Skip to main content
Log in

Thermal properties of AlN–Ce:YAG composite ceramic phosphor for laser lighting

  • Special section: Regular Paper
  • Laser Display and Lighting Conference (LDC’ 21), Yokohama, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

The AlN–Ce:YAG composite ceramic is an effective phosphor for high-power laser illumination. The thermal properties of an AlN–Ce:YAG composite phosphor were studied to suppress thermal quenching. This composite ceramic has a high heat dissipation effect owing to the dispersion of AlN particles, which exhibit high thermal conductivity. Exciting the phosphor with a high-power-density laser beam concentrates heat in a narrow area. The heat is efficiently dissipated by the AlN particles, thereby reducing the phosphor temperature. A new technique was developed to estimate the thermal conductivity from the emission spectrum and the spot center temperature of the composite ceramic. The heat value was calculated by subtracting the power of the emission spectrum from the incident laser power. The spot center temperature was measured using a thermographic camera. The thermal conductivity was simulated by inputting the heat value and spot center temperature into the model of the phosphor sample. It was clarified that the thermal conductivity improved, as the AlN particle content increased. This result is consistent with the measurements obtained using the laser flash method. This technique is useful for designing lighting systems, as it enables the estimation of thermal conductivity when light is emitted from a condensing spot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Pattison, P.M., Hansen, M., Tsao, J.Y.: LED lighting efficacy: status and directions. C. R. Phys. 19, 134–145 (2018)

    Article  ADS  Google Scholar 

  2. Kuritzky, L.Y., Speck, J.S.: Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN. MRS Commun. 5, 463–473 (2015)

    Article  Google Scholar 

  3. Wierer, J.J., Tsao, J.Y., Sizov, D.S.: Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photon. Rev. 7, 963–993 (2013)

    Article  ADS  Google Scholar 

  4. Basu, C., Meinhardt-Wollweber, M., Roth, B.: Light source design for spectral tuning in biomedical imaging. Adv. Opt. Technol. 2, 313–321 (2013)

    ADS  Google Scholar 

  5. Wierer, J.J., Tsao, J.Y., Sizov, D.S.: The potential of III-nitride laser diodes for solid-state lighting. Phys. Status Solidi 11, 674–677 (2014)

    Article  Google Scholar 

  6. Kitazono, T., Kita, Y., Hoshino, S., Mori, T., Harata, S., Saito, T., Yatsuda, Y.: Laser scanning headlamp, The 7th Laser Display and Lighting Conference 2018 (LDC'18), Yokohama, Japan, LDC5-2 (2018)

  7. George, N.C., Denault, K.A., Seshadri, R.: Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 43, 481–501 (2013)

    Article  ADS  Google Scholar 

  8. Robbins, D.J., Cockayne, B., Glasper, J.L., Lent, B.: The temperature dependence of rare-earth activated garnet phosphors: intensity and lifetime measurements on undoped and Ce-Doped. J. Electrochem. Soc. 126, 1213 (1979)

    Article  ADS  Google Scholar 

  9. Ma, Y., Lan, W., Xie, B., Hu, R., Luo, X.: An optical-thermal model for laser-excited remote phosphor with thermal quenching. J. Heat Mass Transf. 116, 694–702 (2018)

    Article  Google Scholar 

  10. Bachmann, V., Ronda, C., Meijerink, A.: Temperature quenching of yellow Ce3+ luminescence in YAG: Ce. Chem. Mater. 21, 2077–2084 (2009)

    Article  Google Scholar 

  11. Ueda, J., Dorenbos, P., Bos, A.J.J., Meijerink, A., Tanabe, S.: Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy. J. Phys. Chem. 119(44), 25003–25008 (2015)

    Google Scholar 

  12. Inoue, T., Ohashi, Y., Ito, T.: Application of laser to headlamps and thermal design, the 7th laser display and lighting conference 2018 (LDC'18), Yokohama, Japan, LDC5-3 (2018)

  13. Song, Y.H., Ji, E.K., Jeong, B.W., Jung, M.K., Kim, E.Y., Yoon, D.H.: High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting. Sci. Rep. 6, 31206 (2016)

    Article  ADS  Google Scholar 

  14. Li, S., Zhu, Q., Tang, D., Liu, X., Ouyang, G., Cao, L., Hirosaki, N., Nishimura, T., Huang, Z., Xie, R.J.: Al2O3–YAG: Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting. J. Mater. Chem. 4, 8648–8654 (2016)

    Google Scholar 

  15. Zheng, P., Li, S., Wei, R., Wang, L., Zhou, T.L., Xu, Y.R., Takeda, T., Hirosaki, N., Xie, R.J.: Unique design strategy for laser-driven color converters enabling superhigh-luminance and high-directionality white light. Laser Photon. Rev. 13, 10 (2019)

    Article  Google Scholar 

  16. Song, Y.H., Ji, E.K., Jeong, B.W., Jung, M.K., Kim, E.Y., Lee, C.W., Yoon, D.H.: Design of laser-driven high-efficiency Al2O3/YAG: Ce3+ ceramic converter for automotive lighting: fabrication, luminous emittance, and tunable color space. Dyes Pigm. 139, 688–692 (2017)

    Article  Google Scholar 

  17. Xu, M., Chang, J., Wang, J., Wu, C., Hu, F.: Al2O3-YAG: Ce composite ceramics for high-brightness lighting. Opt. Express 27, 872–885 (2019)

    Article  ADS  Google Scholar 

  18. Hu, S., Zhang, Y., Wang, Z., Zhou, G., Xue, Z., Zhang, H., Wang, S.: Phase composition, microstructure and luminescent property evolutions in “light-scattering enhanced” Al2O3-Y3Al5O12: Ce3+ ceramic phosphors. J. Eur. Ceram. Soc. 38, 3268–3278 (2018)

    Article  Google Scholar 

  19. Sai, Q., Zhao, Z., Xia, C., Xu, X., Wu, F., Di, J., Wang, L.: Ce-doped Al2O3YAG eutectic and its application for white LEDs. Opt. Mater. 35, 2155–2159 (2013)

    Article  ADS  Google Scholar 

  20. Liu, Z., Li, S., Huang, Y., Wang, L., Yao, Y., Long, T., Yao, X., Liu, X., Huang, Z.: Composite ceramic with high saturation input powder in solid-state laser lighting: microstructure, properties, and luminous emittances. Ceram. Int. 44, 20232–20238 (2018)

    Article  Google Scholar 

  21. Wang, J., Tang, X., Zheng, P., Li, S., Zhou, T., Xie, R.J.: Thermally self-managing YAG: Ce–Al2O3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration. J. Mater. Chem. 7, 3901–3908 (2019)

    Google Scholar 

  22. Klein, P.H., Croft, W.J.: Thermal conductivity, diffusivity, and expansion of Y2O3, Y3 Al5O12, and LaF3 in the range 77°-300°K. J. Appl. Phys. 38, 1603–1607 (1967)

    Article  ADS  Google Scholar 

  23. Fujioka, K., Yagasaki, K., Sawada, T., Minemoto, H., Fuji, H., Yamamoto, K.: AlN–Ce-doped yttrium aluminum garnet composite ceramic phosphor for high-power laser lighting. Opt. Mater. 121, 111507 (2021)

    Article  Google Scholar 

  24. Kurokawa, Y., Utsumi, K., Takamizawa, H.: Development and microstructural characterization of high-thermal-conductivity aluminum nitride ceramics. J. Am. Ceram. Soc. 71, 588–594 (1998)

    Article  Google Scholar 

  25. Kanechika, Y., Azuma, M., Fukushima, H.: Optimum sintering conditions for optical properties of translucent aluminum nitride ceramics. Chin. Sci. Bull. 54, 842–845 (2009)

    Google Scholar 

  26. Zhang, H., Wang, H., Gu, H., Zong, X., Tu, B., Xu, P., Wang, B., Wang, W., Liu, S., Fu, Z.: Preparation of transparent MgO·1.8Al2O3 spinel ceramics by aqueous gelcasting, presintering and hot isostatic pressing. J. Eur. Ceram. Soc. 38, 4057–4063 (2018)

    Article  Google Scholar 

  27. Senatsky, Y., Shirakawa, A., Sato, Y., Hagiwara, J., Lu, J., Ueda, K., Yagi, H., Yanagitani, T.: Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver. Laser Phys. Lett. 1, 500–506 (2004)

    Article  ADS  Google Scholar 

  28. Katz, M., Route, R.K., Hum, D.S., Parameswaran, K.R., Miller, G.D., Fejer, M.M.: Vapor-transport equilibrated near-stoichiometric lithium tantalite for frequency-conversion applications. Opt. Lett. 29, 1775–1777 (2004)

    Article  ADS  Google Scholar 

  29. Sato, Y., Taira, T.: The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method. Opt. Express 14, 10528–10536 (2006)

    Article  ADS  Google Scholar 

  30. Liu, J.B., Wang, Z.F., Liu, H., Wang, X.T., Ma, Y.: Mechanical and thermal properties of MgAl2O4-Y3Al5O12 ceramic composites. Solid State Phenom. 281, 255–260 (2018)

    Article  Google Scholar 

  31. Boey, Y.C., Song, X.L., Gu, Z.Y., Tok, A.: AlON phase formation in a tape-cast Al2O3/AlN composite. J. Mater. Process. Technol. 89, 478–480 (1999)

    Article  Google Scholar 

  32. McCauley, J.W., Patel, P., Chen, M., Gilde, G., Strassburger, E., Paliwal, B., Ramesh, K.T., Dandekar, D.P.: AlON: A brief history of its emergence and evolution. J. Eur. Ceram. Soc. 29, 223–236 (2009)

    Article  Google Scholar 

  33. Angle, J.P., Wang, Z., Dames, C., Mecartney, M.L.: Comparison of two-phase thermal conductivity models with experiments on dilute ceramic composites. J. Am. Ceram. Soc. 96, 2935–2942 (2013)

    Article  Google Scholar 

  34. Agari, Y., Ueda, A., Nagai, S.: Thermal conductivity of a polymer composite. J. Appl. Polym. Sci. 49, 1625–1634 (1993)

    Article  Google Scholar 

  35. Monden, K.: High thermal conducting composites using percolation theory. Charact. Miner. Metals Mater. 2017, 385–392 (2017)

    Google Scholar 

  36. Maxwell-Garnett, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. 203, 385 (1904)

    Article  ADS  Google Scholar 

  37. Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Systemen. Ann. Phys. 24, 636 (1935)

    Article  Google Scholar 

  38. Landauer, R.: The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 779 (1952)

    Article  ADS  Google Scholar 

  39. Eucken, A.: Thermal conductivity of ceramic refractory materials, calculation from thermal conductivity of constituents. Ceram. Abstr. 11, 353–360 (1932)

    Google Scholar 

  40. Brailsford, A.D., Major, K.G.: The thermal conductivity of aggregates of several phases, including porous materials. Br. J. Appl. Phys. 15, 313 (1964)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Fuji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawada, T., Fuji, H., Yagasaki, K. et al. Thermal properties of AlN–Ce:YAG composite ceramic phosphor for laser lighting. Opt Rev 29, 276–285 (2022). https://doi.org/10.1007/s10043-022-00737-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00737-0

Keywords

Navigation