Skip to main content

Advertisement

Log in

Effect of an excess of surfactant on thermophoresis, mass diffusion and viscosity in an oily surfactant-stabilized ferrofluid

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The effect of an excess of surfactant on the thermophoresis of a sterically stabilized ferrofluid is investigated experimentally by forced Rayleigh scattering (FRS). The experiments are performed with a stable magnetic fluid sample to which controlled amounts of surfactant are added. A decrease in the thermally induced transport of magnetic nanoparticles is observed while increasing the temperature T. The positive Soret coefficient \(S_{\mathrm{T}}\) decreases by adding 2 vol% of surfactant at room temperature. As shown by FRS relaxation, this decreasing is mainly associated with a reduction of the interaction between the carrier fluid and individual nanoparticles. No significant effect of extra surfactant on the sign of \(S_{\mathrm{T}}\) is observed at higher T’s (up to \(\sim \,85\,^{\circ }\)C). Dynamic light scattering at room temperature reveals the presence of a small amount of clusters/aggregates in the samples, which are hardly detectable by FRS relaxation. The presence of these small clusters/aggregates is confirmed by a rheological probing of the fluid properties. Whatever T, a small amount of added surfactant first causes a decrease of the ferrofluid viscosity, associated with a 10% decreasing of the flow activation energy. Further on, viscosity and activation energy both recover at higher excess surfactant concentrations. These results are analyzed in terms of saturation of the surfactant layer, concentration of free surfactant chains and heat of transport of the nanoparticles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We neglect here the term \(\frac{1}{n_{_{\mathrm{NP}}}kT} \frac{\partial \Pi }{\partial T}\) in front of \(\frac{{\hat{S}} _{{\mathrm{NP}}}}{kT}\), as it is here always smaller than 9.\(10^{-3}\) \(\hbox {K}^{-1}\).

  2. Fluid carrier = tetradecane + dissolved free OA chains

  3. We suppose here that \(\chi \) is associated with the entropic effect of excluded volume of the hard spheres, leading to an effective interparticle interaction with a second virial coefficient \(A_{2}=4\). We implicitly suppose that the hard sphere volume is here, at the first order, independent of the concentration of added surfactant. This point is discussed in Sects. 6 and 2 of E.S.I., where the value of \(\zeta \chi \) is also discussed.

  4. Note that due to the adsorption process, the concentration of free OA at equilibrium in solution, which is small, is, however, not strictly zero.

  5. A compatible value 1.38–1.43 for the OA-layer is found in the rheological study of ferrofluids in transformer oil [53].

  6. The bi-exponential fit is as well not really convincing at \(T=85\,^{\circ }\)C for both 0 vol\(\%\) and 2 vol\(\%\) of added OA.

  7. This is clear in Fig. 12 of [72]. Under low applied field and large Mason number, the relative viscosity of the dispersions at \(\Phi =1.5\%\) increases by a factor 10 for pH increasing from 2 to 3.5. It is stated in this text that in these conditions the system behavior is close to the zero-field one and in this range of pHs at the limit between a Sol of clusters and Gel is observed.

  8. An analysis in terms of clusters of 3 (resp. 4) NPs would lead to a mean hydrodynamic diameter of clusters of 32.2 nm (resp. 35.4 nm), which are slightly larger (but almost compatible) with the short-time DLS determination.

References

  1. E. Shojaeizadeh, F. Veysi, K. Goudarzi, Appl. Therm. Eng. 164, 114510 (2020). https://doi.org/10.1016/j.applthermaleng.2019.114510

    Article  Google Scholar 

  2. M. Vasilakaki, I. Chikina, V.B. Shikin, N. Ntallis, D. Peddis, A.A. Varlamov, K.N. Trohidou, Appl. Mater. Today 19, 100587 (2020). https://doi.org/10.1016/j.apmt.2020.100587

    Article  Google Scholar 

  3. J.H. Kim, H.S. Seo, Y.J. Kim, Micromachines 9(9), 457 (2018). https://doi.org/10.3390/mi9090457

    Article  Google Scholar 

  4. Q. Jiang, B. Rogez, J.B. Claude, G. Baffou, J. Wenger, Nano Lett. 12, 8811 (2020). https://doi.org/10.1021/acs.nanolett.0c03638

    Article  ADS  Google Scholar 

  5. D. Zablotsky, M.M. Maiorov, Int. J. Heat Mass Transf. 164, 120552–1 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120552

    Article  Google Scholar 

  6. D. Zablotsky, A. Mezulis, E. Blums, M. Maiorov, Philos. Trans. R. Soc. A 380, 20200310–1 (2022). https://doi.org/10.1098/rsta.2020.0310

    Article  ADS  Google Scholar 

  7. G. Mériguet, G. Demouchy, E. Dubois, R. Perzynski, A. Bourdon, J. Non-Equilib. Thermodyn. 32, 271 (2007). https://doi.org/10.1515/JNETDY.2007.019

    Article  ADS  Google Scholar 

  8. A.L. Sehnem, A.M.F. Neto, D. Niether, S. Wiegand, Phys. Rev. E 98, 062615 (2018). https://doi.org/10.1103/PhysRevE.98.062615

    Article  ADS  Google Scholar 

  9. R. Cabreira-Gomes, A. Ferreira da Silva, M. Kouyaté, G. Demouchy, G. Mériguet, R. Aquino, E. Dubois, S. Nakamae, M. Roger, J. Depeyrot, R. Perzynski, Phys. Chem. Chem. Phys. 20, 16402 (2018). https://doi.org/10.1039/c8cp02558d

    Article  Google Scholar 

  10. M. Kouyaté, C. Filomeno, G. Demouchy, G. Mériguet, S. Nakamae, V. Peyre, M. Roger, A. Cebers, J. Depeyrot, E. Dubois, R. Perzynski, Phys. Chem. Chem. Phys. 21, 1895 (2019). https://doi.org/10.1039/c8cp06858e

    Article  Google Scholar 

  11. M. Sarkar, J.C. Riedl, G. Demouchy, F. Gélébart, G. Mériguet, V. Peyre, E. Dubois, R. Perzynski, Eur. Phys. J. E. Soft Matter 42(6), 1–72 (2019). https://doi.org/10.1140/epje/i2019-11835-6

    Article  Google Scholar 

  12. R.Y. Dong, Y. Zhou, C. Yang, B.Y. Cao, J. Phys. Condens. Matter 27, 495102 (2015). https://doi.org/10.1088/0953-8984/27/49/495102

    Article  Google Scholar 

  13. O. Syshchyk, D. Afanasenkau, Z. Wang, H. Kriegs, J. Buitenhuis, S. Wiegand, Eur. Phys. J. E 39, 129 (2016). https://doi.org/10.1140/epje/i2016-16129-y

    Article  Google Scholar 

  14. H. Ning, J. Buitenhuis, J. Dhont, S. Wiegand, J. Chem. Phys. 125, 204911 1 (2006). https://doi.org/10.1063/1.2400860

  15. E. Blums, G. Kronkalns, M.M. Maiorov, A. Mezulis, J. Magn. Magn. Mater. 289, 275 (2005). https://doi.org/10.1016/j.jmmm.2004.11.078

    Article  ADS  Google Scholar 

  16. V. Sints, E. Blums, M. Maiorov, G. Kronkalns, Eur. Phys. J. E. Soft Matter 38(5), 119 (2015). https://doi.org/10.1140/epje/i2015-15035-2

    Article  Google Scholar 

  17. V. Sints, E. Blums, G. Kronkalns, K. Erglis, M. Maiorov, Int. J. Heat Mass Transf. 125, 580 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.078

    Article  Google Scholar 

  18. V. Yasnou, A. Mialdun, D. Melnikov, V. Shevtsova, Int. J. Heat Mass Transf. 143, 118480 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118480

    Article  Google Scholar 

  19. S.D. Lecce, T. Albrecht, F. Bresme, Nanoscale 12, 23626 (2020). https://doi.org/10.1039/D0NR04912C

    Article  Google Scholar 

  20. A. Würger, Comptes Rendus Mécanique 341(4), 438 (2013). https://doi.org/10.1016/j.crme.2013.02.006. 10th International Meeting on Thermodiffusion

  21. R. Piazza, A. Parola, J. Phys. Condens. Matter 20(15)(2008). https://doi.org/10.1088/0953-8984/20/15/153102

  22. B.V. Derjaguin, G.P. Sidorenkov, Dokl. Acad. Nauk SSSR 32, 622 (1941)

    Google Scholar 

  23. E. Ruckenstein, J. Colloid Int. Sci. 83, 77 (1981). https://doi.org/10.1016/0021-9797(81)90011-4

    Article  ADS  Google Scholar 

  24. J.L. Anderson, Ann. Rev. Fluid Mech. 21, 61 (1989). https://doi.org/10.1146/annurev.fl.21.010189.000425

    Article  ADS  Google Scholar 

  25. K.I. Morozov, in Thermal Nonequilibrium Phenomena in Fluid Mixtures, Lecture Notes in Physics, vol. 584, ed. by W. Köhler, S. Wiegand (Springer-Verlag, 2002), Lecture Notes in Physics, vol. 584, p. 38

  26. G. Demouchy, A. Mezulis, A. Bee, D. Talbot, J. Bacri, A. Bourdon, J. Phys. D Appl. Phys. 37, 1417 (2004). https://doi.org/10.1088/0022-3727/37/10/002

    Article  Google Scholar 

  27. T. Salez, S. Nakamae, R. Perzynski, G. Mériguet, A. Cebers, M. Roger, Entropy 20, 405–1 (2018). https://doi.org/10.3390/e20060405

  28. A. Parola, R. Piazza, Eur. Phys. J. E Soft Matter 15(3), 255 (2004). https://doi.org/10.1140/epje/i2004-10065-5

    Article  Google Scholar 

  29. S. Iacopini, R. Piazza, Europhys. Lett. 63, 247 (2003). https://doi.org/10.1209/epl/i2003-00520-y

    Article  ADS  Google Scholar 

  30. S. Iacopini, R. Rusconi, R. Piazza, Eur. Phys. J. E Soft Matter 19, 59 (2006). https://doi.org/10.1140/epje/e2006-00012-9

    Article  Google Scholar 

  31. R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, Oxford, New York, 1998)

    Google Scholar 

  32. B. Berkovsky (ed.), Magnetic Fluids and Applications Magnetic Fluids and Applications Handbook (Begell House Inc. Publ., 1996)

  33. M. Abareshi, S.H. Sajjadi, S.M. Zebarjad, E.K. Goharshadi, J. Mol. Liq. 163(1), 27 (2011). https://doi.org/10.1016/j.molliq.2011.07.007

    Article  Google Scholar 

  34. J. Tothova, J. Kovac, P. Kopcansky, M. Rajnak, K. Paulovicova, M. Timko, A. Jozefczak, Acta Physica Polonica A 126(1), 278 (2014). https://doi.org/10.12693/APhysPolA.126.278

  35. P. Rossmanith, W. Kohler, Macromolecules 29, 3203 (1996). https://doi.org/10.1021/ma9516302

    Article  ADS  Google Scholar 

  36. J.N. Agar, C.Y. Mou, J.L. Lin, J. Phys. Chem. 93, 2079 (1989). https://doi.org/10.1021/j100342a073

    Article  Google Scholar 

  37. A. Wurger, Phys. Rev. Lett. 101, 1083021 (2008). https://doi.org/10.1103/PhysRevLett.101.108302

    Article  Google Scholar 

  38. W. Kohler, K. Morozov, J. Non-Equilib, Thermodyn. 41(3), 151 (2016). https://doi.org/10.1515/jnet-2016-0024

    Article  Google Scholar 

  39. G. Wittko, W. Kohler, Europhys. Lett. 78, 46007 (2007). https://doi.org/10.1209/0295-5075/78/46007

    Article  ADS  Google Scholar 

  40. S. Mohanakumar, J. Luettmer-Strathmann, S. Wiegand, J. Chem. Phys. 154, 084506 (2021). https://doi.org/10.1063/5.0038039

    Article  ADS  Google Scholar 

  41. J.K.G. Dhont, S. Wiegand, S. Duhr, D. Braun, Langmuir 23(4), 1674 (2007). https://doi.org/10.1021/la062184m

    Article  Google Scholar 

  42. G.D.J. Phillies, J. Chem. Phys. 60(3), 976 (1974). https://doi.org/10.1063/1.1681177

    Article  ADS  Google Scholar 

  43. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 53(2), 600 (1970). https://doi.org/10.1063/1.1674033

    Article  ADS  Google Scholar 

  44. G.K. Batchelor, J. Fluid Mech. 119, 379 (1982). https://doi.org/10.1017/S0022112082001402

    Article  ADS  Google Scholar 

  45. D.M. Heyes, H. Sigurgeirsson, J. Rheol 48, 223 (2004). https://doi.org/10.1122/1.1634986

    Article  ADS  Google Scholar 

  46. C. Berli, D. Quemada, Langmuir 16, 7968 (2000). https://doi.org/10.1021/la000365x

    Article  Google Scholar 

  47. G. Kronkalns, M. Kodols, M.M. Maiorov, Latv. J. Phys. Tech. Sci. 50(4), 56 (2013). https://doi.org/10.2478/lpts-2013-0026

    Article  Google Scholar 

  48. M. Avdeev, D. Bica, L. Vékás, V. Aksenov, A. Feoktystov, O. Marinica, L. Rosta, V. Garamus, R. Willumeit, J. Colloid Int. Sci. 334, 37 (2009). https://doi.org/10.1016/j.jcis.2009.03.005

    Article  ADS  Google Scholar 

  49. M.M. Maiorov, D. Zablotsky, E. Blums, A. Krumina, IOP Conf. Ser. 503(2019). https://doi.org/10.1088/1757-899X/503/1/012029

  50. T.V. Santos, M.F. Pereira, H.M. Avelino, F.J. Caetano, J.M. Fareleira, Fluid Phase Equilib. 453, 46 (2017). https://doi.org/10.1016/j.fluid.2017.08.025

    Article  Google Scholar 

  51. S. Rath, N. Sinha, H. Sahoo, B. Das, B.K. Mishra, Appl. Surf. Sci. 295, 115 (2014). https://doi.org/10.1016/j.apsusc.2014.01.014

    Article  ADS  Google Scholar 

  52. A. Hoell, M. Kammel, A. Heinemann, A. Wiedenmann, J. Appl. Cryst. 36, 558 (2003). https://doi.org/10.1107/S0021889803001742

    Article  Google Scholar 

  53. D. Susan-Resiga, V. Socoliuc, T. Boros, T. Borbáth, O. Marinica, A. Han, L. Vékás, J. Colloid Interface Sci. 373(1), 110 (2012). https://doi.org/10.1016/j.jcis.2011.10.060

    Article  ADS  Google Scholar 

  54. C. Tanford, J. Phys. Chem. 76, 3020 (1972). https://doi.org/10.1021/j100665a018

    Article  Google Scholar 

  55. E. Dubois, V. Cabuil, F. Boué, R. Perzynski, J. Chem. Phys. 111(15), 7147 (1999). https://doi.org/10.1063/1.480007

    Article  ADS  Google Scholar 

  56. H.F. Eicke, Micelles (Springer, Berlin, Heidelberg, 1980), pp. 85–145

    Book  Google Scholar 

  57. A. Khoshnood, A. Firoozabadi, Langmuir 31(22), 5982 (2015). https://doi.org/10.1021/la504658u (PMID: 25941967)

    Article  Google Scholar 

  58. V. Petrenko, M. Avdeev, V.L. Aksenov, L. Bulavin, L. Rosta, in Magnetism and Magnetic Materials, Solid State Phenomena, vol. 152 (Trans Tech Publications Ltd, 2009), Solid State Phenomena, vol. 152, pp. 198–201. https://doi.org/10.4028/www.scientific.net/SSP.152-153.198

  59. L.A. Bulavin, A.V. Nagornyi, V.I. Petrenko, M.V. Avdeev, L. Almasy, L. Rosta, V.L. Aksenov, Ukrain. J. Phys. 58(12), 1143 (2013) https://doi.org/10.15407/ujpe58.12.1143

    Article  Google Scholar 

  60. W.R. Klein, C.B. Tipnis, E.A. Hiedemann, J. Acoust. Soc. Am. 38, 229 (1965). https://doi.org/10.1121/1.1909641

    Article  ADS  Google Scholar 

  61. W.R. Klein, Proc. I.E.E.E. 54(5), 803 (1966). https://doi.org/10.1109/PROC.1966.4866

  62. H. Kogelnik, Bell Syst. Tech. J. 48(9), 2909 (1969). https://doi.org/10.1002/j.1538-7305.1969.tb01198.x

    Article  ADS  Google Scholar 

  63. C. Wohlfarth, B. Wohlfarth, in Refractive Indices of Inorganic, Organometallic, and Organononmetallic Liquids, and Binary Liquid Mixtures, vol. 38A, ed. by M.D. Lechner (Springer-Verlag, 1996), vol. 38A, p. 38. https://doi.org/10.1007/10478514_3

  64. J.C. Maxwell Garnett, Proc. R. Soc. Lond. 76(511)(1905). https://doi.org/10.1098/rspa.1905.0039

  65. C. Filomeno, M. Kouyaté, V. Peyre, G. Demouchy, A. Campos, R. Perzynski, F. Tourinho, E. Dubois, J. Phys. Chem. C 121, 5539 (2017). https://doi.org/10.1021/acs.jpcc.6b10280

    Article  Google Scholar 

  66. T. Fiuza, M. Sarkar, J.C. Riedl, A. Cebers, F. Cousin, G. Demouchy, J. Depeyrot, E. Dubois, F. Gélébart, G. Mériguet, R. Perzynski, V. Peyre, Soft Matter 17, 4566 (2021). https://doi.org/10.1039/d0sm02190c

    Article  ADS  Google Scholar 

  67. J. Chen, K.J. Stebe, J. Fluid Mech. 340, 35 (1997). https://doi.org/10.1017/S0022112097005156

    Article  ADS  Google Scholar 

  68. P. Dutta, S. Pal, M.S. Seehra, N. Shah, G.P. Huffman, J. Appl. Phys. 105(7), 07B501 (2009). https://doi.org/10.1063/1.3055272

    Article  Google Scholar 

  69. B.J. Frisken, Appl. Opt. 40(24), 4087 (2001). https://doi.org/10.1364/AO.40.004087

    Article  ADS  Google Scholar 

  70. M. Hangi, M. Bahiraei, A. Rahbari, Adv. Powder Technol. 29(9), 2168 (2018). https://doi.org/10.1016/j.apt.2018.05.026

    Article  Google Scholar 

  71. E. Blums, V. Sints, A. Mezulis, G. Kronkalns, Magnetohydrodynamics 49(3–4), 360 (2013)

    Article  Google Scholar 

  72. C. Galindo-Gonzalez, A. Ponton, A. Bee, J. Chevalet, D. Talbot, R. Perzynski, E. Dubois, Rheologica Acta 55 (2016). https://doi.org/10.1007/s00397-015-0892-5

  73. B. Frka-Petesic, E. Dubois, L. Almasy, V. Dupuis, F. Cousin, R. Perzynski, Magnetohydrodynamics 49(3/4), 328 (2013). https://doi.org/10.22364/mhd.49.3-4.15

  74. A. Bahandari, J. Magn. Magn. Mater. (to appear) (2022). https://doi.org/10.1016/j.jmmm.2021.168975

    Article  Google Scholar 

  75. C. Kern, R. Aquino, E. Dubois, R. Perzynski, V. Peyre, J. Mol. Liq. 268, 545 (2018). https://doi.org/10.1016/j.molliq.2018.07.063

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ansis Mezulis for consultations on experimental work, Guillaume Mériguet and Mikhail S. Krakov for useful discussions and Amandine Anfry, Michail M. Maiorov and Frédéric Gélébart for technical support in the experiments.

Funding

Latvian State Research Program IMIS2 PHC OSMOSE 2018 contract \(\hbox {n}^{\circ }\)40033S between France and Latvia

Author information

Authors and Affiliations

Authors

Contributions

Viesturs Sints was involved in the conceptualization, investigation, and writing—original draft. Mitradeep Sarkar contributed to the methodology and investigation. Jesse Riedl was involved in the methodology. Gilles Demouchy contributed to the methodology and investigation. Emmanuelle Dubois was involved in the methodology and investigation. Régine Perzynski was involved in the conceptualization, writing—original draft and supervision. Dmitry Zablotsky contributed to the investigation. Gunars Kronkalns contributed to the methodology and resources. Elmars Blums was involved in the conceptualization and supervision.

Corresponding author

Correspondence to Viesturs Sints.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 267 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sints, V., Sarkar, M., Riedl, J. et al. Effect of an excess of surfactant on thermophoresis, mass diffusion and viscosity in an oily surfactant-stabilized ferrofluid. Eur. Phys. J. E 45, 43 (2022). https://doi.org/10.1140/epje/s10189-022-00200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00200-7

Navigation