Skip to main content
Log in

Determining the Effects of Chronic Kidney Disease on Organic Anion Transporter1/3 Activity Through Physiologically Based Pharmacokinetic Modeling

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

The renal excretion of drugs via organic anion transporters 1 and 3 (OAT1/3) is significantly decreased in patients with renal impairment. This study uses physiologically based pharmacokinetic models to quantify the reduction in OAT1/3-mediated secretion of drugs throughout varying stages of chronic kidney disease.

Methods

Physiologically based pharmacokinetic models were constructed for four OAT1/3 substrates in healthy individuals: acyclovir, meropenem, furosemide, and ciprofloxacin. Observed data from drug–drug interaction studies with probenecid, a potent OAT1/3 inhibitor, were used to parameterize the contribution of OAT1/3 to the renal elimination of each drug. The models were then translated to patients with chronic kidney disease by accounting for changes in glomerular filtration rate, kidney volume, renal blood flow, plasma protein binding, and hematocrit. Additionally, a relationship was derived between the estimated glomerular filtration rate and the reduction in OAT1/3-mediated secretion of drugs based on the renal extraction ratios of ƿ-aminohippuric acid in patients with varying degrees of renal impairment. The relationship was evaluated in silico by evaluating the predictive performance of each final model in describing the pharmacokinetics (PK) of drugs across stages of chronic kidney disease.

Results

OAT1/3-mediated renal excretion of drugs was found to be decreased by 27–49%, 50–68%, and 70–96% in stage 3, stage 4, and stage 5 of chronic kidney disease, respectively. In support of the parameterization, physiologically based pharmacokinetic models of four OAT1/3 substrates were able to adequately characterize the PK in patients with different degrees of renal impairment. Total exposure after intravenous administration was predicted within a 1.5-fold error and 85% of the observed data points fell within a 1.5-fold prediction error. The models modestly under-predicted plasma concentrations in patients with end-stage renal disease undergoing intermittent hemodialysis. However, results should be interpreted with caution because of the limited number of molecules analyzed and the sparse sampling in observed chronic kidney disease pharmacokinetic studies.

Conclusions

A quantitative understanding of the reduction in OAT1/3-mediated excretion of drugs in differing stages of renal impairment will contribute to better predictive accuracy for physiologically based pharmacokinetic models in drug development, assisting with clinical trial planning and potentially sparing this population from unnecessary toxic exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Purcell CA, Abebe M, Adebayo OM, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2020;395(10225):709–33. https://doi.org/10.1016/S0140-6736(20)30045-3.

    Article  Google Scholar 

  2. KDIGO (Kidney Disease: Improving Global Outcomes). Acute kidney injury. 2012. https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf. Accessed 18 Mar 2022.

  3. Manley HJ, Cannella CA, Bailie GR, St Peter WL. Medication-related problems in ambulatory hemodialysis patients: a pooled analysis. Am J Kidney Dis. 2005;46(4):669–80. https://doi.org/10.1053/j.ajkd.2005.07.001.

    Article  PubMed  Google Scholar 

  4. Morrissey KM, Stocker SL, Wittwer MB, Xu L, Giacomini KM. Renal transporters in drug development. Annu Rev Pharmacol Toxicol. 2013;53:503–29. https://doi.org/10.1146/annurev-pharmtox-011112-140317.

    Article  CAS  PubMed  Google Scholar 

  5. Torres AM, Dnyanmote AV, Granados JC, Nigam SK. Renal and non-renal response of ABC and SLC transporters in chronic kidney disease. Expert Opin Drug Metab Toxicol. 2021;17(5):515–42. https://doi.org/10.1080/17425255.2021.1899159.

    Article  CAS  PubMed  Google Scholar 

  6. Cheung KWK, Hsueh C, Zhao P, et al. The effect of uremic solutes on the organic cation transporter 2. J Pharm Sci. 2017;106(9):2551–7. https://doi.org/10.1016/j.xphs.2017.04.076.

    Article  CAS  PubMed  Google Scholar 

  7. Malik PRV, Yeung CHT, Ismaeil S, Advani U, Djie S, Edginton AN. A physiological approach to pharmacokinetics in chronic kidney disease. J Clin Pharmacol. 2020;60(S1):S52-62. https://doi.org/10.1002/jcph.1713.

    Article  CAS  PubMed  Google Scholar 

  8. Droździk M, Oswald S, Droździk A. Impact of kidney dysfunction on hepatic and intestinal drug transporters. Biomed Pharmacother. 2021;143: 112125. https://doi.org/10.1016/j.biopha.2021.112125.

    Article  CAS  PubMed  Google Scholar 

  9. Masereeuw R, Mutsaers HAM, Toyohara T, et al. The kidney and uremic toxin removal: glomerulus or tubule? Semin Nephrol. 2014;34(2):191–208. https://doi.org/10.1016/j.semnephrol.2014.02.010.

    Article  CAS  PubMed  Google Scholar 

  10. Hsueh C, Yoshida K, Zhao P, et al. Identification and quantitative assessment of uremic solutes as inhibitors of renal organic anion transporters, OAT1 and OAT3. Mol Pharm. 2016;13(9):3130–40. https://doi.org/10.1021/acs.molpharmaceut.6b00332.

    Article  CAS  PubMed  Google Scholar 

  11. Hsueh C, Hsu V, Zhao P, Zhang L, Giacomini KM, Huang S. PBPK modeling of the effect of reduced kidney function on the pharmacokinetics of drugs excreted renally by organic anion transporters. Clin Pharmacol Ther. 2018;103(3):485–92. https://doi.org/10.1002/cpt.750.

    Article  CAS  PubMed  Google Scholar 

  12. Willmann S, Höhn K, Edginton A, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007;34(3):401–31. https://doi.org/10.1007/s10928-007-9053-5.

    Article  PubMed  Google Scholar 

  13. Schlender J, Meyer M, Thelen K, et al. Development of a whole-body physiologically based pharmacokinetic approach to assess the pharmacokinetics of drugs in elderly individuals. Clin Pharmacokinet. 2016;55(12):1573–89. https://doi.org/10.1007/s40262-016-0422-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schlender J, Teutonico D, Coboeken K, et al. A physiologically-based pharmacokinetic model to describe ciprofloxacin pharmacokinetics over the entire span of life. Clin Pharmacokinet. 2018;57(12):1613–34. https://doi.org/10.1007/s40262-018-0661-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Britz H, Hanke N, Taub ME, et al. Physiologically based pharmacokinetic models of probenecid and furosemide to predict transporter mediated drug-drug interactions. Pharm Res. 2020;37(12):250. https://doi.org/10.1007/s11095-020-02964-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mouton JW, van den Anker JN. Meropenem clinical pharmacokinetics. Clin Pharmacokinet. 1995;28(4):275–86. https://doi.org/10.2165/00003088-199528040-00002.

    Article  CAS  PubMed  Google Scholar 

  17. Merrem (meropenem). Prescribing information. Boucherville: Sandoz Canada Inc.; 2017.

  18. Arnal J, Gonzalez-Alvarez I, Bermejo M, et al. Biowaiver monographs for immediate release solid oral dosage forms: aciclovir. J Pharm Sci. 2008;97(12):5061–73. https://doi.org/10.1002/jps.21392.

    Article  CAS  PubMed  Google Scholar 

  19. DrugBank. Meropenem. https://go.drugbank.com/drugs/DB00760. Accessed 18 Mar 2022.

  20. Jaehde U, Sörgel F, Reiter A, Sigl G, Naber KG, Schunack W. Effect of probenecid on the distribution and elimination of ciprofloxacin in humans. Clin Pharmacol Ther. 1995;58(5):532–41.

    Article  CAS  Google Scholar 

  21. Bax RP, Bastain W, Featherstone A, Wilkinson DM, Hutchison M, Haworth SJ. The pharmacokinetics of meropenem in volunteers. J Antimicrob Chemother. 1989;24(Suppl A):311–20.

    Article  CAS  Google Scholar 

  22. de Miranda P, Good SS, Laskin OL, Krasny HC, Connor JD, Lietman PS. Disposition of intravenous radioactive acyclovir. Clin Pharmacol Ther. 1981;30(5):662–72.

    Article  Google Scholar 

  23. Momper JD, Tsunoda SM, Ma JD. Evaluation of proposed in vivo probe substrates and inhibitors for phenotyping transporter activity in humans. J Clin Pharmacol. 2016;56(Suppl. 7):82. https://doi.org/10.1002/jcph.736.

    Article  CAS  Google Scholar 

  24. Shibayama T, Sugiyama D, Kamiyama E, Tokui T, Hirota T, Ikeda T. Characterization of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, and meropenem as substrates of human renal transporters. Drug Metab Pharmacokinet. 2007;22(1):41–7. https://doi.org/10.2133/dmpk.22.41.

    Article  CAS  PubMed  Google Scholar 

  25. Ivanyuk A, Livio F, Biollaz J, Buclin T. Renal drug transporters and drug interactions. Clin Pharmacokinet. 2017;56(8):825–92. https://doi.org/10.1007/s40262-017-0506-8.

    Article  CAS  PubMed  Google Scholar 

  26. Scotcher D, Billington S, Brown J, et al. Microsomal and cytosolic scaling factors in dog and human kidney cortex and application for in vitro-in vivo extrapolation of renal metabolic clearance. Drug Metab Dispos. 2017;45(5):556–8. https://doi.org/10.1124/dmd.117.075242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prasad B, Johnson K, Billington S, et al. Abundance of drug transporters in the human kidney cortex as quantified by quantitative targeted proteomics. Drug Metab Dispos. 2016;44(12):1920–4. https://doi.org/10.1124/dmd.116.072066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Uchino H, Tamai I, Yabuuchi H, et al. Faropenem transport across the renal epithelial luminal membrane via inorganic phosphate transporter Npt1. Antimicrob Agents Chemother. 2000;44(3):574–7.

    Article  CAS  Google Scholar 

  29. Willmann S, Lippert J, Schmitt W. From physicochemistry to absorption and distribution: predictive mechanistic modelling and computational tools. Expert Opin Drug Metab Toxicol. 2005;1(1):159–68. https://doi.org/10.1517/17425255.1.1.159.

    Article  CAS  PubMed  Google Scholar 

  30. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76. https://doi.org/10.1002/jps.20322.

    Article  CAS  PubMed  Google Scholar 

  31. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57. https://doi.org/10.1002/jps.20502.

    Article  CAS  PubMed  Google Scholar 

  32. Hsu V, de Vieira LT, Manuela ZP, et al. Towards quantitation of the effects of renal impairment and probenecid inhibition on kidney uptake and efflux transporters, using physiologically based pharmacokinetic modelling and simulations. Clin Pharmacokinet. 2014;53(3):283–93. https://doi.org/10.1007/s40262-013-0117-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Doki K, Neuhoff S, Rostami-Hodjegan A, Homma M. Assessing potential drug–drug interactions between dabigatran etexilate and P-glycoprotein inhibitor in renal impairment populations using physiologically based pharmacokinetic modeling. CPT Pharmacomet Syst Pharmacol. 2019;8(2):118–26.

    Article  CAS  Google Scholar 

  34. Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. 2015;79(1):48–55.

    Article  CAS  Google Scholar 

  35. Sayama H, Takubo H, Komura H, Kogayu M, Iwaki M. Application of a physiologically based pharmacokinetic model informed by a top-down approach for the prediction of pharmacokinetics in chronic kidney disease patients. AAPS J. 2014;16(5):1018–28. https://doi.org/10.1208/s12248-014-9626-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Basit A, Radi Z, Vaidya VS, Karasu M, Prasad B. Kidney cortical transporter expression across species using quantitative proteomics. Drug Metab Dispos. 2019;47(8):802–8. https://doi.org/10.1124/dmd.119.086579.

    Article  CAS  PubMed  Google Scholar 

  37. Mahmood I, Tegenge MA. A comparative study between allometric scaling and physiologically based pharmacokinetic modeling for the prediction of drug clearance from neonates to adolescents. J Clin Pharmacol. 2019;59(2):189–97. https://doi.org/10.1002/jcph.1310.

    Article  CAS  PubMed  Google Scholar 

  38. Smith HW, Finkelstein N, Aliminosa L, Crawford B, Graber M. The renal clearances of substituted hippuric acid derivatives and other aromatic acids in dog and man. J Clin Investig. 1945;24(3):388–404. https://doi.org/10.1172/JCI101618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nigam SK, Bush KT, Martovetsky G, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95(1):83–123. https://doi.org/10.1152/physrev.00025.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ullrich KJ, Rumrich G. Renal transport mechanisms for xenobiotics: chemicals and drugs. Clin Investig. 1993;71(10):843–8. https://doi.org/10.1007/BF00190334.

    Article  CAS  PubMed  Google Scholar 

  41. Dantzler WH, Wright SH. The molecular and cellular physiology of basolateral organic anion transport in mammalian renal tubules. Biochim Biophys Acta. 2003;1618(2):185–93. https://doi.org/10.1016/j.bbamem.2003.08.015.

    Article  CAS  PubMed  Google Scholar 

  42. Battilana C, Zhang HP, Olshen RA, Wexler L, Myers BD. PAH extraction and estimation of plasma flow in diseased human kidneys. Am J Physiol. 1991;261(4 Pt 2):726. https://doi.org/10.1152/ajprenal.1991.261.4.F726.

    Article  Google Scholar 

  43. Bergstrom J, Bucht H, Ek J, Josephson B, Sundell H, Werko L. The renal extraction of para-aminohippurate in normal persons and in patients with diseased kidneys. Scand J Clin Lab Investig. 1959;11:361–75. https://doi.org/10.3109/00365515909060466.

    Article  CAS  Google Scholar 

  44. Bradley SE, Bradley GP, Tyson CJ, Curry JJ, Blake WD. Renal function in renal diseases. Am J Med. 1950;9(6):766–98. https://doi.org/10.1016/0002-9343(50)90292-0.

    Article  CAS  PubMed  Google Scholar 

  45. Brodwall EK. Renal extraction of PAH in renal disease. Scand J Clin Lab Investig. 1964;16(1):12–20. https://doi.org/10.3109/00365516409060477.

    Article  CAS  Google Scholar 

  46. Josephson B, Bucht H, Ek J, Werko L. Renal extraction, its depression, and the tubular storage of p-aminohippuric acid (PAH) in the healthy and in the diseased human kidney. Scand J Clin Lab Investig. 1952;4(1):1–14. https://doi.org/10.3109/00365515209060626.

    Article  CAS  Google Scholar 

  47. Cargill WH. The measurement of glomerular and tubular plasma flow in the normal and diseased human kidney. J Clin Investig. 1949;28(3):533–8.

    Article  CAS  Google Scholar 

  48. Zhang Y, Zhang L, Abraham S, et al. Assessment of the impact of renal impairment on systemic exposure of new molecular entities: evaluation of recent new drug applications. Clin Pharmacol Ther. 2009;85(3):305–11. https://doi.org/10.1038/clpt.2008.208.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang L, Xu N, Xiao S, et al. Regulatory perspectives on designing pharmacokinetic studies and optimizing labeling recommendations for patients with chronic kidney disease. J Clin Pharmacol. 2012;52(1 Suppl.):79S-90S. https://doi.org/10.1177/0091270011415410.

    Article  PubMed  Google Scholar 

  50. Yoshida K, Sun B, Zhang L, et al. Systematic and quantitative assessment of the effect of chronic kidney disease on CYP2D6 and CYP3A4/5. Clin Pharmacol Ther. 2016;100(1):75–87. https://doi.org/10.1002/cpt.337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Laskin OL, de Miranda P, King DH, et al. Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrob Agents Chemother. 1982;21(5):804–7.

    Article  CAS  Google Scholar 

  52. Wiebe ST, Giessmann T, Hohl K, et al. Validation of a drug transporter probe cocktail using the prototypical inhibitors rifampin, probenecid, verapamil, and cimetidine. Clin Pharmacokinet. 2020;59(12):1627–39. https://doi.org/10.1007/s40262-020-00907-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chimata M, Nagase M, Suzuki Y, Shimomura M, Kakuta S. Pharmacokinetics of meropenem in patients with various degrees of renal function, including patients with end-stage renal disease. Antimicrob Agents Chemother. 1993;37(2):229–33.

    Article  CAS  Google Scholar 

  54. Drusano GL, Weir M, Forrest A, Plaisance K, Emm T, Standiford HC. Pharmacokinetics of intravenously administered ciprofloxacin in patients with various degrees of renal function. Antimicrob Agents Chemother. 1987;31(6):860–4. https://doi.org/10.1128/AAC.31.6.860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shah A, Lettieri J, Blum R, Millikin S, Sica D, Heller AH. Pharmacokinetics of intravenous ciprofloxacin in normal and renally impaired subjects. J Antimicrob Chemother. 1996;38(1):103–16. https://doi.org/10.1093/jac/38.1.103.

    Article  CAS  PubMed  Google Scholar 

  56. Christensson BA, Nilsson-Ehle I, Hutchison M, Haworth SJ, Oqvist B, Norrby SR. Pharmacokinetics of meropenem in subjects with various degrees of renal impairment. Antimicrob Agents Chemother. 1992;36(7):1532–7. https://doi.org/10.1128/AAC.36.7.1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leroy A, Fillastre JP, Etienne I, Borsa-Lebás F, Humbert G. Pharmacokinetics of meropenem in subjects with renal insufficiency. Eur J Clin Pharmacol. 1992;42(5):535–8. https://doi.org/10.1007/BF00314864.

    Article  CAS  PubMed  Google Scholar 

  58. Gladziwa U, Böhm R, Klotz U, et al. Pharmacokinetics of furosemide in patients with chronic renal failure. Drug Investig. 1993;6:137–43. https://doi.org/10.1007/BF03259733.

    Article  Google Scholar 

  59. Rane A, Villeneuve JP, Stone WJ, Nies AS, Wilkinson GR, Branch RA. Plasma binding and disposition of furosemide in the nephrotic syndrome and in uremia. Clin Pharmacol Ther. 1978;24(2):199–207. https://doi.org/10.1002/cpt1978242199.

    Article  CAS  PubMed  Google Scholar 

  60. Laskin OL, Longstreth JA, Whelton A, et al. Acyclovir kinetics in end-stage renal disease. Clin Pharmacol Ther. 1982;31(5):594–601. https://doi.org/10.1038/clpt.1982.83.

    Article  CAS  PubMed  Google Scholar 

  61. Bush KT, Singh P, Nigam SK. Gut-derived uremic toxin handling in vivo requires OAT-mediated tubular secretion in chronic kidney disease. JCI Insight. 2020;9(5): e133817. https://doi.org/10.1172/jci.insight.133817.

    Article  Google Scholar 

  62. Rowland Yeo K, Aarabi M, Jamei M, Rostami-Hodjegan A. Modeling and predicting drug pharmacokinetics in patients with renal impairment. Expert Rev Clin Pharmacol. 2011;4(2):261–74. https://doi.org/10.1586/ecp.10.143.

    Article  PubMed  Google Scholar 

  63. Tan M, Yoshida K, Zhao P, et al. Effect of chronic kidney disease on nonrenal elimination pathways: a systematic assessment of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and OATP. Clin Pharmacol Ther. 2018;103(5):854–67. https://doi.org/10.1002/cpt.807.

    Article  CAS  PubMed  Google Scholar 

  64. Tan M, Zhao P, Zhang L, et al. Use of physiologically based pharmacokinetic modeling to evaluate the effect of chronic kidney disease on the disposition of hepatic CYP2C8 and OATP1B drug substrates. Clin Pharmacol Ther. 2019;105(3):719–29. https://doi.org/10.1002/cpt.1205.

    Article  CAS  PubMed  Google Scholar 

  65. Follman KE, Morris ME. Prediction of the effects of renal impairment on clearance for organic cation drugs that undergo renal secretion: a simulation-based study. Drug Metab Dispos. 2018;46(5):758–69. https://doi.org/10.1124/dmd.117.079558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bricker NS. On the meaning of the intact nephron hypothesis. Am J Med. 1969;46(1):1–11. https://doi.org/10.1016/0002-9343(69)90053-9.

    Article  CAS  PubMed  Google Scholar 

  67. Dettli L. Drug dosage in renal disease. Clin Pharmacokinet. 1976;1(2):126–34. https://doi.org/10.2165/00003088-197601020-00004.

    Article  CAS  PubMed  Google Scholar 

  68. Chapron A, Shen DD, Kestenbaum BR, Robinson-Cohen C, Himmelfarb J, Yeung CK. Does secretory clearance follow glomerular filtration rate in chronic kidney diseases? Reconsidering the intact nephron hypothesis. Clin Transl Sci. 2017;10(5):395–403. https://doi.org/10.1111/cts.12481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Momper JD, Yang J, Gockenbach M, Vaida F, Nigam SK. Dynamics of organic anion transporter-mediated tubular secretion during postnatal human kidney development and maturation. Clin J Am Soc Nephrol. 2019;14(4):540–8. https://doi.org/10.2215/CJN.10350818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Toto RD. Conventional measurement of renal function utilizing serum creatinine, creatinine clearance, inulin and para-aminohippuric acid clearance. Curr Opin Nephrol Hypertens. 1995;4(6):505–9. https://doi.org/10.1097/00041552-199511000-00009.

    Article  CAS  PubMed  Google Scholar 

  71. Dowling TC, Frye RF, Fraley DS, Matzke GR. Characterization of tubular functional capacity in humans using para-aminohippurate and famotidine. Kidney Int. 2001;59(1):295–303. https://doi.org/10.1046/j.1523-1755.2001.00491.x.

    Article  CAS  PubMed  Google Scholar 

  72. Sweet DH, Miller DS, Pritchard JB, Fujiwara Y, Beier DR, Nigam SK. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J Biol Chem. 2002;277(30):26934–43. https://doi.org/10.1074/jbc.M203803200.

    Article  CAS  PubMed  Google Scholar 

  73. Eraly SA, Vallon V, Vaughn DA, et al. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J Biol Chem. 2006;281(8):5072–83. https://doi.org/10.1074/jbc.M508050200.

    Article  CAS  PubMed  Google Scholar 

  74. Rizwan AN, Krick W, Burckhardt G. The chloride dependence of the human organic anion transporter 1 (hOAT1) is blunted by mutation of a single amino acid. J Biol Chem. 2007;282(18):13402–9. https://doi.org/10.1074/jbc.M609849200.

    Article  CAS  PubMed  Google Scholar 

  75. Burckhardt G, Bahn A, Wolff NA. Molecular physiology of renal p-aminohippurate secretion. News Physiol Sci. 2001;16:114–8. https://doi.org/10.1152/physiologyonline.2001.16.3.114.

    Article  CAS  PubMed  Google Scholar 

  76. Schumann L, Wüstenberg PW. An improved method to determine renal function using inulin and p-aminohippurate (PAH) steady-state kinetic modeling. Clin Nephrol. 1990;33(1):35–40.

    CAS  PubMed  Google Scholar 

  77. Hanke N, Frechen S, Moj D, et al. PBPK models for CYP3A4 and p-gp DDI prediction: a modeling network of rifampicin, itraconazole, clarithromycin, midazolam, alfentanil, and digoxin. CPT Pharmacomet Syst Pharmacol. 2018;7(10):647–59. https://doi.org/10.1002/psp4.12343.

    Article  CAS  Google Scholar 

  78. Center for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review: olumiant. Published December 2017. Baricitinib. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/207924Orig1s000ClinPharmR.pdf. Accessed Sep 2021.

  79. Posada MM, Bacon JA, Schneck KB, et al. Prediction of renal transporter mediated drug–drug interactions for pemetrexed using physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2015;43(3):325–34. https://doi.org/10.1124/dmd.114.059618.

    Article  CAS  PubMed  Google Scholar 

  80. Salerno SN, Carreño FO, Edginton AN, Cohen-Wolkowiez M, Gonzalez D. Leveraging physiologically based pharmacokinetic modeling and experimental data to guide dosing modification of CYP3A-mediated drug-drug interactions in the pediatric population. Drug Metab Dispos. 2021;49(9):844–55. https://doi.org/10.1124/dmd.120.000318.

    Article  CAS  PubMed  Google Scholar 

  81. Nolin TD, Frye RF, Matzke GR. Hepatic drug metabolism and transport in patients with kidney disease. Am J Kidney Dis. 2003;42(5):906–25. https://doi.org/10.1016/j.ajkd.2003.07.019.

    Article  CAS  PubMed  Google Scholar 

  82. Decker BS, O’Neill KD, Chambers MA, et al. Hemodialysis does not alter in vitro hepatic CYP3A4 and CYP2D6 metabolic activity in uremic serum. Clin Pharmacol. 2013;5:193–9. https://doi.org/10.2147/CPAA.S54381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hirako M, Kamiya T, Misu N, et al. Impaired gastric motility and its relationship to gastrointestinal symptoms in patients with chronic renal failure. J Gastroenterol. 2005;40(12):1116–22. https://doi.org/10.1007/s00535-005-1709-6.

    Article  PubMed  Google Scholar 

  84. Vaziri ND, Yuan J, Nazertehrani S, Ni Z, Liu S. Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junctions. Am J Nephrol. 2013;38(2):99–103. https://doi.org/10.1159/000353764.

    Article  CAS  PubMed  Google Scholar 

  85. Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos. 2013;34(1):45–78. https://doi.org/10.1002/bdd.1823.

    Article  CAS  PubMed  Google Scholar 

  86. Nolin TD, Frye RF, Le P, et al. ESRD impairs nonrenal clearance of fexodenadine but not midazolam. J Am Soc Nephrol. 2009;20(10):2269–76. https://doi.org/10.1681/ASN.2009010082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Thomson BKA, Nolin TD, Velenosi TJ, et al. Effect of CKD and dialysis modality on exposure to drugs cleared by nonrenal mechanisms. Am J Kidney Dis. 2015;65(4):574–82. https://doi.org/10.1053/j.ajkd.2014.09.015.

    Article  CAS  PubMed  Google Scholar 

  88. Naud J, Michaud J, Beauchemin S, et al. Effects of chronic renal failure on kidney drug transporters and cytochrome P450 in rats. Drug Metab Dispos. 2011;39(8):1363–9. https://doi.org/10.1124/dmd.111.039115.

    Article  CAS  PubMed  Google Scholar 

  89. Torres AM, Laughlin MM, Muller A, Brandoni A, Anzai N, Endou H. Altered renal elimination of organic anions in rats with chronic renal failure. Biochim Biophys Acta. 2005;1740(1):29–37. https://doi.org/10.1016/j.bbadis.2005.03.002.

    Article  CAS  Google Scholar 

  90. Deguchi T, Takemoto M, Uehara N, Lindup WE, Suenaga A, Otagiri M. Renal clearance of endogenous hippurate correlates with expression levels of renal organic anion transporters in uremic rats. J Pharmacol Exp Ther. 2005;314(2):932–8. https://doi.org/10.1124/jpet.105.085613.

    Article  CAS  PubMed  Google Scholar 

  91. Nishihara K, Masuda S, Ji L, Katsura T, Inui KI. Pharmacokinetic significance of luminal multidrug and toxin extrusion 1 in chronic renal failure rats. Biochem Pharmacol. 2007;73(9):1482–90. https://doi.org/10.1016/j.bcp.2006.12.034.

    Article  CAS  PubMed  Google Scholar 

  92. Xu G, Bhatnagar V, Wen B, Hamilton BA, Early SA, Nigam SK. Analyses of coding region polymorphisms in apical and basolateral human organic anion transporter (OAT) genes [OAT1 (NKT), OAT2, OAT3, OAT4, URAT (RST)]. Kidney Int. 2005;68(4):1491–9.

    Article  CAS  Google Scholar 

  93. Stephens JC, Schneider JA, Tanguay DA, et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science. 2001;293(5529):489–93.

    Article  CAS  Google Scholar 

  94. Marzolini C, Tirona RG, Kim RB. Pharmacogenomics of the OATP and OAT families. Pharmacogenomics. 2004;5(3):273–82.

    Article  CAS  Google Scholar 

  95. Nishizato Y, Ieiri I, Suzuki H, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences of pravastatin pharmacokinetics. Clin Pharmacol Ther. 2003;73(6):554–65.

    Article  CAS  Google Scholar 

  96. Lozano E, Briz O, Macias RIR, et al. Genetic heterogeneity of SLC22 family of transporters in drug disposition. J Pers Med. 2018;8(2):14. https://doi.org/10.3390/jpm8020014.

    Article  PubMed Central  Google Scholar 

  97. Wagner C, Zhao P, Pan Y, et al. Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: report of an FDA public workshop on PBPK. CPT Pharmacomet Syst Pharmacol. 2015;4(4):226–30. https://doi.org/10.1002/psp4.33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Edginton.

Ethics declarations

Funding

No sources of funding were received for the preparation of this article.

Conflicts of interest

The authors have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

SD, PM, and AE conceptualized the idea and topic of this article. SD and PM contributed to a healthy adult PBPK model construction of the investigative drugs analyzed within this article. SD conducted the CKD-PBPK simulations and analyzed the results. DH was instrumental in the development and finalization of the OAT parameterization function used throughout the CKD-PBPK simulations. Contributions from PM were final as of 11 June, 2021. Preparation of the final manuscript was conducted by SD. The final version of manuscript was reviewed by all authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinsky, S., Malik, P., Hajducek, D.M. et al. Determining the Effects of Chronic Kidney Disease on Organic Anion Transporter1/3 Activity Through Physiologically Based Pharmacokinetic Modeling. Clin Pharmacokinet 61, 997–1012 (2022). https://doi.org/10.1007/s40262-022-01121-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-022-01121-6

Navigation