Skip to main content
Log in

Modification of alternative splicing in bovine somatic cell nuclear transfer embryos using engineered CRISPR-Cas13d

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Animal cloning can be achieved by somatic cell nuclear transfer (SCNT), but the resulting live birth rate is relatively low. We previously improved the efficiency of bovine SCNT by exogenous melatonin treatment or by overexpression of lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E). In this study, we revealed abundant alternative splicing (AS) transitions during fertilization and embryonic genome activation, and demonstrated abnormal AS in bovine SCNT embryos compared with in vitro fertilized embryos. We used the CRISPR-Cas13d RNA-targeting system to target cis-elements of ABI2 and ZNF106 pre-mRNA to modify AS, thus reducing the ratio of abnormal-isoform SCNT embryos by nearly 50% and achieving a high survival rate (11%–19%). These results indicate that this system may provide an efficient method for bovine cloning, while also paving the way for further improvements in the efficiency of SCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data and materials availability

All data needed to evaluate the conclusions in the paper are presented in the paper and/or the Supplementary Materials. The RNA-sequencing data used in this study were obtained from the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession numbers GSE38495, GSE45719 and GSE121227.

References

  • Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B.T., Shmakov, S., Makarova, K.S., Semenova, E., Minakhin, L., et al. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aoki, F., Worrad, D.M., and Schultz, R.M. (1997). Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181, 296–307.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, T.L. (2011). DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27, 1653–1659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baralle, F.E., and Giudice, J. (2017). Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18, 437–451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbosa-Morais, N.L., Irimia, M., Pan, Q., Xiong, H.Y., Gueroussov, S., Lee, L.J., Slobodeniuc, V., Kutter, C., Watt, S., Colak, R., et al. (2012). The evolutionary landscape of alternative splicing in vertebrate species. Science 338, 1587–1593.

    Article  PubMed  CAS  Google Scholar 

  • Bhate, A., Parker, D.J., Bebee, T.W., Ahn, J., Arif, W., Rashan, E.H., Chorghade, S., Chau, A., Lee, J.H., Anakk, S., et al. (2015). ESRP2 controls an adult splicing programme in hepatocytes to support postnatal liver maturation. Nat Commun 6, 8768.

    Article  PubMed  Google Scholar 

  • Constant, F., Guillomot, M., Heyman, Y., Vignon, X., Laigre, P., Servely, J. L., Renard, J.P., and Chavatte-Palmer, P. (2006). Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois. Biol Reprod 75, 122–130.

    Article  PubMed  CAS  Google Scholar 

  • Deng, Q., Ramsköld, D., Reinius, B., and Sandberg, R. (2014). Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196.

    Article  PubMed  CAS  Google Scholar 

  • Dillies, M.A., Rau, A., Aubert, J., Hennequet-Antier, C., Jeanmougin, M., Servant, N., Keime, C., Marot, G., Castel, D., Estelle, J., et al. (2013). A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 14, 671–683.

    Article  PubMed  CAS  Google Scholar 

  • East-Seletsky, A., O’Connell, M.R., Burstein, D., Knott, G.J., and Doudna, J.A. (2017). RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol Cell 66, 373–383.e3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan, R., Chai, Z., Xing, S., Chen, K., Qiu, F., Chai, T., Qiu, J.L., Zhang, Z., Zhang, H., and Gao, C. (2020). Shortening the sgRNA-DNA interface enables SpCas9 and eSpCas9(1.1) to nick the target DNA strand. Sci China Life Sci 63, 1619–1630.

    Article  PubMed  CAS  Google Scholar 

  • Gao, Y., Wu, H., Wang, Y., Liu, X., Chen, L., Li, Q., Cui, C., Liu, X., Zhang, J., and Zhang, Y. (2017). Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol 18, 13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grasberger, H., Ye, H., Mashima, H., and Bell, G.I. (2005). Dual promoter structure of ZFP106: regulation by myogenin and nuclear respiratory factor-1. Gene 344, 143–159.

    Article  PubMed  CAS  Google Scholar 

  • Grove, M., Demyanenko, G., Echarri, A., Zipfel, P.A., Quiroz, M.E., Rodriguiz, R.M., Playford, M., Martensen, S.A., Robinson, M.R., Wetsel, W.C., et al. (2004). ABI2-deficient mice exhibit defective cell migration, aberrant dendritic spine morphogenesis, and deficits in learning and memory. Mol Cell Biol 24, 10905–10922.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hatayama, M., and Aruga, J. (2010). Characterization of the tandem CWCH2 sequence motif: a hallmark of inter-zinc finger interactions. BMC Evol Biol 10, 53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44–57.

    Article  CAS  Google Scholar 

  • Ide, S., and Dejardin, J. (2015). End-targeting proteomics of isolated chromatin segments of a mammalian ribosomal RNA gene promoter. Nat Commun 6, 6674.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14, R36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Konermann, S., Lotfy, P., Brideau, N.J., Oki, J., Shokhirev, M.N., and Hsu, P.D. (2018). Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676.e14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, J., Wang, Y., Su, J., Luo, Y., Quan, F., and Zhang, Y. (2013a). Nuclear donor cell lines considerably influence cloning efficiency and the incidence of large offspring syndrome in bovine somatic cell nuclear transfer. Reprod Domest Anim 48, 660–664.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Wang, Y., Guo, W., Chang, B., Liu, J., Guo, Z., Quan, F., and Zhang, Y. (2013b). Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun 4, 2565.

    Article  PubMed  Google Scholar 

  • Liu, X., Wang, Y., Gao, Y., Su, J., Zhang, J., Xing, X., Zhou, C., Yao, K., An, Q., and Zhang, Y. (2018). H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development 145.

  • Luco, R.F., Pan, Q., Tominaga, K., Blencowe, B.J., Pereira-Smith, O.M., and Misteli, T. (2010). Regulation of alternative splicing by histone modifications. Science 327, 996–1000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matoba, S., and Zhang, Y. (2018). Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell Stem Cell 23, 471–485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ring, C., Ginsberg, M.H., Haling, J., and Pendergast, A.M. (2011). Abl-interactor-1 (Abi1) has a role in cardiovascular and placental development and is a binding partner of the α4 integrin. Proc Natl Acad Sci USA 108, 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Osorio, N., Urrego, R., Cibelli, J.B., Eilertsen, K., and Memili, E. (2012). Reprogramming mammalian somatic cells. Theriogenology 78, 1869–1886.

    Article  PubMed  CAS  Google Scholar 

  • Shendure, J., Balasubramanian, S., Church, G.M., Gilbert, W., Rogers, J., Schloss, J.A., and Waterston, R.H. (2017). DNA sequencing at 40: past, present and future. Nature 550, 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Shmakov, S., Abudayyeh, O.O., Makarova, K.S., Wolf, Y.I., Gootenberg, J. S., Semenova, E., Minakhin, L., Joung, J., Konermann, S., Severinov, K., et al. (2015). Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60, 385–397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su, J., Wang, Y., Xing, X., Zhang, L., Sun, H., and Zhang, Y. (2015). Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos. J Pineal Res 59, 455–468.

    Article  PubMed  CAS  Google Scholar 

  • Thorvaldsdóttir, H., Robinson, J.T., and Mesirov, J.P. (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14, 178–192.

    Article  PubMed  Google Scholar 

  • Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7, 562–578.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, E.T., Ward, A.J., Cherone, J.M., Giudice, J., Wang, T.T., Treacy, D. J., Lambert, N.J., Freese, P., Saxena, T., Cooper, T.A., et al. (2015). Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Genome Res 25, 858–871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, H., Wang, Y., Zhang, Y., Yang, M., Lv, J., Liu, J., and Zhang, Y. (2015). TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci USA 112, E1530–E1539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan, W.X., Chong, S., Zhang, H., Makarova, K.S., Koonin, E.V., Cheng, D. R., and Scott, D.A. (2018). Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell 70, 327–339.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young, L.E., Sinclair, K.D., and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev Reprod 3, 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Zagore, L.L., Grabinski, S.E., Sweet, T.J., Hannigan, M.M., Sramkoski, R. M., Li, Q., and Licatalosi, D.D. (2015). RNA binding protein Ptbp2 is essential for male germ cell development. Mol Cell Biol 35, 4030–4042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, X., Chen, M.H., Wu, X., Kodani, A., Fan, J., Doan, R., Ozawa, M., Ma, J., Yoshida, N., Reiter, J.F., et al. (2016). Cell-type-specific alternative splicing governs cell fate in the developing cerebral cortex. Cell 166, 1147–1162.e15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, H.L., Luo, G., Wise, J.A., and Lou, H. (2014). Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 42, 701–713.

    Article  PubMed  CAS  Google Scholar 

  • Zuberi, A.R., Christianson, G.J., Mendoza, L.M., Shastri, N., and Roopenian, D.C. (1998). Positional cloning and molecular characterization of an immunodominant cytotoxic determinant of the mouse H3 minor histocompatibility complex. Immunity 9, 687–698.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31802153, 32072805 and 31872539), Special Funds for Talents in Northwest A&F University (Z111021512 and Z109021702), Innovation Project of Science and Technology in Shaanxi Province (2018JQ3035) and National Major Project for Production of Transgenic Breeding (2016ZX08007-003). We thank Susan Furness, PhD, from Liwen Bianji (https://www.liwenbianji.cn/) for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Liu, Song Hua, Yongsheng Wang, Yong Zhang or Xu Liu.

Ethics declarations

Compliance and ethics All animal experiments were performed in strict accordance with the Guidelines for the Care and Use of Animals of Northwest A&F University. All experiments were approved by the Care and Use of Animals Centre, Northwest A&F University. All precautions were performed to minimize animal suffering.

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

SI Materials and Methods

mRNA and protein sequencing of the normal ABI2

mRNA and protein sequencing of the abnormal ABI2

mRNA and protein sequencing of the normal ZNF106

mRNA and protein sequencing of the abnormal ZNF106

Supplementary material, approximately 85.3 KB.

Supplementary material, approximately 144 KB.

Supplementary material, approximately 186 KB.

Supplementary material, approximately 174 KB.

Supplementary material, approximately 99.3 KB.

Supplementary material, approximately 271 KB.

Supplementary material, approximately 170 KB.

Supplementary material, approximately 162 KB.

Supplementary material, approximately 104 KB.

Supplementary material, approximately 141 KB.

Supplementary material, approximately 130 KB.

Supplementary material, approximately 139 KB.

Supplementary material, approximately 454 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, R., Zheng, X., Wang, Y. et al. Modification of alternative splicing in bovine somatic cell nuclear transfer embryos using engineered CRISPR-Cas13d. Sci. China Life Sci. 65, 2257–2268 (2022). https://doi.org/10.1007/s11427-021-2060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2060-x

Keywords

Navigation