Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plant hormone regulation of abiotic stress responses

A Publisher Correction to this article was published on 30 May 2022

This article has been updated

Abstract

Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Osmotic stress and salinity sensing and signalling in plants.
Fig. 2: Hormonal crosstalk through transcriptional regulation.
Fig. 3: Hormonal control of growth and development during abiotic stress.
Fig. 4: Guard cell signal transduction and stomatal responses to environmental stimuli.

Similar content being viewed by others

Change history

References

  1. Zhu, J. K. Abiotic stress signaling and responses in plants. Cell 167, 313–324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hamann, E. et al. Review: plant eco-evolutionary responses to climate change: emerging directions. Plant Sci. 304, 110737 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Waadt, R. Phytohormone signaling mechanisms and genetic methods for their modulation and detection. Curr. Opin. Plant Biol. 57, 31–40 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, Y. et al. Control of plant water use by ABA induction of senescence and dormancy: an overlooked lesson from evolution. Plant Cell Physiol. 58, 1319–1327 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Yoshida, T., Mogami, J. & Yamaguchi-Shinozaki, K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr. Opin. Plant Biol. 21, 133–139 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Knight, H., Trewavas, A. J. & Knight, M. R. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J. 12, 1067–1078 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Stephan, A. B., Kunz, H. H., Yang, E. & Schroeder, J. I. Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proc. Natl Acad. Sci. USA 113, E5242–E5249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hamilton, E. S. et al. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350, 438–441 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee, C. P. et al. MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress. Plant J. 88, 809–825 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Basu, D. & Haswell, E. S. The mechanosensitive ion channel MSL10 potentiates responses to cell swelling in Arabidopsis seedlings. Curr. Biol. 30, 2716–2728.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Yoshimura, K., Iida, K. & Iida, H. MCAs in Arabidopsis are Ca2+-permeable mechanosensitive channels inherently sensitive to membrane tension. Nat. Commun. 12, 6074 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mori, K. et al. Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+ increase and cold tolerance in Arabidopsis. Sci. Rep. 8, 550 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mousavi, S. A. R. et al. PIEZO ion channel is required for root mechanotransduction in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 118, (2021).

  14. Radin, I. et al. Plant PIEZO homologs modulate vacuole morphology during tip growth. Science 373, 586–590 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Yuan, F. et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367–371 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Jojoa-Cruz, S. et al. Cryo-EM structure of the mechanically activated ion channel OSCA1.2. eLife 7, (2018).

  17. Zhang, M. et al. Structure of the mechanosensitive OSCA channels. Nat. Struct. Mol. Biol. 25, 850–858 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, K. et al. BONZAI proteins control global osmotic stress responses in plants. Curr. Biol. 30, 4815–4825.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Yang, D. L. et al. Calcium pumps and interacting BON1 protein modulate calcium signature, stomatal closure, and plant immunity. Plant Physiol. 175, 424–437 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, Z. et al. A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants. Nat. Commun. 11, (2020).

  21. Choi, W. G., Toyota, M., Kim, S. H., Hilleary, R. & Gilroy, S. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc. Natl Acad. Sci. USA 111, 6497–6502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feng, W. et al. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr. Biol. 28, 666–675.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, J. et al. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc. Natl Acad. Sci. USA 113, E5519–E5527 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang, Z. et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature 572, 341–346 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Ma, L. et al. The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress. Dev. Cell 48, 697–709.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Christmann, A., Weiler, E. W., Steudle, E. & Grill, E. A hydraulic signal in root-to-shoot signalling of water shortage. Plant J. 52, 167–174 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Ikegami, K., Okamoto, M., Seo, M. & Koshiba, T. Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. J. Plant Res. 122, 235–243 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Waadt, R. et al. FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. eLife 3, e01739 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Urano, K. et al. Analysis of plant hormone profiles in response to moderate dehydration stress. Plant J. 90, 17–36 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Sato, H. et al. Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress. Proc. Natl Acad. Sci. USA 115, E11178–E11187 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kalladan, R. et al. Natural variation in 9-cis-epoxycartenoid dioxygenase 3 and ABA accumulation. Plant Physiol. 179, 1620–1631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takahashi, F. et al. A small peptide modulates stomatal control via abscisic acid in long-distance signaling. Nature 556, 235–238 (2018). The authors discovered a long-distance root-to-shoot CLE25 peptide signalling mechanism in Arabidopsis that contributes to the drought induction of ABA biosynthesis in leaves.

    Article  CAS  PubMed  Google Scholar 

  33. Jensen, M. K. et al. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open. Bio 3, 321–327 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshida, R. et al. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 281, 5310–5318 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Mustilli, A. C., Merlot, S., Vavasseur, A., Fenzi, F. & Giraudat, J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 3089–3099 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fujii, H., Verslues, P. E. & Zhu, J. K. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc. Natl Acad. Sci. USA 108, 1717–1722 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boudsocq, M., Barbier-Brygoo, H. & Laurière, C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J. Biol. Chem. 279, 41758–41766 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R. & Abrams, S. R. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651–679 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Boudsocq, M., Droillard, M. J., Barbier-Brygoo, H. & Laurière, C. Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol. Biol. 63, 491–503 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Belin, C. et al. Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol. 141, 1316–1327 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vlad, F. et al. Phospho-site mapping, genetic and in planta activation studies reveal key aspects of the different phosphorylation mechanisms involved in activation of SnRK2s. Plant J. 63, 778–790 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi, Y. et al. MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nat. Commun. 11, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Soma, F., Takahashi, F., Suzuki, T., Shinozaki, K. & Yamaguchi-Shinozaki, K. Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress. Nat. Commun. 11, 1373 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin, Z. et al. Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nat. Commun. 12, 2456 (2021). Together with Takahashi et al. (2020) and Soma et al. (2020), the authors identified M3Ks that represent a convergence point of rapid osmotic stress signalling and ABA signalling via phosphorylation of SnRK2-type protein kinases in Arabidopsis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hauser, F. et al. A genomic-scale artificial microRNA library as a tool to investigate the functionally redundant gene space in Arabidopsis. Plant Cell 25, 2848–2863 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saruhashi, M. et al. Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proc. Natl Acad. Sci. USA 112, E6388–E6396 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Islam, M. et al. Activation of SnRK2 by Raf-like kinase ARK represents a primary mechanism of ABA and abiotic stress responses. Plant Physiol. 185, 533–546 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Stevenson, S. R. et al. Genetic analysis of Physcomitrella patens identifies ABSCISIC ACID NON-RESPONSIVE, a regulator of ABA responses unique to basal land plants and required for desiccation tolerance. Plant Cell 28, 1310–1327 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Binder, B. M. Ethylene signaling in plants. J. Biol. Chem. 295, 7710–7725 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yasumura, Y. et al. An ancestral role for CONSTITUTIVE TRIPLE RESPONSE1 proteins in both ethylene and abscisic acid signaling. Plant Physiol. 169, 283–298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goda, H. et al. The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J. 55, 526–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Finkelstein, R. Abscisic acid synthesis and response. Arabidopsis Book. 11, e0166 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Marcotte, W. R., Russell, S. H. & Quatrano, R. S. Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell 1, 969–976 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fujita, Y., Yoshida, T. & Yamaguchi-Shinozaki, K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol. Plant 147, 15–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Brocard, I. M., Lynch, T. J. & Finkelstein, R. R. Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol. 129, 1533–1543 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carles, C. et al. Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J. 30, 373–383 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Furihata, T. et al. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl Acad. Sci. USA 103, 1988–1993 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fujii, H., Verslues, P. E. & Zhu, J. K. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485–494 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sirichandra, C. et al. The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS ONE 5, e13935 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Yoshida, T. et al. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Env. 38, 35–49 (2015).

    Article  CAS  Google Scholar 

  61. Finkelstein, R., Gampala, S. S. L., Lynch, T. J., Thomas, T. L. & Rock, C. D. Redundant and distinct functions of the ABA response loci ABA-insensitive(ABI)5 and ABRE-binding factor (ABF)3. Plant Mol. Biol. 59, 253–267 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Fujita, M. et al. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39, 863–876 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, J. S. et al. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol. 52, 2136–2146 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Song, L. et al. A transcription factor hierarchy defines an environmental stress response network. Science 354, aag1550 (2016). The authors conducted chromatin immunoprecipitation followed by sequencing to identify genome-wide targets of 21 ABA-related transcription factors, which lead to the description of a dynamic and hierarchical transcription factor regulatory network and the discovery of previously unknown transcriptional regulators that modulate ABA-related environmental stress responses in Arabidopsis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Hwang, K., Susila, H., Nasim, Z., Jung, J. Y. & Ahn, J. H. Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Mol. Plant 12, 489–505 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Xu, Z. Y. et al. The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell 25, 4708–4724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Takasaki, H. et al. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. Plant J. 84, 1114–1123 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Han, S. K. et al. The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24, 4892–4906 (2013).

    Article  CAS  Google Scholar 

  69. Peirats-Llobet, M. et al. A direct link between abscisic acid sensing and the chromatin-remodeling ATPase BRAHMA via core ABA signaling pathway components. Mol. Plant 9, 136–147 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Vanstraelen, M. & Benkov, E. Hormonal interactions in the regulation of plant development. Annu. Rev. Cell Dev. Biol. 28, 463–487 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Ye, H. et al. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat. Commun. 8, 14573 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun, Y. et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev. Cell 19, 765–777 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fàbregas, N. et al. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat. Commun. 9, 4680 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Huang, X. et al. The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Mol. Plant 11, 970–982 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Guan, C. et al. Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of ABSCISIC ACID INSENSITIVE5 protein in Arabidopsis. Plant Physiol. 164, 1515–1526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shani, E. et al. Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors. Curr. Biol. 27, 437–444 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hugouvieux, V., Kwak, J. M. & Schroeder, J. I. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106, 477–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Cui, P., Zhang, S., Ding, F., Ali, S. & Xiong, L. Dynamic regulation of genome-wide pre-mRNA splicing and stress tolerance by the Sm-like protein LSm5 in Arabidopsis. Genome Biol. 15, R1 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Wang, Z. et al. ABA signalling is fine-tuned by antagonistic HAB1 variants. Nat. Commun. 6, 8138 (2015).

    Article  PubMed  Google Scholar 

  80. Zhan, X. et al. An Arabidopsis PWI and RRM motif-containing protein is critical for pre-mRNA splicing and ABA responses. Nat. Commun. 6, 8139 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Carrasco-López, C. et al. Environment-dependent regulation of spliceosome activity by the LSM2-8 complex in Arabidopsis. Nucleic Acids Res. 45, 7416–7431 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ma, Y. et al. Arabidopsis exoribonuclease USB1 interacts with the PPR-domain protein SOAR1 to negatively regulate abscisic acid signaling. J. Exp. Bot. 71, 5837–5851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schoenberg, D. R. & Maquat, L. E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13, 246–259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Soma, F. et al. ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants. Nat. Plants 3, (2017).

  85. Wang, Y. et al. NAD+-capped RNAs are widespread in the Arabidopsis transcriptome and can probably be translated. Proc. Natl Acad. Sci. USA 116, 12094–12102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, H. et al. NAD tagSeq reveals that NAD+-capped RNAs are mostly produced from a large number of protein-coding genes in Arabidopsis. Proc. Natl Acad. Sci. USA 116, 12072–12077 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yu, X. et al. Messenger RNA 5′ NAD+ capping is a dynamic regulatory epitranscriptome mark that is required for proper response to abscisic acid in Arabidopsis. Dev. Cell 56, 125–140.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Xiong, Y. & Sheen, J. The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol. 164, 499–512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, P. et al. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol. Cell 69, 100–112.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Sun, T. P. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr. Biol. 21, R338–R345 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Davière, J. M. & Achard, P. A pivotal role of DELLAs in regulating multiple hormone signals. Mol. Plant 9, 10–20 (2016).

    Article  PubMed  CAS  Google Scholar 

  92. Lim, S. et al. ABA-insensitive3, ABA-insensitive5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25, 4863–4878 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hu, Y. et al. The transcription factor INDUCER OF CBF EXPRESSION1 interacts with ABSCISIC ACID INSENSITIVE5 and DELLA proteins to fine-tune abscisic acid signaling during seed germination in Arabidopsis. Plant Cell 31, 1520–1538 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen, H. et al. Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc. Natl Acad. Sci. USA 105, 4495–4500 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, X. et al. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nat. Commun. 7, 12768 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yu, L. H. et al. Arabidopsis MADS-box transcription factor AGL21 acts as environmental surveillance of seed germination by regulating ABI5 expression. Mol. Plant 10, 834–845 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Yang, B. et al. RSM1, an Arabidopsis MYB protein, interacts with HY5/HYH to modulate seed germination and seedling development in response to abscisic acid and salinity. PLoS Genet. 14, e1007839 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Dinneny, J. R. Developmental responses to water and salinity in root systems. Annu. Rev. Cell Dev. Biol. 35, 239–257 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, H. et al. ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. Plant J. 64, 764–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Takahashi, N., Goto, N., Okada, K. & Takahashi, H. Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216, 203–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Dietrich, D. et al. Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat. Plants 3, 17057 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Miao, R. et al. Low ABA concentration promotes root growth and hydrotropism through relief of ABA INSENSITIVE 1-mediated inhibition of plasma membrane H+-ATPase 2. Sci. Adv. 7, 4113–4130 (2021).

    Article  CAS  Google Scholar 

  103. Miao, R. et al. Comparative analysis of Arabidopsis ecotypes reveals a role for brassinosteroids in root hydrotropism. Plant Physiol. 176, 2720–2736 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Duan, L. et al. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25, 324–341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Galvan-Ampudia, C. S. et al. Halotropism is a response of plant roots to avoid a saline environment. Curr. Biol. 23, 2044–2050 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Korver, R. A. et al. Halotropism requires phospholipase Dζ1-mediated modulation of cellular polarity of auxin transport carriers. Plant Cell Env. 43, 143–158 (2020).

    Article  CAS  Google Scholar 

  107. Kaneyasu, T. et al. Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. J. Exp. Bot. 58, 1143–1150 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Shkolnik, D., Krieger, G., Nuriel, R. & Fromm, H. Hydrotropism: root bending does not require auxin redistribution. Mol. Plant 9, 757–759 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Ramachandran, P., Wang, G., Augstein, F., De Vries, J. & Carlsbecker, A. Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Dev. 145, (2018).

  110. Bloch, D., Puli, M. R., Mosquna, A. & Yalovsky, S. Abiotic stress modulates root patterning via ABA-regulated microRNA expression in the endodermis initials. Dev. 146, dev159202 (2019).

    Google Scholar 

  111. Ramachandran, P. et al. Abscisic acid signaling activates distinct VND transcription factors to promote xylem differentiation in Arabidopsis. Curr. Biol. 31, 3153–3161.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. De Smet, I. et al. Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134, 681–690 (2007).

    Article  PubMed  CAS  Google Scholar 

  113. Moreno-Risueno, M. A. et al. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329, 1306–1311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bao, Y. et al. Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc. Natl Acad. Sci. USA 111, 9319–9324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Orosa-Puente, B. et al. Root branching toward water involves posttranslational modification of transcription factor ARF7. Science 362, 1407–1410 (2018). The authors discovered that hydropatterning, the preferential formation of lateral roots at the side which is in contact with moisture, is mediated by the auxin response factor ARF7 and its post-translational regulation via sumoylation.

    Article  CAS  PubMed  Google Scholar 

  116. Orman-Ligeza, B. et al. The xerobranching response represses lateral root formation when roots are not in contact with water. Curr. Biol. 28, 3165–3173.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Andrés, F. & Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13, 627–639 (2012).

    Article  PubMed  CAS  Google Scholar 

  118. Riboni, M., Galbiati, M., Tonelli, C. & Conti, L. GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR of OVEREXPRESSION of CONSTANS. Plant Physiol. 162, 1706–1719 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, P. et al. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl Acad. Sci. USA 110, 11205–11210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Riboni, M., Test, A. R., Galbiati, M., Tonelli, C. & Conti, L. ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. J. Exp. Bot. 67, 6309–6322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Achard, P. et al. Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Achard, P. et al. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc. Natl Acad. Sci. USA 104, 6484–6489 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, H. et al. The DELLA-CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering. Plant Physiol. 172, 479–488 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim, W. Y. et al. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat. Commun. 4, 1352 (2013).

    Article  PubMed  CAS  Google Scholar 

  125. Voesenek, L. A. C. J. & Bailey-Serres, J. Flood adaptive traits and processes: an overview. N. Phytol. 206, 57–73 (2015).

    Article  CAS  Google Scholar 

  126. Hartman, S., Sasidharan, R. & Voesenek, L. A. C. J. The role of ethylene in metabolic acclimations to low oxygen. N. Phytol. 229, 64–70 (2021).

    Article  CAS  Google Scholar 

  127. Lee, T. A. & Bailey-Serres, J. Conserved and nuanced hierarchy of gene regulatory response to hypoxia. N. Phytol. 229, 71–78 (2021).

    Article  CAS  Google Scholar 

  128. Gasch, P. et al. Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-motif to regulate hypoxia-responsive gene expression in Arabidopsis. Plant Cell 28, 160–180 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Xu, K. et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705–708 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Gibbs, D. J. et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479, 415–418 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Licausi, F. et al. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479, 419–422 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Hartman, S. et al. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat. Commun. 10, 4020 (2019). The authors discovered that early ethylene signalling upon submergence increases the expression and abundance of the NO scavenger PHYTOGLOBIN 1, leading to the depletion of NO gas, thereby limiting the turnover of group VII ERFs to enhance the acclimation of Arabidopsis plants to hypoxia during flooding.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Lin, C. C. et al. Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence. Proc. Natl Acad. Sci. USA 116, 3300–3309 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Reynoso, M. A. et al. Evolutionary flexibility in flooding response circuitry in angiosperms. Science 365, 1291–1295 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hattori, Y. et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026–1030 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Kuroha, T. et al. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 361, 181–186 (2018). The authors discovered that ethylene signalling via the ethylene-responsive transcription factor OsEIL1a activates the transcription of the gibberellin biosynthesis gene SD1 to promote internode elongation, allowing deepwater rice varieties to grow above water levels.

    Article  CAS  PubMed  Google Scholar 

  137. Nagai, K. et al. Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature 584, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Pandey, B. K. et al. Plant roots sense soil compaction through restricted ethylene diffusion. Science 371, 276–280 (2021). The authors discovered that in compacted soil, ethylene gas diffusion is limited, leading to ethylene accumulation in root tissues and an enhanced ethylene response, which results in the suppression of root growth in rice and Arabidopsis.

    Article  CAS  PubMed  Google Scholar 

  139. Endo, A. et al. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol. 147, 1984–1993 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bauer, H. et al. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr. Biol. 23, 53–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Schroeder, J. I. & Keller, B. U. Two types of anion channel currents in guard cells with distinct voltage regulation. Proc. Natl Acad. Sci. USA 89, 5025–5029 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Negi, J. et al. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452, 483–486 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Vahisalu, T. et al. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452, 487–491 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Meyer, S. et al. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J. 63, 1054–1062 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Ward, J. M., M̈aser, P. & Schroeder, J. I. Plant ion channels: gene families, physiology, and functional genomics analyses. Annu. Rev. Physiol. 71, 59–82 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hosy, E. et al. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc. Natl Acad. Sci. USA 100, 5549–5554 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Geiger, D. et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc. Natl Acad. Sci. USA 106, 21425–21430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee, S. C., Lan, W., Buchanan, B. B. & Luan, S. A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc. Natl Acad. Sci. USA 106, 21419–21424 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Imes, D. et al. Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant J. 74, 372–382 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Vlad, F. et al. Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21, 3170–3184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Umezawa, T. et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc. Natl Acad. Sci. USA 106, 17588–17593 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Brandt, B. et al. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. eLife 4, e03599 (2015).

    Article  PubMed Central  Google Scholar 

  153. Eisenach, C. & Angeli, De A. Ion transport at the vacuole during stomatal movements. Plant Physiol. 174, 520–530 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Geiger, D. et al. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc. Natl Acad. Sci. USA 107, 8023–8028 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hamilton, D. W. A., Hills, A., Köhler, B. & Blatt, M. R. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc. Natl Acad. Sci. USA 97, 4967–4972 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pei, Z. M. et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406, 731–734 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Sirichandra, C. et al. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett. 583, 2982–2986 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Han, J. P. et al. Fine-tuning of RBOHF activity is achieved by differential phosphorylation and Ca2+ binding. N. Phytol. 221, 1935–1949 (2019).

    Article  CAS  Google Scholar 

  159. Wu, F. et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 578, 577–581 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Hua, D. et al. A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24, 2546–2561 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sierla, M. et al. The receptor-like pseudokinase GHR1 is required for stomatal closure. Plant Cell 30, 2813–2837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang, L., Wan, R., Shi, Y. & Xue, S. Hydrogen sulfide activates S-type anion channel via OST1 and Ca2+ modules. Mol. Plant 9, 489–491 (2016).

    Article  PubMed  CAS  Google Scholar 

  163. Pantaleno, R., Scuffi, D. & García-Mata, C. Hydrogen sulphide as a guard cell network regulator. N. Phytol. 230, 451–456 (2021).

    Article  CAS  Google Scholar 

  164. Xu, B. et al. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat. Commun. 12, 1952 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Hiyama, A. et al. Blue light and CO2 signals converge to regulate light-induced stomatal opening. Nat. Commun. 8, 1284 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Ando, E. & Kinoshita, T. Red light-induced phosphorylation of plasma membrane H+-ATPase in stomatal guard cells. Plant Physiol. 178, 838–849 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Inoue, S. I. & Kinoshita, T. Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. Plant Physiol. 174, 531–538 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wong, J. H. et al. SAUR proteins and PP2C.D phosphatases regulate H+-ATPases and K+ channels to control stomatal movements. Plant Physiol. 185, 256–273 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Sato, A. et al. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem. J. 424, 439–448 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Siegel, R. S. et al. Calcium elevation-dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K+ channels in Arabidopsis guard cells. Plant J. 59, 207–220 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Takahashi, Y. et al. BHLH transcription factors that facilitate K+ uptake during stomatal opening are repressed by abscisic acid through phosphorylation. Sci. Signal. 6, ra48 (2013).

    Article  PubMed  Google Scholar 

  172. Hsu, P. K. et al. Abscisic acid-independent stomatal CO2 signal transduction pathway and convergence of CO2 and ABA signaling downstream of OST1 kinase. Proc. Natl Acad. Sci. USA 115, E9971–E9980 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yamamoto, Y. et al. The transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis. Plant Cell 28, 557–567 (2015).

    Article  CAS  Google Scholar 

  174. Zhang, J. et al. Identification of SLAC1 anion channel residues required for CO2/bicarbonate sensing and regulation of stomatal movements. Proc. Natl Acad. Sci. USA 115, 11129–11137 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhang, L. et al. FRET kinase sensor development reveals SnRK2/OST1 activation by ABA but not by MeJA and high CO2 during stomatal closure. eLife 9, e56351 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hashimoto-Sugimoto, M. et al. Dominant and recessive mutations in the Raf-like kinase HT1 gene completely disrupt stomatal responses to CO2 in Arabidopsis. J. Exp. Bot. 67, 3251–3261 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hõrak, H. et al. A dominant mutation in the ht1 kinase uncovers roles of MAP kinases and GHR1 in CO2-induced stomatal closure. Plant Cell 28, 2493–2509 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Waters, M. T., Gutjahr, C., Bennett, T. & Nelson, D. C. Strigolactone signaling and evolution. Annu. Rev. Plant Biol. 68, 291–322 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Ha, C. V. et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl Acad. Sci. USA 111, 851–856 (2014).

    Article  PubMed  CAS  Google Scholar 

  180. Li, W. et al. Comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVE 2 in drought adaptation of Arabidopsis thaliana. Plant J. 103, 111–127 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Nguyen, K. H. et al. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc. Natl Acad. Sci. USA 113, 3090–3095 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Devireddy, A. R., Zandalinas, S. I., Gómez-Cadenas, A., Blumwald, E. & Mittler, R. Coordinating the overall stomatal response of plants: rapid leaf-to-leaf communication during light stress. Sci. Signal. 11, eaam9514 (2018).

    Article  PubMed  CAS  Google Scholar 

  183. Ehonen, S., Hölttä, T. & Kangasjärvi, J. Systemic signaling in the regulation of stomatal conductance. Plant Physiol. 182, 1829–1832 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zandalinas, S. I. et al. Systemic signaling during abiotic stress combination in plants. Proc. Natl Acad. Sci. USA 117, 13810–13820 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Havko, N. E. et al. Insect herbivory antagonizes leaf cooling responses to elevated temperature in tomato. Proc. Natl Acad. Sci. USA 117, 2211–2217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Inoue, S. I. et al. Brassinosteroid involvement in Arabidopsis thaliana stomatal opening. Plant Cell Physiol. 58, 1048–1058 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Isoda, R. et al. Sensors for the quantification, localization and analysis of the dynamics of plant hormones. Plant J. 105, 542–557 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Zhao, C., Yaschenko, A., Alonso, J. M. & Stepanova, A. N. Leveraging synthetic biology approaches in plant hormone research. Curr. Opin. Plant Biol. 60, 101998 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Jones, A. M. et al. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eLife 3, e01741 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Rizza, A., Walia, A., Lanquar, V., Frommer, W. B. & Jones, A. M. In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat. Plants 3, 803–813 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Chesterfield, R. J. et al. Rational design of novel fluorescent enzyme biosensors for direct detection of strigolactones. ACS Synth. Biol. 9, 2107–2118 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Herud-Sikimić, O. et al. A biosensor for the direct visualization of auxin. Nature 592, 768–772 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Waadt, R., Hsu, P. K. & Schroeder, J. I. Abscisic acid and other plant hormones: methods to visualize distribution and signaling. BioEssays 37, 1338–1349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhou, Y., Wang, Y., Li, J. & Liang, J. In vivo FRET-FLIM reveals ER-specific increases in the ABA level upon environmental stresses. Plant Physiol. 186, 1545–1561 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Rizza, A. et al. Differential biosynthesis and cellular permeability explain longitudinal gibberellin gradients in growing roots. Proc. Natl. Acad. Sci. USA 118, e1921960118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Batool, S. et al. Sulfate is incorporated into cysteine to trigger ABA production and stomatal closure. Plant Cell 30, 2973–2987 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ishitani, M., Xiong, L., Stevenson, B. & Zhu, J. K. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9, 1935–1949 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Xiong, L., Lee, H., Ishitani, M. & Zhu, J. K. Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J. Biol. Chem. 277, 8588–8596 (2002).

    Article  CAS  PubMed  Google Scholar 

  199. Ruschhaupt, M. et al. Rebuilding core abscisic acid signaling pathways of Arabidopsis in yeast. EMBO J. 38, 1–14 (2019).

    Article  CAS  Google Scholar 

  200. Wu, R. et al. The 6xABRE synthetic promoter enables the spatiotemporal analysis of ABA-mediated transcriptional regulation. Plant Physiol. 177, 1650–1665 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Rowe, J. H., Topping, J. F., Liu, J. & Lindsey, K. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. N. Phytol. 211, 225–239 (2016).

    Article  CAS  Google Scholar 

  202. Chang, J. et al. Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana. Cell Res. 29, 984–993 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Kirschner, G. K., Stahl, Y., Imani, J., von Korff, M. & Simon, R. Fluorescent reporter lines for auxin and cytokinin signalling in barley (Hordeum vulgare). PLoS ONE 13, e0196086 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Kang, M. S. & Banga, S. S. (eds) in Combating Climate Change: An Agricultural Perspective Ch. 11 (CRC, 2013).

  205. Nuccio, M. L., Paul, M., Bate, N. J., Cohn, J. & Cutler, S. R. Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. Plant Sci. 273, 110–119 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Zsögön, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).

    Article  CAS  Google Scholar 

  207. Barberon, M. et al. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164, 447–459 (2016).

    Article  CAS  PubMed  Google Scholar 

  208. Ding, Y. et al. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev. Cell 32, 278–289 (2015).

    Article  CAS  PubMed  Google Scholar 

  209. Larkindale, J., Hall, J. D., Knight, M. R. & Vierling, E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138, 882–897 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang, R. et al. HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat. Commun. 7, 10269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Reed, J. W. et al. Three auxin response factors promote hypocotyl elongation. Plant Physiol. 178, 864–875 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Sun, J., Qi, L., Li, Y., Chu, J. & Li, C. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet. 8, e1002594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Eremina, M. et al. Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc. Natl Acad. Sci. USA 113, E5982–E5991 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Li, H. et al. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. Mol. Plant 10, 545–559 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Ibañez, C. et al. Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1. Curr. Biol. 28, 303–310.e3 (2018).

    Article  PubMed  CAS  Google Scholar 

  216. Martínez, C. et al. PIF4‐induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO J. 37, e99552 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Nishiyama, R. et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23, 2169–2183 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Wang, Z. et al. GAI functions in the plant response to dehydration stress in Arabidopsis thaliana. Int. J. Mol. Sci. 21, 819 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  219. Lantzouni, O., Alkofer, A., Falter-Braun, P. & Schwechheimer, C. Growth-regulating factors interact with DELLAs and regulate growth in cold stress. Plant Cell 32, 1018–1034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Blanco-Touriñán, N. et al. COP1 destabilizes DELLA proteins in Arabidopsis. Proc. Natl Acad. Sci. USA 117, 13792–13799 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Hu, Y., Jiang, L., Wang, F. & Yu, D. Jasmonate regulates the INDUCER OF CBF Expression–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25, 2907–2924 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Yang, T. et al. The suppressor of MAX2 1 (SMAX1)-like SMXL6, SMXL7 and SMXL8 act as negative regulators in response to drought stress in Arabidopsis. Plant Cell Physiol. 61, 1477–1492 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Lee, J. S., Wilson, M. E., Richardson, R. A. & Haswell, E. S. Genetic and physical interactions between the organellar mechanosensitive ion channel homologs MSL1, MSL2, and MSL3 reveal a role for inter-organellar communication in plant development. Plant Direct 3, e00124 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Waadt, R. et al. Dual-reporting transcriptionally linked genetically encoded fluorescent indicators resolve the spatiotemporal coordination of cytosolic abscisic acid and second messenger dynamics in Arabidopsis. Plant Cell 32, 2582–2601 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Liao, C. Y. et al. Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods 12, 207–210 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Galvan-Ampudia, C. S. et al. Temporal integration of auxin information for the regulation of patterning. eLife 9, e55832 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Khakhar, A., Leydon, A. R., Lemmex, A. C., Klavins, E. & Nemhauser, J. L. Synthetic hormone-responsive transcription factors can monitor and reprogram plant development. eLife 7, e34702 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Li, W. et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163, 670–683 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Merchante, C. et al. Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell 163, 684–697 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to those authors whose research they have not cited due to limitations on the number of references. Research in the authors’ laboratories was supported by grants from the US National Institutes of Health to J.I.S. (GM060396-ES010337) and to C.A.S. (F32GM137544), the National Science Foundation to J.I.S. (MCB-1900567) and the Japan Society for the Promotion of Science to S.M. (18K05557 and 18KK0425).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the writing and revisions of the article.

Corresponding author

Correspondence to Julian I. Schroeder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Jose Dinneny, Matthew Gilliham, Yang Zhao, and the other anonymous, reviewer(s), for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Abiotic stresses

Environmental stresses that are associated with the non-living environment, such as weather conditions or the quality of the soil in which plants grow.

Phytohormones

Plant-derived compounds that function as plant growth regulators either locally or over long distances and at low (submicromolar) concentrations.

Osmotic stress

A sudden change in the ambient solute concentration resulting in the water potential difference between cells and environments effects the tendency of water movement across cell membranes. Hypo-osmotic stress leads to water influx into cells, whereas hyper-osmotic stress leads to water efflux from cells.

Stomata

Small pores in the leaf epidermis that are formed by guard cells to allow the uptake of CO2 for photosynthesis in exchange for water loss.

Mechanosensitive ion channels

Ion channels that respond to mechanical forces, for example, induced by membrane tension.

mRNA decapping

The removal of the 5′ methylguanosine cap, a key step in the regulated degradation of mRNAs.

Seed dormancy

A state in which seed germination is inhibited. ABA signalling promotes seed dormancy, while gibberellin signalling can repress it.

Hydrotropism

The directional growth of roots towards regions of the soil environment with higher water content.

Halotropism

The directional growth of roots away from regions of high salinity.

Xylem

A vascular tissue that conveys water and nutrients from roots to stems and leaves.

Hydropatterning

A water-responsive root developmental programme active when water is asymmetrically available around the circumference of the root. Lateral roots preferentially form on the water-contacting side.

Xerobranching

A water-responsive root developmental programme where the formation of lateral roots is repressed in regions of the soil environment that lack water.

Pericycle cells

A layer of cells that encircle the vascular tissue.

Drought escape

An adaptive response to prolonged drought stress where plants accelerate the transition to flowering in order to reproduce.

Deepwater rice

Varieties of rice (Oryza sativa) that avoid submergence stress by activating stem and leaf elongation to rise above the water surface. This developmental programme depends on the hormones ethylene and gibberellin.

Depolarization

Changes in the cell membrane potential making it more positive.

Hyperpolarization

Changes in the cell membrane potential making it more negative.

Genetically encoded phytohormone indicators

Indicators that allow the in vivo monitoring of hormone levels and downstream hormone signalling responses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waadt, R., Seller, C.A., Hsu, PK. et al. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol 23, 680–694 (2022). https://doi.org/10.1038/s41580-022-00479-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00479-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing