Skip to main content
Log in

Cohomology and deformations of twisted Rota–Baxter operators and NS-algebras

  • Published:
Journal of Homotopy and Related Structures Aims and scope Submit manuscript

Abstract

The aim of this paper is twofold. In the first part, we consider twisted Rota–Baxter operators on associative algebras that were introduced by Uchino as a noncommutative analogue of twisted Poisson structures. We construct an \(L_\infty \)-algebra whose Maurer–Cartan elements are given by twisted Rota–Baxter operators. This leads to cohomology associated to a twisted Rota–Baxter operator. This cohomology can be seen as the Hochschild cohomology of a certain associative algebra with coefficients in a suitable bimodule. We study deformations of twisted Rota–Baxter operators by means of the above-defined cohomology. Application is given to Reynolds operators. In the second part, we consider NS-algebras of Leroux that are related to twisted Rota–Baxter operators in the same way dendriform algebras are related to Rota–Baxter operators. We define cohomology of NS-algebras using non-symmetric operads and study their deformations in terms of the cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 10, 731–742 (1960)

    Article  MathSciNet  Google Scholar 

  2. Rota, G.-C.: Baxter algebras and combinatorial identities, I, II. Bull. Amer. Math. Soc. 75, 325–329 (1969). (ibid. 75 (1969) 330-334.)

    Article  MathSciNet  Google Scholar 

  3. Cartier, P.: On the structure of free Baxter algebras. Adv. Math. 9, 253–265 (1972)

    Article  MathSciNet  Google Scholar 

  4. Aguiar, M.: Pre-poisson algebras. Lett. Math. Phys. 54(4), 263–277 (2000)

    Article  MathSciNet  Google Scholar 

  5. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210(1), 249–273 (2000)

    Article  MathSciNet  Google Scholar 

  6. Guo, L.: An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics. Higher Education Press, Beijing (2012)

    Google Scholar 

  7. Tang, R., Bai, C., Guo, L., Sheng, Y.: Deformations and their controlling cohomologies of \({\cal{O}}\)-operators. Commun. Math. Phys. 368(2), 665–700 (2019)

    Article  MathSciNet  Google Scholar 

  8. Das, A.: Deformations of associative Rota-Baxter operators. J. Algebra 560, 144–180 (2020)

    Article  MathSciNet  Google Scholar 

  9. Uchino, K.: Quantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter operators. Lett. Math. Phys. 85(2–3), 91–109 (2008)

    Article  MathSciNet  Google Scholar 

  10. Ševera, P., Weinstein, A.: Poisson geometry with a \(3\)-form background. Progr. Theoret. Phys. Suppl. 144, 145–154 (2001)

    Article  MathSciNet  Google Scholar 

  11. Zhang, T., Gao, X., Guo, L.: Reynolds operators and their free objects from bracketed words and rootes trees. arXiv:1911.08970

  12. Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. A 136, 123–164 (1895). (reprinted in Proc. Roy. Soc. London Ser. A 451 (1995), no. 1941, 5-47.)

    MATH  Google Scholar 

  13. Leroux, P.: Construction of Nijenhuis operators and dendriform trialgebras. Int. J. Math. Math. Sci. 49, 2595–2615 (2004)

    Article  MathSciNet  Google Scholar 

  14. Das, A.: Twisted Rota-Baxter operators and Reynolds operators on Lie algebras and NS-Lie algebras. J. Math. Phys. 62(9), 091701 (2021)

    Article  MathSciNet  Google Scholar 

  15. Hou, S., Sheng, Y.: Generalized Reynolds operators on \(3\)-Lie algebras and NS-\(3\)-Lie algebras. Int. J. Geom. Methods Mod. Phys. 18, 2150223 (2021)

    Article  MathSciNet  Google Scholar 

  16. Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. 79(2), 59–103 (1964)

    Article  MathSciNet  Google Scholar 

  17. Gerstenhaber, M., Voronov, A.A.: Homotopy G-algebras and moduli space operad. Int. Math. Res. Notices 3, 141–153 (1995)

    Article  MathSciNet  Google Scholar 

  18. Das, A.: Deformations of Loday-type algebras and their morphisms. J. Pure Appl. Algebra 225(6), 106599 (2021)

    Article  MathSciNet  Google Scholar 

  19. Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. 78, 267–288 (1963)

    Article  MathSciNet  Google Scholar 

  20. Courant, T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319(2), 631–661 (1990)

    Article  MathSciNet  Google Scholar 

  21. Klimčík, C., Strobl, T.: WZW-Poisson manifolds. J. Geom. Phys. 43, 341–344 (2002)

    Article  MathSciNet  Google Scholar 

  22. Cariñena, J.F., Grabowski, J., Marmo, G.: Quantum Bi-Hamiltonian systems. Int. J. Mod. Phys. A 15, 4797–4810 (2000)

    Article  MathSciNet  Google Scholar 

  23. Loday, J.-L.: Dialgebras: Dialgebras and Related Operads. Lecture Notes in Mathematics, pp. 7–66. Springer, Berlin (2001)

    Book  Google Scholar 

  24. Lei, P., Guo, L.: Nijenhuis algebras, NS-algebras and \(N\)-dendriform algebras. Front. Math. 7, 827–846 (2012)

    Article  MathSciNet  Google Scholar 

  25. Voronov, Th.: Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra 202(1–3), 133–153 (2005)

    Article  MathSciNet  Google Scholar 

  26. Frégier, Y., Zambon, M.: Simultaneous deformations and Poisson geometry. Compos. Math. 151(9), 1763–1790 (2015)

    Article  MathSciNet  Google Scholar 

  27. Getzler, E.: Lie theory for nilpotent \(L_{\infty } \)-algebras. Ann. Math. (2) 170(1), 271–301 (2009)

    Article  MathSciNet  Google Scholar 

  28. Markl, M.: Intrinsic brackets and the \(L_\infty \)-deformation theory of bialgebras. J. Homotopy Relat. Struct. 5(1), 177–212 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Loday, J.-L., Vallette, B.: Algebraic Operads, Grundlehren der Mathematischen Wissenschaften, 346. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  30. Das, A.: Cohomology and deformations of dendriform algebras, and \({{\rm Dend}}_{\infty } \)-algebras. Commun. Algebra 50(4), 1544–1567 (2022)

    Article  MathSciNet  Google Scholar 

  31. Lada, T., Markl, M.: Strongly homotopy Lie algebras. Commun. Algebra 23(6), 2147–2161 (1995)

    Article  MathSciNet  Google Scholar 

  32. Lada, T., Stasheff, J.: Introduction to SH Lie algebras for Physicists. Int. J. Theoret. Phys. 32(7), 1087–1103 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for his valuable comments on the earlier version of the manuscript. The research was supported by the fellowship of Indian Institute of Technology (IIT) Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apurba Das.

Additional information

Communicated by Jim Stasheff.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we recall \(L_\infty \)-algebras and their Maurer–Cartan theory [27, 31, 32]. We will follow the sign conventions of [28].

Let \(L = \bigoplus _i L_i\) be a graded vector space. A multilinear map \(l : L^{\otimes k} \rightarrow L\) is said to be skew-symmetric if \(l ( x_{\sigma (1)}, \ldots , x_{\sigma (k)} ) = (-1)^\sigma \epsilon (\sigma ) l (x_1, \ldots , x_k)\), for \(\sigma \in S_k\). Here \(\epsilon (\sigma )\) is the Koszul sign.

Definition 6.1

A \(L_\infty \)-algebra consists of a graded vector space \(L = \bigoplus _i L_i\) together with a collection \(\{ l_k : L^{\otimes k} \rightarrow L |~ \mathrm {deg}(l_k) = 2-k \}_{k \ge 1}\) of skew-symmetric multilinear maps satisfying the following higher Jacobi identities: for each \(n \ge 1\), we have

$$\begin{aligned} \sum _{i+j = n+1}^{} \sum _{\sigma }^{} (-1)^\sigma \epsilon (\sigma ) ~ (-1)^{i (j-1)} ~ l_j \big ( l_i (x_{\sigma (1)}, \ldots , x_{\sigma (i)}), x_{\sigma (i+1)}, \ldots , x_{\sigma (n)} \big ) = 0, \end{aligned}$$

where \(\sigma \) runs over all \((i, n-i)\)-unshuffles with \(i \ge 1\).

An element \(\alpha \in L_1\) is called a Maurer–Cartan element in the \(L_\infty \)-algebra \((L, l_1, l_2, \ldots )\) if \(\alpha \) satisfies

$$\begin{aligned} l_1 (\alpha ) + \frac{1}{2!} l_2 (\alpha , \alpha ) - \frac{1}{3!} l_3 (\alpha , \alpha , \alpha ) - \cdots = 0. \end{aligned}$$

If \(\alpha \) is a Maurer–Cartan element, then one can construct a new \(L_\infty \)-algebra twisted by \(\alpha \) on the graded vector space L. In particular, if the given \(L_\infty \)-algebra \((L, l_1, l_2, \ldots )\) has \(l_i =0\), for \(i=1\) and \(i > 3\), then the structure maps for the twisted \(L_\infty \)-algebra are given by

$$\begin{aligned}&l_1' (x) = l_2 (\alpha , x) - \frac{1}{2}~ l_3 (\alpha , \alpha , x) ,~\quad l_2' (x,y) = l_2 (x, y) - l_3 (\alpha , x, y) \\&\text { and } ~~ l_3' (x, y, z)= l_3 (x, y, z). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A. Cohomology and deformations of twisted Rota–Baxter operators and NS-algebras. J. Homotopy Relat. Struct. 17, 233–262 (2022). https://doi.org/10.1007/s40062-022-00305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40062-022-00305-y

Keywords

Mathematics Subject Classification

Navigation