (2017). Numerical modeling and economic evaluation of two multi-e ff ect vacuum membrane distillation ( ME-VMD ) processes. Desalination 419: 39–48, https://doi.org/10.1016/j.desal.2017.05.032.Search in Google Scholar

Zhao, K., Heinzl, W., Wenzel, M., Büttner, S., Bollen, F., Lange, G., Heinzl, S., and Sarda, N. (2013). Experimental study of the memsys vacuum-multi-effect-membrane-distillation (V-MEMDf) module. Desalination 323: 150–160, https://doi.org/10.1016/j.desal.2012.12.003.Search in Google Scholar

Zodrow, K.R., Bar-Zeev, E., Giannetto, M.J., and Elimelech, M. (2014). Biofouling and microbial communities in membrane distillation and reverse osmosis. Environ. Sci. Technol. 48: 13155–13164. https://doi.org/10.1021/es503051t.Search in Google Scholar PubMed

Zou, T., Dong, X., Kang, G., Zhou, M., Li, M., and Cao, Y. (2018). Fouling behavior and scaling mitigation strategy of CaSO4 in submerged vacuum membrane distillation. Desalination 425: 86–93, https://doi.org/10.1016/j.desal.2017.10.015.Search in Google Scholar

Received: 2020-09-16
Accepted: 2021-03-12
Published Online: 2021-05-18
Published in Print: 2022-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2020-0073/html
Scroll to top button