Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 18, 2021

Review on technologies to separate and purify ethyl alcohol from dilute aqueous solutions

  • Pooja P. Sanap ORCID logo and Yogesh S. Mahajan ORCID logo EMAIL logo

Abstract

Ethyl alcohol (ethanol) is viewed upon as a fuel additive or even as an alternative fuel. Fermentation is used to produce dilute (<20 mass%) ethanol. This is needed to be concentrated to almost anhydrous, fuel grade ethanol (>99.5 mass%). The technologies used for concentration from dilute grade to fuel grade ethanol are summarized in this review. Thus, extraction; distillation; use of membranes; adsorption and some miscellaneous methods are discussed in detail. For each technique, the inlet and outlet concentrations; merits and demerits and scope for future work are indicated. Hybrid separations are discussed. In addition to technical feasibility, economic viability of the techniques is also discussed. A brief discussion on current industrial practice is also presented.


Corresponding author: Yogesh S. Mahajan, Chemical Engineering Department, Dr. B. A. Technological University, Lonere, Tal. Mangoan, Dist. Raigad, Maharashtra 402 103, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Adeleye, T.M., Kareem, S.Q., Bankole, M.O., Atanda, O., and Adeogun, A.I. (2020). Ethanol production from cassava starch by protoplast fusants of Wickerhamomyces anomalus and Galactomyces candidum. Egypt J. Basic Appl. Sci. 7: 67–81, https://doi.org/10.1080/2314808x.2020.1746884.Search in Google Scholar

Al-Amer, A. (2000). Investigating polymeric entrainers for azeotropic distillation of the ethanol/water and MTBE/methanol systems. Ind. Eng. Chem. Res. 39: 3901–3906, https://doi.org/10.1021/ie0000515.Search in Google Scholar

Asheh, S., Banat, N., and Lagtah, A. (2004). Separation of ethanol–water mixtures using molecular sieves and biobased adsorbents. Chem. Eng. Res. Des. 82: 855–864, https://doi.org/10.1205/0263876041596779.Search in Google Scholar

Banat, F.A. and Simandl, J. (1999). Membrane distillation for dilute ethanol Separation from aqueous streams. J. Membr. Sci. 163: 333–348, https://doi.org/10.1016/s0376-7388(99)00178-7.Search in Google Scholar

Banat, F.A., Rub, F., and Shannag, M. (1999). Modeling of dilute ethanol–water mixture separation by membrane distillation. Separ. Purif. Technol. 16: 119–131, https://doi.org/10.1016/s1383-5866(98)00117-8.Search in Google Scholar

Bandaru, K. and Jana, A. (2015). A hybrid heat integration scheme for bioethanol separation through pressure-swing distillation route. Separ. Purif. Technol. 142: 307–315.10.1016/j.seppur.2015.01.003Search in Google Scholar

Barancewicz, M. and Gryta, M. (2012). Ethanol production in a bioreactor with an integrated membrane distillation module. Chem. Pap. 66: 85–91, https://doi.org/10.2478/s11696-011-0088-0.Search in Google Scholar

Bastidas, P., Gil, I., and Rodriguez, G. (2010). Comparison of the main ethanol dehydration technologies through process simulation. In: Pierucci, S. and Ferraris, G.B. (Eds.). 20th European symposium on computer aided process engineering: ESCAPE, Elsevier, Colombia, pp. 1–7.Search in Google Scholar

Bates, J.S. and Gounder, R. (2018). Influence of confining environment polarity on ethanol dehydration catalysis by Lewis acid zeolites. J. Catal. 365: 213–226, https://doi.org/10.1016/j.jcat.2018.05.009.Search in Google Scholar

Beery, K. and Ladisch, M. (2001). Adsorption of water from liquid-phase ethanol–water mixtures at room temperature using starch-based adsorbents. Ind. Eng. Chem. Res. 40: 2112–2115, https://doi.org/10.1021/ie0009381.Search in Google Scholar

Bhownath, R. (2008). The use of n-dodecane as a solvent in the extraction of light alcohols from water, MSc in Engineering thesis. Durban, South Africa, University of Kwa-Zulu Natal.Search in Google Scholar

Black, C. (1980). Distillation modelling of ethanol recovery and dehydration processes for ethanol and gasohol. Chem. Eng. Prog. 76: 78–85.Search in Google Scholar

Bothast, R. and Schlicher, M. (2005). Biotechnological process for conversion of corn into ethanol. Appl. Microbiol. Biotechnol. 67: 19–25, https://doi.org/10.1007/s00253-004-1819-8.Search in Google Scholar PubMed

Budich, M. and Brunner, G. (2003). Supercritical fluid extraction of ethanol from aqueous solutions. J. Supercrit. Fluids 25: 45–55, https://doi.org/10.1016/s0896-8446(02)00091-8.Search in Google Scholar

Bušić, A., Marđetko, N., Kundas, S., Morzak, G., Belskaya, H., Šantek, M.I., Komes, D., Novak, S., and Šantek, B. (2018). Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol. Biotechnol. 56: 289–311.10.17113/ftb.56.03.18.5546Search in Google Scholar PubMed PubMed Central

Calibo, R., Matsumura, M., and Kataoka, H. (1989). Continuous ethanol fermentation of concentrated sugar solutions coupled with membrane distillation using a PTFE module. J. Ferment. Bioeng. 67: 40–45, https://doi.org/10.1016/0922-338x(89)90084-6.Search in Google Scholar

Carmo, M. and Gubulin, J. (2002). Ethanol–water separation in the PSA process. Adsorption 8: 235–248, https://doi.org/10.1023/a:1021264601910.10.1023/A:1021264601910Search in Google Scholar

Carton, A., Gonzilez, G., Iiiiguez, A., and Cabezas, J.L. (1987). Separation of ethanol–water mixtures using 3A molecular sieve. J. Appl. Chem. Biotechnol. 39: 125–132.10.1002/jctb.280390207Search in Google Scholar

Castro-Muñoz, R., Galiano, F., Fíla, V., Drioli, E., and Figoli, A. (2019a). Mixed matrix membranes (MMMs) for ethanol purification through pervaporation: current state of the art. Rev. Chem. Eng. 35: 565–590, https://doi.org/10.1515/revce-2017-0115.Search in Google Scholar

Castro-Muñoz, R., Buera-Gonzalez, J., de la Iglesia, Ó., Galiano, F., Fíla, V., Malankowska, M., Rubio, C., Figoli, A., Tellez, C., and Coronas, J. (2019b). Towards the dehydration of ethanol using pervaporation cross-linked poly(vinyl alcohol)/graphene oxide membranes. J. Membr. Sci. 582: 423–434, https://doi.org/10.1016/j.memsci.2019.03.076.Search in Google Scholar

Chambers, S., Herendeen, A., Joyce, J., and Penner, S. (1979). Gasohol: does it or doesn’t it produce net energy? Science 206: 789–795, https://doi.org/10.1126/science.206.4420.789.Search in Google Scholar PubMed

Chianese, A. and Zinnamosca, F. (1990). Ethanol dehydration by azeotropic distillation with a mixed-solvent entrainer. Chem. Eng. J. 43: 59–65, https://doi.org/10.1016/0300-9467(90)80001-s.Search in Google Scholar

Chniti, S. and Hassouna (2017). Ethanol fuel from biomass: a review. Environ. Eng. Sci. 1: 1–7.Search in Google Scholar

Cho, Y., Zhang, Y., Christensen, T., Sagle, L., Chilkoti, A., and Cremer, P. (2008). Effects of Hofmeister anions on the phase transition temperature of elastin-like polypeptides. J. Phys. Chem. B 112: 13765–13771, https://doi.org/10.1021/jp8062977.Search in Google Scholar PubMed PubMed Central

Choudhury, J., and Ghosh, P. (1984). Separation of ethanol fro ethanol–water mixture by reverse osmosis. Biotechnol. Bioeng. 27: 1081–1084, https://doi.org/10.1002/bit.260270725.Search in Google Scholar PubMed

Chuntanalerg, P., Kulprathipanja, S., Chaisuwan, T., Wongkasemjit, S., and Silpakorn, U. (2015). Review on membranes for ethanol–water separation. Silpakorn Univ. Sci. Technol. J. 10: 61–73.Search in Google Scholar

Conde-Mejía, C. and Jiménez-Gutiérrez, A. (2020). Analysis of ethanol dehydration using membrane separation processes. Open Life Sci. 15: 122–132, https://doi.org/10.1515/biol-2020-0013.Search in Google Scholar PubMed PubMed Central

Confalonieri, G., Quartieri, S., Vezzalini, G., Tabacchi, G., Fois, E., Daou, T.J., and Arletti, R. (2019). Differential penetration of ethanol and water in Si-chabazite: high pressure dehydration of azeotrope solution. Microporous Mesoporous Mater. 284: 161–169, https://doi.org/10.1016/j.micromeso.2019.04.032.Search in Google Scholar

Coulson, J., Richardson, J., Backhurst, J., and Harker, J. (1991). Chemical engineering particle technology and separation processes, 4th ed. 2. Butterworth - Heinemann Ltd., Oxford, Great Britain.Search in Google Scholar

Curcio, E. and Drioli, E. (2005). Membrane distillation and related operations – a review. Separ. Purif. Rev. 34: 35–86, https://doi.org/10.1081/spm-200054951.Search in Google Scholar

Dai, C., Lei, Z., Xi, X., Zhu, J., and Chen, B. (2014). Extractive distillation with a mixture of organic solvent and ionic liquid as entrainer. Ind. Eng. Chem. Res. 53: 15786–15791, https://doi.org/10.1021/ie502487n.Search in Google Scholar

Delgado, J., Uguina, M., Sotelo, J., Águeda, V., García, A., and Roldán, A. (2012). Separation of ethanol–water liquid mixtures by adsorption on silicalite. Chem. Eng. J. 180: 137–144, https://doi.org/10.1016/j.cej.2011.11.026.Search in Google Scholar

Delgado, J., Agueda, V., Uguina, M., Sotelo, J., Garcia-Sanz, A., and Garcia, A. (2015). Separation of ethanol–water liquid mixtures by adsorption on BPL activated carbon with air regeneration. Separ. Purif. Technol. 149: 370–380, https://doi.org/10.1016/j.seppur.2015.06.011.Search in Google Scholar

Diep, N.Q., Fujimoto, S., Yanagida, T., Minowa, T., Sakanishi, K., Nakagoshi, N., and Tran, X.D. (2012). Comparison of the potential for ethanol production from rice straw in Vietnam and Japan via techno-economic evaluation. Int. Energy J. 13: 113–122.Search in Google Scholar

Donis, I., Gerbaud, V., and Joulia, X. (2001). Entrainer selection rules for the separation of azeotropic and close-boiling-temperature mixtures by homogeneous batch distillation process. Ind. Eng. Chem. Res. 40: 2729–2741, https://doi.org/10.1021/ie000429z.Search in Google Scholar

Do Thi, H.T., Mizsey, P., and Toth, A.J. (2020). Separation of alcohol-water mixtures by a combination of distillation, hydrophilic and organophilic pervaporation processes. Membranes 10: 1–18, https://doi.org/10.3390/membranes10110345.Search in Google Scholar PubMed PubMed Central

Drioli, E., Criscuoli, A., and Molero, L. (2011). Membrane distillation, water and wastewater treatment technologies. In: Encyclopedia of life support systems (EOLSS), Vol. III, pp. 1–13.Search in Google Scholar

Ellis, C. (1937). The chemistry of petroleum derivatives, Vol. 2. New York: Reinhold.Search in Google Scholar

Errico, M., Madeddu, C., Bindseil, M.F., Madsen, S.D., Braekevelt, S., and Camilleri-Rumbau, M.S. (2020). Membrane assisted reactive distillation for bioethanol purification. Chem. Eng. Process 157: 108110, https://doi.org/10.1016/j.cep.2020.108110.Search in Google Scholar

Espinoza-Gomez, H., Saucedo-Castillo, E., Flores-López, L.Z., Rogel-Hernandez, E., Martínez, M., and Wakida, F.T. (2017). Ethanol: water blends separation using ultrafiltration membranes of poly(acrylamide-co-acrylic acid) partial sodium salt and polyacrylamide. Can. J. Chem. Eng. 96: 763–769.10.1002/cjce.23010Search in Google Scholar

Fasahati, J. and Liu, J. (2015). Economic, energy, and environmental impacts of alcohol dehydration technology on biofuel production from brown algae. Energy 93: 2321–2336, https://doi.org/10.1016/j.energy.2015.10.123.Search in Google Scholar

Font, A., Asensi, J., Ruiz, X., and Gomis, V. (2003). Application of isooctane to the dehydration of ethanol. Design of a column sequence to obtain absolute ethanol by heterogeneous azeotropic distillation. Ind. Eng. Chem. Res. 42: 140–144, https://doi.org/10.1021/ie0204078.Search in Google Scholar

Fouad, A., Mel, M., Khatib, M., and Azmi, A. (2011). Proceedings of the 3rd CUTSE international conference, 8–9 Nov., 2011: Dehydration of ethanol on zeolite based media using adsorption process. Miri, Sarawak, Malaysia.Search in Google Scholar

Franke, M. (2016). MINLP optimization of a heterogeneous azeotropic distillation process: separation of ethanol and water with cyclohexane as an entrainer. Comput. Chem. Eng. 89: 204–221, https://doi.org/10.1016/j.compchemeng.2016.03.027.Search in Google Scholar

Franken, A.C.M., Mulder, M.H.V., and Smolders, C.A. (1990). Pervaporation process using a thermal gradient as the driving force. J. Membr. Sci. 53: 127–141, https://doi.org/10.1016/0376-7388(90)80009-b.Search in Google Scholar

Frolkova, A.K. and Raeva, V.M. (2010). Bioethanol dehydration: state of the art. Theor. Found. Chem. Eng. 44: 545–556, https://doi.org/10.1134/s0040579510040342.Search in Google Scholar

Fu, Y.J., Lai, C., Chen, J., Liu, C., Huang, S., Hung, S., Hu, C., and Lee, K. (2014). Hydrophobic composite membranes for separating of water–alcohol mixture by pervaporation at high temperature. Chem. Eng. Sci. 111: 203–210, https://doi.org/10.1016/j.ces.2014.02.010.Search in Google Scholar

Gabrus, E., Nastaj, J., Tabero, P., and Aleksandrzak, T. (2015). Experimental studies on 3A and 4A zeolite molecular sieves regeneration in TSA process: aliphatic alcohols dewatering-water desorption. Chem. Eng. J. 259: 232–242.10.1016/j.cej.2014.07.108Search in Google Scholar

Gil, I., Uyazan, A., Aguilar, J., Rodriguez, G., and Caicedo, L. (2008). Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation. Braz. J. Chem. Eng. 25: 207–215, https://doi.org/10.1590/s0104-66322008000100021.Search in Google Scholar

Gmehling, J. and Onken, U. (1991). Vapor–liquid equilibrium data collection. In: Behrens, D. and Eckermann, R. (Eds.), Chemistry data series, Vol. 1 part 1, 2nd ed. Frankfurt, Germany: DECHEMA, pp. 184–644.Search in Google Scholar

Gmehling, J. and Onken, U. (1977).Vapor–liquid equilibrium data collection. In: Behrens, D. and Eckermann, R. (Eds.), Chemistry data series, Vol. 1 part 2a, 2nd ed., pp. 470–556.Search in Google Scholar

Gmehling, J. and Onken, U. (1981).Vapor–liquid equilibrium data collection. In: Behrens, D. and Eckermann, R. (Eds.), Chemistry data series, Vol. 1 part 1a, 2nd ed. pp. 572–577.Search in Google Scholar

Gmehling, J. and Onken, U. (1988).Vapor–liquid equilibrium data collection. In: Behrens, D. and Eckermann, R. (Eds.), Chemistry data series, Vol. 1 part 1b, 2nd ed. p. 498.Search in Google Scholar

Gmehling, J. and Onken, U. (2003).Vapor–liquid equilibrium data collection. In: Behrens, D. and Eckermann, R. (Eds.), Chemistry data series, Vol. 1 part 1d, 2nd ed. p. 115.Search in Google Scholar

Gnansounou, E. and Dauriat, A. (2005). Ethanol fuel from biomass: a review. J. Sci. Ind. Res. 64: 809–821.Search in Google Scholar

Gomis, V., Pedraza, R., Frances, O., Font, A., and Asensi, J. (2007). Dehydration of ethanol using azeotropic distillation with isooctane. Ind. Eng. Chem. Res. 46: 4572–4576, https://doi.org/10.1021/ie0616343.Search in Google Scholar

Gomis, V., Pedraza, R., Saquete, M., Font, A., and Garcia-Cano, J. (2015). Ethanol dehydration via azeotropic distillation with gasoline fractions as entrainers: a pilot-scale study of the manufacture of an ethanol-hydrocarbon fuel blend. Fuel 139: 568–574, https://doi.org/10.1016/j.fuel.2014.09.041.Search in Google Scholar

Gooding, C. and Bahouth, F. (1984). Membrane aided distillation of azeotropic solutions. Chem. Eng. Commun. 35: 267–279, https://doi.org/10.1093/jts/35.1.169.Search in Google Scholar

Gryta, M. (2001). The fermentation process integrated with membrane distillation. Separ. Purif. Technol. 24: 283–296, https://doi.org/10.1016/s1383-5866(01)00132-0.Search in Google Scholar

Gryta, M. (2013). Effect of flow-rate on ethanol separation in membrane distillation process. Chem. Pap. 67: 1201–1209, https://doi.org/10.2478/s11696-013-0382-0.Search in Google Scholar

Guan, J. and Hu, X. (2003). Simulation and analysis of pressure swing adsorption: ethanol drying process by the electrical analogue. Separ. Purif. Technol. 31: 31–35, https://doi.org/10.1016/s1383-5866(02)00151-x.Search in Google Scholar

Guzmán-Martínez, C.E., Castro-Montoya, A.J., and Nápoles-Rivera, F. (2019). Economic and environmental comparison of bioethanol dehydration processes via simulation: reactive distillation, reactor-separator process and azeotropic distillation. Clean Technol. Environ. Policy 21: 2061–2071, https://doi.org/10.1007/s10098-019-01762-5.Search in Google Scholar

Habaki, H., Hu, H., and Egashira, R. (2016). Liquid–liquid equilibrium extraction of ethanol with mixed solvent for bioethanol concentration. Chin. J. Chem. Eng. 24: 253–258, https://doi.org/10.1016/j.cjche.2015.07.022.Search in Google Scholar

He, X., Wang, T., Huang, J., Chen, J., and Li, J. (2020). Fabrication and characterization of superhydrophobic PDMS composite membranes for efficient ethanol recovery via pervaporation. Separ. Purif. Technol. 241: 1–14, https://doi.org/10.1016/j.seppur.2020.116675.Search in Google Scholar

Honeywell (1980). Small-scale ethanol plant control activities. Roseville, MN, Honeywell, p. 80154.Search in Google Scholar

Hong, J., Voloch, M., Ladish, M.R., and Tsao, G.T. (1982). Adsorption of ethanol–water mixtures by biomass materials. Biotechnol. Bioeng. 24: 725–730, https://doi.org/10.1002/bit.260240314.Search in Google Scholar PubMed

Horizoe, H., Tanimoto, T., Yamamoto, I., and Kano, Y. (1993). Phase equilibrium study for the separation of ethanol–water solution using subcritical and supercritical hydrocarbon solvent extraction. Fluid Phase Equil. 84: 297–320, https://doi.org/10.1016/0378-3812(93)85129-a.Search in Google Scholar

Hsu, J. and Tan, C. (1993). Separation of ethanol from aqueous solution by a method incorporating supercritical CO2 with reverse osmosis. J. Membr. Sci. 81: 273–285, https://doi.org/10.1016/0376-7388(93)85179-z.Search in Google Scholar

Hu, X., and Xie, W. (2001). Fixed-bed adsorption and fluidized-bed regeneration for breaking the azeotrope of ethanol and water. Separ. Sci. Technol. 36: 125–136, https://doi.org/10.1081/ss-100000856.Search in Google Scholar

Ikawa, N., Nagase, Y., Tada, T., Furuta, S., and Fukuzato, R. (1993). Separation process of ethanol from aqueous solutions using supercritical carbon dioxide. Fluid Phase Equil. 83: 167–174, https://doi.org/10.1016/0378-3812(93)87019-w.Search in Google Scholar

Ikegami, T., Yanagishita, H., Kitamoto, D., Haraya, K., Nakane, T., Matsuda, H., Koura, N., and Sano, T. (1999). Highly concentrated aqueous ethanol solutions by pervaporation using silicalite membrane-Improvement of ethanol selectivity by addition of sugars to ethanol solution. Biotechnol. Lett. 21: 1037–1041, https://doi.org/10.1023/a:1005627421221.10.1023/A:1005627421221Search in Google Scholar

Iqbal, A. and Ahmad, S. (2016). Pressure swing distillation of azeotropic mixture – a simulation study. Perspect. Sci. 8: 4–8, https://doi.org/10.1016/j.pisc.2016.01.001.Search in Google Scholar

Ishida, M. and Nakagawa, N. (1985). Exergy analysis of a pervaporation system and its combination with a distillation column based on energy utilization diagram. J. Membr. Sci. 24: 271–283, https://doi.org/10.1016/s0376-7388(00)82245-0.Search in Google Scholar

Jeong, J., Jang, B., Kim, Y., and Chung, B. (2009). Production of dehydrated fuel ethanol by pressure swing adsorption process in the pilot plant. Kor. J. Chem. Eng. 26: 1308–1312, https://doi.org/10.1007/s11814-009-0226-3.Search in Google Scholar

Jiang, H., Shi, W., Liu, Q., Wang, H., Li, J., Wu, C., Li, Y., and Wei, Z. (2021). Intensification of water/ethanol separation by PVA hybrid membrane with different functional ligand UiO-66-X nanochannels in pervaporation process. Separ. Purif. Technol. 256, https://doi.org/10.1016/j.seppur.2020.117802.Search in Google Scholar

Junqueira, T., Dias, M., Filho, R., Maciel, M., and Rossell, C. (2009). Simulation of the azeotropic distillation for anhydrous bioethanol production: study on the formation of a second liquid phase. Comput. Aided Chem. Eng. 27: 1143–1148, https://doi.org/10.1016/s1570-7946(09)70411-0.Search in Google Scholar

Kaewkannetra, P., Chutinate, N., Moonamart, S., Kamsan, T., and Chiu, T. (2011). Separation of ethanol from ethanol–water mixture and fermented sweet sorghum juice using pervaporation membrane reactor. Desalination 271: 88–91, https://doi.org/10.1016/j.desal.2010.12.012.Search in Google Scholar

Kanse, N.G. and Dawande, S.D. (2017). Separation of ethanol/water (azeotropic mixture) by pervaporation using PVA membrane. Mater. Today Proc. 4: 10520–10523, https://doi.org/10.1016/j.matpr.2017.06.412.Search in Google Scholar

Karimi, M., Jenkins, B., and Stroeve, P. (2014). Ultrasound irradiation in the production of ethanol from biomass. Renew. Sustain. Energy Rev. 40: 400–421, https://doi.org/10.1016/j.rser.2014.07.151.Search in Google Scholar

Karimi, S., Yaraki, M.T., and Karri, R.R. (2019). A comprehensive review of the adsorption mechanisms and factors influencing the adsorption process from the perspective of bioethanol dehydration. Renew. Sustain. Energy Rev. 107: 535–553, https://doi.org/10.1016/j.rser.2019.03.025.Search in Google Scholar

Kelloway, A., Tsapatsis, M., and Daoutidis, P. (2015). Techno-economic analysis of ethanol-selective membranes for corn ethanol–water separation. Comput. Aided Chem. Eng. 37: 365–370, https://doi.org/10.1016/b978-0-444-63578-5.50056-6.Search in Google Scholar

Khalid, A., Aslam, M., Qyyum, M.A., Faisal, A., Khan, A.L., Ahmed, F., Lee, M., Kim, J., Jang, N., Chang, I.S., et al.. (2019). Membrane separation processes for dehydration of bioethanol from fermentation broths: recent developments, challenges, and prospects. Renew. Sustain. Energy Rev. 105: 427–443, https://doi.org/10.1016/j.rser.2019.02.002.Search in Google Scholar

Kirk, O. (2004). Encyclopedia of chemical technology, 5th ed., Vol. 8. New Jersey: John Wiley and Sons, Inc., pp. 817–819.Search in Google Scholar

Kiss, A. and Suszwalak, D. (2012). Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Separ. Purif. Technol. 86: 70–78, https://doi.org/10.1016/j.seppur.2011.10.022.Search in Google Scholar

Knapp, J. and Doherty, M. (1990). Thermal integration of homogeneous azeotropic distillation sequences. AIChE J. 36: 969–984, https://doi.org/10.1002/aic.690360702.Search in Google Scholar

Knapp, J. and Doherty, M. (1992). A new pressure-swing-distillation process for separating homogeneous azeotropic mixtures. Ind. Eng. Chem. Res. 31: 346–357, https://doi.org/10.1021/ie00001a047.Search in Google Scholar

Kumar, S., Singh, N., and Prasad, R. (2010). Anhydrous ethanol: a renewable source of energy. Renew. Sustain. Energy Rev. 14: 1830–1844, https://doi.org/10.1016/j.rser.2010.03.015.Search in Google Scholar

Kunnakorn, D., Rirksomboon, T., Aungkavattana, P., Kuanchertchoo, N., Atong, D., Kulprathipanja, S., and Wongkasemjit, S. (2011). Performance of sodium A zeolite membranes synthesized via microwave and autoclave techniques for water–ethanol separation: recycle-continuous pervaporation process. Desalination 269: 78–83, https://doi.org/10.1016/j.desal.2010.10.044.Search in Google Scholar

Kunnakorn, D., Rirksomboon, T., Siemanond, K., Aungkavattana, P., Kuanchertchoo, N., Chuntanalerg, P., Hemra, K., Kulprathipanja, S., James, R., and Wongkasemjit, S. (2013). Techno-economic comparison of energy usage between azeotropic distillation and hybrid system for water-ethanol separation. Renew. Energy 51: 310–316, https://doi.org/10.1016/j.renene.2012.09.055.Search in Google Scholar

Ladish, M.R. and Dyck, K. (1979). Dehydration of ethanol: new approach gives positive energy balance. Science 205: 898–900, https://doi.org/10.1126/science.205.4409.898.Search in Google Scholar PubMed

Lee, E., Babcock, W., and Bresnahan, P. (1985). Ethanol–water separation by countercurrent reverse osmosis. Mater. Sci. Synth. Membr. 19: 409–428, https://doi.org/10.1021/bk-1985-0269.ch019.Search in Google Scholar

Lewis, W. (1928). Dehydrating alcohol and the like. US Patent 1,676,700, 10 July 1928.Search in Google Scholar

Li, G. and Bai, P. (2012). New operation strategy for separation of ethanol–water by extractive distillation. Ind. Eng. Chem. Res. 51: 2723–2729, https://doi.org/10.1021/ie2026579.Search in Google Scholar

Li, Y., Xia, M., Li, W., Luo, J., Zhong, L., Huang, S., Ma, J., and Xu, C. (2016). Process assessment of heterogeneous azeotropic dividing-wall column for the ethanol dehydration with cyclohexane as an entrainer: design and control. Ind. Eng. Chem. Res. 55: 8784–8801, https://doi.org/10.1021/acs.iecr.6b01244.Search in Google Scholar

Liu, J. and Bernstein, R. (2017). High-flux thin-film composite polyelectrolyte hydrogel membranes for ethanol dehydration by pervaporation. J. Membr. Sci. 534: 83–91, https://doi.org/10.1016/j.memsci.2017.04.018.Search in Google Scholar

Liu, J., Li, J., Chen, Q., and Li, X. (2018). Performance of a pervaporation system for the separation of an ethanol–water mixture using fractional condensation. Water Sci. Technol. 77: 1861–1869, https://doi.org/10.2166/wst.2018.067.Search in Google Scholar PubMed

Loulergue, P., Balannec, B., Fouchard-Le Graet, L., Cabrol, A., Sayed, W., Djelal, H., Amrane, A.,., and Szymczyk, A. (2018). Air-gap membrane distillation for the separation of bioethanol from algal-based fermentation broth. Separ. Purif. Technol. 213: 255–263.10.1016/j.seppur.2018.12.047Search in Google Scholar

Loy, Y.Y., Lee, X.L., and Rangaiah, G.P. (2015). Bioethanol recovery and purification using extractive dividing-wall column and pressure swing adsorption: an economic comparison after heat integration and optimization. Separ. Purif. Technol. 149: 413–427, https://doi.org/10.1016/j.seppur.2015.06.007.Search in Google Scholar

Luyben, W. (2012). Economic optimum design of the heterogeneous azeotropic dehydration of ethanol. Ind. Eng. Chem. Res. 51: 16427–16432, https://doi.org/10.1021/ie3020878.Search in Google Scholar

Lynn, S. and Hanson, D. (1986). Multi-effect extractive distillation for separating aqueous azeotropes. Ind. Eng. Chem. Process Des. Dev. 25: 936–941, https://doi.org/10.1021/i200035a017.Search in Google Scholar

Ma, S., Hou, Y., Sun, Y., Li, J., Li, Y., and Sun, L. (2017). Simulation and experiment for ethanol dehydration using low transition temperature mixtures (LTTMs) as entrainers. Chem. Eng. Process 121: 71–80, https://doi.org/10.1016/j.cep.2017.08.009.Search in Google Scholar

Martínez, A.A., Saucedo-Luna, J., Segovia-Hernandez, J.G., Hernandez, S., Gomez-Castro, F.I., and Castro-Montoya, A.J. (2012). Dehydration of bioethanol by hybrid process liquid–liquid extraction/extractive distillation. Ind. Eng. Chem. Res. 51: 5847–5855, https://doi.org/10.1021/ie200932g.Search in Google Scholar

McKetta, J., and Cunningham, W. (1982). Encyclopedia of chemical processing and design. Marcel Dekker Inc., New York, USA.Search in Google Scholar

Megawati, Wicaksono, D., and Abdullah, M. (2017). Proceedings of engineering international conference (EIC). In: AIP Conf. Proc. 1818: 5–6, October: Experimental study on the adsorptive-distillation for dehydration of ethanol-mixture using natural and synthetic zeolites. Semarang, Indonesia.10.1063/1.4976896Search in Google Scholar

Mehdikhani, P., Hovsepyan, H., and Bari, M. (2011). Sugar beet genotype effect on potential of bioethanol production using Saccharomyces cerevisiae fermentation. Afr. J. Biotechnol. 10: 4100–4105.Search in Google Scholar

Mehta, G. and Fraser, M. (1985). A novel extraction process for separating ethanol and water. Ind. Eng. Chem. Process Des. Dev. 24: 556–560, https://doi.org/10.1021/i200030a007.Search in Google Scholar

Meireles, I., Brazinha, C., Crespo, J., and Coelhoso, I. (2013). A new microbial polysaccharide membrane for ethanol dehydration by pervaporation. J. Membr. Sci. 425: 227–234, https://doi.org/10.1016/j.memsci.2012.09.002.Search in Google Scholar

Meirelles, A. (1992). Ethanol dehydration by extractive distillation. J. Chem. Technol. Biotechnol. 53: 181–188.10.1002/jctb.280530213Search in Google Scholar

Mendoza-Pedroza, J.J. and Segovia-Hernandez, G. (2018). Alternative schemes for the purification of bioethanol: a comparative study. Recent Adv. Petrochem Sci. 4: 0024–0032.10.19080/RAPSCI.2018.04.555631Search in Google Scholar

Morales, J.Y., López, G.L., Martínez, V.M., F.J., Vázquez de, F.J., Mendoza, J.A., and García, M.M. (2019). Parametric study and control of a pressure swing adsorption process to separate the water-ethanol mixture under disturbances. Separ. Purif. Technol. 236: 116214.10.1016/j.seppur.2019.116214Search in Google Scholar

Morrison, R. and Boyd, R. (1992). Alkenes II. Reactions of the carbon-carbo double bond electrophilic and free-radical addition. In: Organic chemistry, 6th ed. Englewood Cliffs, USA: Pearson Prentice Hall.Search in Google Scholar

MSDS 1, Available at: 499–500 https://www.merckmillipore.com/IN/en/product/msds/MDA_CHEM100949?Origin=SERP (Accessed 31 August 2020).Search in Google Scholar

MSDS 2, Available at: https://www.merckmillipore.com/IN/en/product/msds/MDA_CHEM808619?Origin=SERP (Accessed 31 August 2020).Search in Google Scholar

MSDS 3, Available at: https://www.carlroth.com (Accessed 31 August 2020).Search in Google Scholar

MSDS 4, Available at: https://fscimage.fishersci.com/msds/15400.htm (Accessed 16 December 2020).Search in Google Scholar

MSDS 5, Available at: https://www.carlroth.com (Accessed 16 December 2020).Search in Google Scholar

MSDS 6, Available at: https://www.carlroth.com (Accessed 16 December 2020).Search in Google Scholar

MSDS 7, Available at: http://dept.harpercollege.edu/chemistry/msds1/Octane%20Fisher.pdf (Accessed 16 December 2020).Search in Google Scholar

MSDS 8, Available at: https://www.cdhfinechemical.com/images/product/msds/37_2031816997_n-DODECANE-CASNO-112-40-3-MSDS.pdf (Accessed 16 December 2020).Search in Google Scholar

MSDS 9, Available at: https://www.cdhfinechemical.com/images/product/msds/10_533814756_Benzaldehyde-CASNO-100-52-7-MSDS.pdf (Accessed 16 December 2020).Search in Google Scholar

MSDS 10, Available at: http://www.furan.com/_resources/downloads/10195en_rev6.pdf (Accessed 16 December 2020).Search in Google Scholar

MSDS 11, Available at: https://fscimage.fishersci.com/msds/95260.htm (Accessed 16 December 2020).Search in Google Scholar

MSDS 12, Available at: https://www.acme-hardesty.com/wp-content/uploads/PME-1298-Methyl-Laurate-SDS.pdf (Accessed 16 December 2020).Search in Google Scholar

MSDS 13, Available at: https://www.zoro.com/static/cms/enhanced_pdf/ZQ_7nChenr.PDF (Accessed 16 December 2020).Search in Google Scholar

Muhammad, N. I. S., and Rosentrater, A.K. (2020). Economic assessment of bioethanol recovery using membrane distillation for food waste fermentation. Bioengineering 7: 1–10.10.3390/bioengineering7010015Search in Google Scholar

Mulia-Soto, J. and Flores-Tlacuahuac, A. (2011). Modelling, simulation and control of an internally heat integrated pressure-swing distillation process for bioethanol separation. Comput. Chem. Eng. 35: 1532–1546, https://doi.org/10.1016/j.compchemeng.2011.03.011.Search in Google Scholar

Nangare, D. and Mayadevi, S. (2017). Hybrid pervaporation/distillation process for ethanol–water separation, effect of distillation column side stream. Afr. J. Sci. Technol. 08: 6522–6525.Search in Google Scholar

Neves, C.M.S.S., Granjo, J.F.O., Freire, M.G., Robertson, A., Oliveira, N.M.C., and Coutinho, J.A.P. (2011). Separation of ethanol–water mixtures by liquid–liquid extraction using phosphonium-based ionic liquids. Green Chem. 13: 1517–1526, https://doi.org/10.1039/c1gc15079k.Search in Google Scholar

Nguyen, N. and Demirel, Y. (2011). Using thermally coupled reactive distillation columns in biodiesel production. Energy 36: 4838–4847, https://doi.org/10.1016/j.energy.2011.05.020.Search in Google Scholar

O’Brien, D.J., Roth, L.H., and McAloon, A.J. (2000). Ethanol production by continuous fermentation-pervaporation: a preliminary economic analysis. J. Membr. Sci. 166: 105–111.10.1016/S0376-7388(99)00255-0Search in Google Scholar

Offeman, R.D., Stephenson, S.K., Robertson, G.H., and Orts, W.J. (2006). Solvent extraction of ethanol from aqueous solutions using biobased oils, alcohols, and esters. J. Am. Oil Chem. Soc. 83: 153–157, https://doi.org/10.1007/s11746-006-1188-9.Search in Google Scholar

Onuki, S., Koziel, J., Leeuwen, J., Jenks, W., Grewell, D., and Cai, L. (2008). Ethanol production, purification, and analysis techniques: a review. In: Agricultural and biosystems engineering conference proceedings and presentations, Paper no. 085136.Search in Google Scholar

Onuki, S., Koziel, J., Jenks, W., Cai, L., Rice, S., and Leeuwen, J. (2015). Ethanol purification with ozonation, activated carbon adsorption, and gas stripping. Separ. Purif. Technol. 151: 165–171, https://doi.org/10.1016/j.seppur.2015.07.026.Search in Google Scholar

Pakkethati, K., Boonmalert, A., Chaisuwan, T., and Wongkasemjit, S. (2011). Development of polybenzoxazine membranes for ethanol–water separation via pervaporation. Desalination 267: 73–81, https://doi.org/10.1016/j.desal.2010.09.008.Search in Google Scholar

Pan, Q., Shang, X., Li, J., Ma, S., Li, L., and Sun, L. (2019). Energy-efficient separation process and control scheme for extractive distillation of ethanol–water using deep eutectic solvent. Separ. Purif. Technol. 219: 113–126, https://doi.org/10.1016/j.seppur.2019.03.022.Search in Google Scholar

Peng, P., Shi, B., and Lan, Y. (2011). A review of membrane materials for ethanol recovery by pervaporation. Separ. Sci. Technol. 46: 234–246, https://doi.org/10.1080/01496395.2010.527896.Search in Google Scholar

Peng, Y., Lu, X.Y., Liu, B.J., and Zhu, J. (2017). Separation of azeotropic mixtures (ethanol and water) enhanced by deep eutectic solvents. Fluid Phase Equil. 448: 128–134, https://doi.org/10.1016/j.fluid.2017.03.010.Search in Google Scholar

Pinto, R., Wolf-Maciel, M., and Lintomen, L. (2000). Saline extractive distillation process for ethanol purification. Comput. Chem. Eng. 24: 1689–1694, https://doi.org/10.1016/s0098-1354(00)00455-5.Search in Google Scholar

Pla-Franco, J., Lladosa, E., Loras, S., and Monton, J. (2014). Thermodynamic analysis and process simulation of ethanol dehydration via heterogeneous azeotropic distillation. Ind. Eng. Chem. Res. 53: 6084–6093, https://doi.org/10.1021/ie403988c.Search in Google Scholar

Pleeth, S.J.W. (1949). Alcohol-A fuel for internal combustion engines. London: Chapman & Hall Ltd.Search in Google Scholar

Ponce, G.H.S.F., Alves, M., Filho, J.C.C.M., Maciel, R., and Maciel, M.R.W. (2015). Using an internally heat-integrated distillation column for ethanol–water separation for fuel applications. Chem. Eng. Res. Des. 27: 957–962.10.1016/j.cherd.2015.01.002Search in Google Scholar

Pruksathorn, P. and Vitidsant, T. (2009a). Production of pure ethanol from azeotropic solution by pressure swing adsorption. Am. J. Eng. Appl. Sci. 2: 1–7, https://doi.org/10.3844/ajeas.2009.1.7.Search in Google Scholar

Pruksathorn, P. and Vitidsant, T. (2009b). Production of pure ethanol from azeotropic solution by pressure swing adsorption. Kor. J. Chem. Eng. 26: 1106–1111, https://doi.org/10.1007/s11814-009-0184-9.Search in Google Scholar

Rahman, M.A., Rahman, M.S., and Asadullah, M. (1995). Production of fuel grade ethanol from dilute solution by liquid–liquid extraction using vegetable oils as solvents. Indian J. Chem. Technol. 2: 90–92.Search in Google Scholar

Rahman, M., Rahman, M., and Nabi, M. (2001). Extraction of ethanol from aqueous solution by solvent extraction-liquid equilibrium of ethanol–water-1-butanol, ethanol–water-1-pentanol and ethanol–water-1-hexanol systems. Indian J. Chem. Technol. 85: 385–389.Search in Google Scholar

Rahman, M., Asadullah, M., Rahman, M., Nabi, M., and Azad, M. (2007). Extraction of gasohol grade ethanol from aqueous solution using gasoline as solvent. J. Sci. Ind. Res. 42: 287–298, https://doi.org/10.1201/9781420017373.ch12.Search in Google Scholar

Rao, Y.V.C. (1997). Chemical engineering thermodynamics. Hyderabad, India: Universities Press.Search in Google Scholar

Ravagnani, M., Reis, M., Filho, R., and Wolf-Maciel, M. (2010). Anhydrous ethanol production by extractive distillation: a solvent case study. Process Saf. Environ. Protect. 88: 67–73, https://doi.org/10.1016/j.psep.2009.11.005.Search in Google Scholar

Rodriguez, N. and Kroon, M. (2015). Isopropanol dehydration via extractive distillation using low transition temperature mixtures as entrainers. J. Chem. Thermodyn. 85: 216–221, https://doi.org/10.1016/j.jct.2015.02.003.Search in Google Scholar

Rodríguez, N.R., Gonzalez, A.S.B., Tijssen, P.M.A., and Kroon, M.C. (2015). Low transition temperature mixtures (LTTMs) as novel entrainers in extractive distillation. Fluid Phase Equil. 385: 72–78, https://doi.org/10.1016/j.fluid.2014.10.044.Search in Google Scholar

Rojas, J., Stinguel, L., Wolf-Maciel, M., and Guirardello, R. (2016). Modelling and simulating complete extractive distillation process of ethanol–water mixture using equilibrium-stage distillation model and efficiency correlations (Barros & Wolf) on EMSO platform. Chem. Eng. Trans. 50: 331–336.10.1016/j.cej.2016.06.007Search in Google Scholar

Ryan, P. and Doherty, M. (1989). Design/optimization of ternary heterogeneous azeotropic distillation sequences. AIChE 35: 1592–1601, https://doi.org/10.1002/aic.690351003.Search in Google Scholar

Samanta, H.S. and Ray, S.K. (2015). Separation of ethanol from water by pervaporation using mixed matrix copolymer membranes. Separ. Purif. Technol. 146: 176–186, https://doi.org/10.1016/j.seppur.2015.03.006.Search in Google Scholar

Sanap, P., Shetty, A., and Mahajan, Y. (2021). Dehydration – purification of aqueous ethyl alcohol by adsorption over molecular sieves: continuous operation. J. Chin. Inst. Eng. 44: 501–508, doi:https://doi.org/10.1080/02533839.2021.1919557.Search in Google Scholar

Shaheen, M., Choi, M., Ang, W., Zhao, Y., Xing, J., Yang, R., Xing, J., and Zhang, J. (2013). Application of low-intensity pulsed ultrasound to increase bio-ethanol production. J. Chen, Renew. Energ. 57: 462–468, https://doi.org/10.1016/j.renene.2013.02.009.Search in Google Scholar

Shakhashiri, B.Z. (1989). A handbook for teachers of chemistry, 3. The University of Wisconsin Press, Madison, Wisconsin, USA., pp. 266–268.Search in Google Scholar

Shang, X., Ma, S., Pan, Q., Li, J., Sun, Y., Ji, K., and Sun, L. (2019). Process analysis of extractive distillation for theseparation of ethanol–water using deep eutecticsolvent as entrainer. Chem. Eng. Res. Des. 148: 298–311, https://doi.org/10.1016/j.cherd.2019.06.014.Search in Google Scholar

Shirazi, M.M.A., Kargari, A., and Tabatabaei, M. (2014). Sweeping gas membrane distillation (SGMD) as an alternative for integration of bioethanol processing: study on a commercial membrane and operating parameters. Chem. Eng. Commun. 202: 457–466, https://doi.org/10.1080/00986445.2013.848805.Search in Google Scholar

Simo, M. (2013). Dehydration of ethanol using pressure swing adsorption. In: Separation and purification technologies in biorefineries. John Wiley and Sons Ltd., New York, USA., pp. 503–512.10.1002/9781118493441.ch19Search in Google Scholar

Simo, M., Brown, C., and Hlavacek, V. (2008). Simulation of pressure swing adsorption in fuel ethanol production process. Comput. Chem. Eng. 32: 1635–1649, https://doi.org/10.1016/j.compchemeng.2007.07.011.Search in Google Scholar

Simo, M., Sivashanmugam, S., Brown, C., and Hlavacek, V. (2009). Adsorption/desorption of water and ethanol on 3A zeolite in near-adiabatic fixed bed. Ind. Eng. Chem. Res. 48: 9247–9260, https://doi.org/10.1021/ie900446v.Search in Google Scholar

Singh, S., Fan, M., and Brown, R. (2008). Ozone treatment of process water from a dry-mill ethanol plant. Bioresour. Technol. 99: 1801–1805, https://doi.org/10.1016/j.biortech.2007.03.054.Search in Google Scholar PubMed

Singh, A., da Cunha, S., and Rangaiah, G.P. (2018). Heat-pump assisted distillation versus double-effect distillation for bioethanol recovery followed by pressure swing adsorption for bioethanol dehydration. Separ. Purif. Technol. 210: 574–586.10.1016/j.seppur.2018.08.043Search in Google Scholar

Smith, E. (1996). The salting out of ethanol and water: a colorful illustration of intermolecular forces. Chem. Educat. 1: 1–3, https://doi.org/10.1007/s00897960009a.Search in Google Scholar

Smuleac, V., Wu, J., Nemser, S., Majumdar, S., and Bhattacharyya, D. (2010). Novel perfluorinated polymer-based pervaporation membranes for the separation of solvent/water mixtures. J. Membr. Sci. 352: 41–49, https://doi.org/10.1016/j.memsci.2010.01.058.Search in Google Scholar PubMed PubMed Central

Steltenpohl, P. and Graczova, E. (2014). Use of ionic liquids in extraction. Acta Chim. Slov. 7: 129–133, https://doi.org/10.2478/acs-2014-0022.Search in Google Scholar

Stichlmair, J., and Fair, J. (1998). Distillation: principles and practices. Wiley - VCH, New York, USA.Search in Google Scholar

Sun, L., Chang, X., Qi, C., and Li, Q. (2011). Implementation of ethanol dehydration using dividing-wall heterogeneous azeotropic distillation column. Separ. Sci. Technol. 46: 1365–1375, https://doi.org/10.1080/01496395.2011.556099.Search in Google Scholar

Szitkai, Z., Lelkes, Z., Rev, E., and Fonyo, Z. (2002). Optimization of hybrid ethanol dehydration systems. Chem. Eng. Process 41: 631–646, https://doi.org/10.1016/s0255-2701(01)00192-1.Search in Google Scholar

Taha, M., Teng, H.L., and Lee, M.J. (2013). Buffering-out: separation of tetrahydrofuran, 1,3-dioxolane, or 1,4-dioxane from their aqueous solutions using EPPS buffer at 298.15 K. Separ. Purif. Technol. 105: 33–40, https://doi.org/10.1016/j.seppur.2012.12.022.Search in Google Scholar

Tajallipour, M., Niu, C., and Dalai, A. (2013). Ethanol dehydration in a pressure swing adsorption process using canola meal. Energy Fuels 27: 6655–6664, https://doi.org/10.1021/ef400897e.Search in Google Scholar

Tang, Y., Paul, D.R., and Chung, T.S. (2014). Free-standing graphene oxide thin films assembled by a pressurized ultra-filtration method for dehydration of ethanol. J. Membr. Sci. 458: 199–208, https://doi.org/10.1016/j.memsci.2014.01.062.Search in Google Scholar

Tanimura, S., Nakao, S., and Kimura, S. (1990). Ethanol-selective membrane for reverse osmosis of ethanol/water mixture. AIChE J. 36: 1118–1120, https://doi.org/10.1002/aic.690360719.Search in Google Scholar

Taylor, R. and Krishna, R. (1993). Multi-component mass transfer. New York: John Wiley & Sons, Inc.Search in Google Scholar

Tewfik, S.R., Abdel Ghani, M.G.A., and Sorour, M.H. (2015). Techno-economic and environmental aspects of the production of medium scale ligno-cellulosic ethanol under Egyptian conditions. Egypt. J. Pet. 24: 375–381, https://doi.org/10.1016/j.ejpe.2015.10.002.Search in Google Scholar

Thi, L. (2018). Entrainer selection for separation of azeotropic mixtures by distillation methods. Vietnam J. Sci. Technol. 56: 89, https://doi.org/10.15625/2525-2518/56/4a/12952.Search in Google Scholar

Tomaszewska, M. and Biaonczyk, L. (2011). The investigation of ethanol separation by the membrane distillation process. Pol. J. Chem. Technol. 13: 66–69, https://doi.org/10.2478/v10026-011-0040-7.Search in Google Scholar

Torres-Ortega, C.E., Segovia-Hernández, J.G., Hernández, S., Hernández, H., Bonilla-Petriciolet, A., and Maya-Yescas, R. (2009). Design and optimization of thermally coupled distillation sequences for purification of bioethanol. Comput. Aided Chem. Eng. 27: 957–962, https://doi.org/10.1016/s1570-7946(09)70380-3.Search in Google Scholar

Toth, A.J., Haaz, E., Valentinyi, N., Nagy, T., Tarjani, A.J., Fozer, D., Andre, A., Mohamed, S.A.K., Solti, S., and Mizsey, P. (2018). Selection between separation alternatives: membrane flash index (MFLI). Ind. Eng. Chem. Res. 57: 11366–11373, https://doi.org/10.1021/acs.iecr.8b00430.Search in Google Scholar

Toth, A.J., Szilagyi, B., Fozer, D., Haaz, E., Khaled, A., Selim, M., Szőri, M., Viskolcz, B., and Mizsey, P. (2020). Membrane flash index: powerful and perspicuous help for efficient separation system design. ACS Omega 5: 15136–15145, https://doi.org/10.1021/acsomega.0c01063.Search in Google Scholar PubMed PubMed Central

Trent, R.E. (1993). Fundamentals of molecular sieve design, Presented at the American Institute of Chemical Engineers (AIChE) Spring National Meeting, 28 March - 1 April, Huston, Texas, New York.Search in Google Scholar

Treybal, R. (1981). Mass-transfer operations, 3rd ed. Singapore: McGraw-Hill Education.Search in Google Scholar

Tsuyumoto, M., Tetamoto, A., and Meares, P. (1997). Dehydration of ethanol on a pilot – plant scale, using a new type of hollow-fiber membrane. J. Membr. Sci. 133: 83–94, https://doi.org/10.1016/s0376-7388(97)00090-2.Search in Google Scholar

Tututi-Avila, S., Jimenez-Gutierrez, A., and Hahn, J. (2014). Control analysis of an extractive dividing-wall column used for ethanol dehydration. Chem. Eng. Process 82: 88–100, https://doi.org/10.1016/j.cep.2014.05.005.Search in Google Scholar

Udriot, H., Ampuero, S., Marison, I.W., and Stockar, U. (1989). Extractive fermentation of ethanol using membrane distillation. Biotechnol. Lett. 11: 509–514, https://doi.org/10.1007/bf01026651.Search in Google Scholar

Ueno, K., Negishi, H., Okuno, T., Saito, T., Tawarayama, H., Ishikawa, S., Miyamoto, M., Uemiya, S., Sawada, Y., and Oumi, Y. (2017). High-performance silicalite-1 membranes on porous tubular silica supports for separation of ethanol/water mixtures. Separ. Purif. Technol. 187: 343–354, https://doi.org/10.1016/j.seppur.2017.06.071.Search in Google Scholar

Ullmann (2003). Encyclopedia of industrial chemistry, 6th ed. 10. Wiley - VCH, Weinheim, Germany, pp. 698–699.Search in Google Scholar

Vane, L.M., Alvarez, F.R., Huangb, Y., and Baker, R.W. (2010). Experimental validation of hybrid distillation-vapor permeation process for energy efficient ethanol–water separation. J. Chem. Technol. Biotechnol. 85: 502–511.10.1002/jctb.2318Search in Google Scholar

Vasudevan, P., Sharma, S., and Kumar, A. (2005). Liquid fuel from biomass: an overview. J. Sci. Ind. Res. 64: 822–831.Search in Google Scholar

Verhoef, A., Degrève, J., Huybrechs, B., Paul Pex, H.V.V., and Bruggen, B.V.D. (2008). Simulation of a hybrid pervaporation-distillation process. Comput. Chem. Eng. 32: 1135–1146, https://doi.org/10.1016/j.compchemeng.2007.04.014.Search in Google Scholar

Wang, Y., Gong, C., Sun, J., Gao, H., Zheng, S., and Xu, S. (2010). Separation of ethanol/water azeotrope using compound starch-based adsorbents. Bioresour. Technol. 101: 6170–6176, https://doi.org/10.1016/j.biortech.2010.02.102.Search in Google Scholar PubMed

Wang, X., Jiang, J., Liu, D., Xue, Y., Zhang, C., and Gu, X. (2016). Evaluation of hollow fiber T-type zeolite membrane modules for ethanol dehydration. Chin. J. Chem. Eng. 27: 581–586.10.1016/j.cjche.2016.10.025Search in Google Scholar

Web reference 1, http://www.greenerindustry.org.uk/pages/ethanol/ethanol4PMS.htm (Accessed 16 December 2020).Search in Google Scholar

Westgate, P.J. and Ladisch, M.R. (1993). Sorption of organics and water on starch. Ind. Eng. Chem. Res. 32: 1676, https://doi.org/10.1021/ie00020a020.Search in Google Scholar

Woldemariam, D., Kullab, A., Khan, E.U., and Martin, A. (2018). Recovery of ethanol from scrubber-water by district heat-driven membrane distillation: industrial-scale techno economic study. J. Renew. 128: 484–494, https://doi.org/10.1016/j.renene.2017.06.009.Search in Google Scholar

Wu, Y., Xiao, Z.Y., Huang, W.X., and Zhong, Y.H. (2005). Mass transfer in pervaporation of active fermentation broth with a composite PDMS membrane. Separ. Purif. Technol. 42: 47–53, https://doi.org/10.1016/j.seppur.2004.06.003.Search in Google Scholar

Xie, S., Song, W., Yi, C., and Qiu, X. (2017). Salting-out extraction systems of ethanol and water induced by high-solubility inorganic electrolytes. J. Ind. Eng. Chem. 56: 145–150, https://doi.org/10.1016/j.jiec.2017.07.006.Search in Google Scholar

Xie, H.R., Ji, C.H., Xue, S.M., Xu, Z.L., Yang, H., and Ma, X.H. (2018). Enhanced pervaporation performance of SA-PFSA/ceramic hybrid membranes for ethanol dehydration. Separ. Purif. Technol. 206: 218–225, https://doi.org/10.1016/j.seppur.2018.05.060.Search in Google Scholar

Xu, Y.M., Tang, Y.P., Chunga, T.S., Weber, M., and Maletzko, C. (2017). Polyarylether membranes for dehydration of ethanol and methanol via pervaporation. Separ. Purif. Technol. 193: 165–174.10.1016/j.seppur.2017.11.004Search in Google Scholar

Zentou, H., Abidin, Z.Z., Yunus, R., Awang Biak, D.R., and Korelskiy, D. (2019). Overview of alternative ethanol removal techniques for enhancing bioethanol recovery from fermentation broth. Processes 7: 458, https://doi.org/10.3390/pr7070458.Search in Google Scholar

Zhao, C., Wu, H., Li, X., Pan, F., Li, Y., Zhao, J., Jiang, Z., Zhang, P., Cao, X., and Wang, B. (2013). High performance composite membranes with a polycarbophil calcium transition layer for pervaporation dehydration of ethanol. J. Membr. Sci. 429: 409–417, https://doi.org/10.1016/j.memsci.2012.11.063.Search in Google Scholar

Zhao, L., Lyu, X., Wang, W., Shan, J., and Qiu, T. (2017). Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation. Comput. Chem. Eng. 100: 27–37, https://doi.org/10.1016/j.compchemeng.2017.02.007.Search in Google Scholar

Zhu, Z., Ri, Y., Li, M., Jia, H., Wang, Y., and Wang, Y. (2016). Extractive distillation for ethanol dehydration using imidazolium-based ionic liquids as solvents. Chem. Eng. Process 109: 190–198, https://doi.org/10.1016/j.cep.2016.09.009.Search in Google Scholar

Received: 2020-12-23
Accepted: 2021-06-21
Published Online: 2021-08-18
Published in Print: 2023-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2020-0114/html
Scroll to top button