Skip to main content
Log in

Predicting thermodiffusion in simple binary fluid mixtures

  • Colloquium - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The predictive capabilities of some existing theoretical models to quantify thermodiffusion have been investigated in this work. To do so, the tests have been performed on two model fluids, the hard-sphere and the Lennard-Jones (including spheres and dimers) ones, exploring different mixtures and thermodynamic conditions thanks to extensive molecular simulations. It has been confirmed that the thermal diffusion factor should be expressed as the sum of one term related to the isotope effect and one term related to the “chemical” effects and that a kinetic term is required to quantify thermodiffusion from the gas state to the liquid state. In addition, regarding the isotope effects, it has been obtained that none of the available theoretical models are able to yield a reasonable prediction relatively to the molecular simulations results and that the moment of inertia contribution is one order of magnitude smaller than the mass contribution in the liquid state. Finally, concerning the chemical effects, it has been shown the Shukla and Firoozabadi model, complemented with a kinetic term, is probably the most reasonable option to estimate the chemical contribution to the thermal diffusion factor, even if it fails in capturing the effect of the asymmetry in size and in shape between the species. Overall, this works confirms that there is still a lack of a generic model able to predict accurately thermal diffusion factors, or equivalently Soret coefficient, in simple binary mixtures from the gas state to the liquid state.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Ludwig, Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösungen. Sitz. Ber. Akad. Wiss. Wien Math-Naturw. Kl. 20, 539 (1856)

    Google Scholar 

  2. C. Soret, Sur l’état d’équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homogéne dont deux parties sont portées a des températures différentes. Arch. Sci. Phys. Nat. Geneve 2, 48–61 (1879)

    Google Scholar 

  3. C. Soret, Influence de la température sur la distribution des sels dans leurs solutions. Acad. Sci. Paris C. R. 91, 289–291 (1880)

    Google Scholar 

  4. C. Soret, Sur l’état d’équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homohéne dont deux parties sont portées à des températures différentes. Ann. Chim. Phys. 22, 293–297 (1881)

    Google Scholar 

  5. F.S. Gaeta, U. Bencivenga, P. Canciglia, S. Rossi, D.G. Mita, Temperature gradients and prebiological evolution. Cell Biophys. 10, 103–125 (1987)

    Article  Google Scholar 

  6. D. Braun, N.L. Goddard, A. Libchaber, Exponential DNA replication by laminar convection. Phys. Rev. Lett. 91, 158103 (2003)

    Article  ADS  Google Scholar 

  7. F. Montel, J. Bickert, A. Lagisquet, G. Galliero, Initial state of petroleum reservoirs: a comprehensive approach. J. Pet. Sci. Eng. 58, 391–402 (2007)

    Article  Google Scholar 

  8. S. Srinivasan, M.Z. Saghir, Thermodiffusion in Multicomponent Mixtures Thermodynamic, Algebraic, and Neuro-Computing Models (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

  9. W. Hu, Q. Kang, Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite (Springer, Berlin, 2019)

    Book  Google Scholar 

  10. H. Hoang, P. Nguyen, M. Pujol, G. Galliero, Elemental and isotopic fractionation of noble gases in gas and oil under reservoir conditions: impact of thermodiffusion. Eur. Phys. J. 42, 61–71 (2019)

    Google Scholar 

  11. M. Eslamian, M.Z. Saghir, Thermodiffusion applications in MEMS, NEMS and solar cell fabrication by thermal metal doping of semiconductors. Fluid Dyn. Mater. Process. 8, 353–380 (2012)

    Google Scholar 

  12. C. Zhao, A. Oztekin, X. Cheng, Measuring the Thermal Diffusion Coefficients of Artificial and Biological Particles in a Microfluidic Chip. APS Division of Fluid Dynamics Meeting Abstracts, D6-002 (2013)

  13. W. Köhler, K.I. Morozov, The Soret effect in liquid mixtures—a review. J. Non Equilib. Thermodyn. 41, 151–197 (2016)

    Article  ADS  Google Scholar 

  14. H. Baghooee, F. Montel, G. Galliero, W. Yan, A. Shapiro, A new approach to thermal segregation in petroleum reservoirs: algorithm and case studies. J. Pet. Sci. Eng. 201, 108367 (2021)

    Article  Google Scholar 

  15. S. Wiegand, Thermal diffusion in liquid mixtures and polymer solutions. J. Phys.: Condens. Matter 16, R357R357-R379 (2004)

    Google Scholar 

  16. J.K. Platten, The Soret effect: a review of recent experimental results. J. Appl. Mech. 73, 5 (2006)

    Article  ADS  MATH  Google Scholar 

  17. R. Piazza, Thermophoresis: moving particles with thermal gradients. Soft Matter 4, 1740 (2008)

    Article  ADS  Google Scholar 

  18. P.-A. Artola, B. Rousseau, Thermal diffusion in simple liquid mixtures: what have we learnt from molecular dynamics simulations? Mol. Phys. 111, 3394–3403 (2013)

    Article  ADS  Google Scholar 

  19. A. Würger, Is Soret equilibrium a non-equilibirum effect? C. R. Mécanique 341, 438–448 (2013)

    Article  ADS  Google Scholar 

  20. M.A. Rahman, M.Z. Saghir, Thermodiffusion or Soret effect: historical review. Int. J. Heat Mass Transf. 73, 693–705 (2014)

    Article  Google Scholar 

  21. J.K. Platten, M.M. Bou-Ali, P. Costesèque, J.F. Dutrieux, W. Köhler, C. Leppla, S. Wiegand, G. Wittko, Benchmark values for the Soret, thermal diffusion and diffusion coefficients of three binary organic liquid mixtures. Philos. Mag. 83, 1965 (2003)

    Article  ADS  Google Scholar 

  22. M.M. Bou-Ali, A. Ahadi, D. Alonso de Mezquia, Q. Galand, M. Gebhardt, O. Khlybov, W. Köhler, M. Larrañaga, J.C. Legros, T. Lyubimova, A. Mialdun, I. Ryzhkov, M.Z. Saghir, V. Shevtsova, S. Van Vaerenbergh, Benchmark values for the Soret, thermodiffusion and molecular diffusion coefficients of the ternary mixture tetralin\(+\) isobutylbenzene\(+\) n-dodecane with 0.8–0.1-0.1 mass fraction. Eur. Phys. J. E 38, 30 (2015)

    Article  Google Scholar 

  23. M. Touzet, G. Galliero, V. Lazzeri, M.Z. Saghir, F. Montel, J.C. Legros, Thermodiffusion: from microgravity experiments to the initial state of petroleum reservoirs. C. R. Mécanique 339, 318–323 (2011)

    Article  ADS  Google Scholar 

  24. C. Giraudet, H. Bataller, F. Croccolo, High-pressure mass transport properties measured by dynamic near-field scattering of non-equilibrium fluctuations. Eur. Phys. J. E 37, 107 (2014)

    Article  Google Scholar 

  25. G. Galliero, H. Bataller, J.-P. Bazile, J. Diaz, F. Croccolo, H. Hoang, R. Vermorel, P.-A. Artola, B. Rousseau, V. Vesovic, M.M. Bou-Ali, J.M.O. de Zárate, S. Xu, K. Zhang, F. Montel, A. Verga, O. Minster, Thermodiffusion in multicomponent n-alkane mixtures. NPJ Microgravity 3, 1–7 (2017)

    Article  Google Scholar 

  26. I. Lizarraga, M. Mounir Bou-Ali, C. SantamaríaSantamaría, Thermodiffusion coefficient analysis of n-dodecane /n-hexane mixture at different mass fractions and pressure conditions. Microgravity Sci. Technol. 30, 591–598 (2018)

    Article  ADS  Google Scholar 

  27. A. Perronace, G. Ciccotti, F. Leroy, A.H. Fuchs, B. Rousseau, Soret coefficient for liquid argon-krypton mixtures via equilibrium and nonequilibrium molecular dynamics: a comparison with experiments. Phys. Rev. E 66, 031201 (2002)

    Article  ADS  Google Scholar 

  28. P.-A. Artola, B. Rousseau, G. Galliero, A new model for thermal diffusion: kinetic approach. J. Am. Chem. Soc. 130, 10963–10969 (2008)

    Article  Google Scholar 

  29. G. Galliero, B. Duguay, J.-P. Caltagirone, F. Montel, Thermal diffusion sensitivity to the molecular parameters of a binary equimolar mixture, a non-equilibrium molecular dynamics approach. Fluid Phase Equilib. 208, 171 (2003)

    Article  Google Scholar 

  30. P.-A. Artola, B. Rousseau, Microscopic interpretation of a pure chemical contribution to the Soret effect. Phys. Rev. Lett. 98, 125901 (2007)

    Article  ADS  Google Scholar 

  31. G. Galliero, S. Srinivasan, M.Z. Saghir, Estimation of thermodiffusion in ternary alkane mixtures using molecular dynamics simulations and an irreversible thermodynamics theory. High Temp. High Press. 38, 315–328 (2010)

    Google Scholar 

  32. S. Chapman, T. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, Cambridge, 1981)

    MATH  Google Scholar 

  33. S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (Dover Publication Inc, New York, 1953)

    MATH  Google Scholar 

  34. E.L. Dougherty, H.G. Drickamer, A theory of thermal diffusion in liquids. J. Chem. Phys. 23, 295 (1955)

    Article  ADS  Google Scholar 

  35. E.L. Dougherty, H.G. Drickamer, Thermal diffusion and molecular motion in liquids. J. Phys. Chem. 59, 443–449 (1955)

    Article  Google Scholar 

  36. L.J. Tichacek, W.S. Kmak, H.G. Drickamer, Thermal diffusion in liquids; the effect of non-ideality and association. J. Phys. Chem. 60, 660–665 (1956)

    Article  Google Scholar 

  37. K. Shukla, A. Firoozabadi, A new model of thermal diffusion coefficients in binary hydrocarbon mixtures. Ind. Eng. Chem. Res. 37, 3331–3342 (1998)

    Article  Google Scholar 

  38. A. Firoozabadi, K. Ghorayeb, K. Shukla, Theoretical model of thermal diffusion factors in multicomponent mixtures. AIChE J. 46, 892–900 (2000)

    Article  Google Scholar 

  39. E.D. Eastman, Thermodynamics of non-isothermal systems. J. Am. Chem. Soc. 48, 1482–1493 (1926)

    Article  Google Scholar 

  40. I. Prigogine, L. de Brouckere, R. Amand, Recherches sur la thermodiffusion en phase liquide: (premiere communication). Physica 16, 577–598 (1950)

    Article  ADS  Google Scholar 

  41. R. Haase, Thermodynamics of Irreversible Processes (Addison-Wesley, Reading, 1969)

    Google Scholar 

  42. L.J.T.M. Kempers, A thermodynamics theory of the Soret effect in a multicomponent liquid. J. Chem. Phys. 90, 6541 (1989)

    Article  ADS  Google Scholar 

  43. L.J.T.M. Kempers, A comprehensive thermodynamics theory of the Soret effect in a multicomponent gas, liquid, or solid. J. Chem. Phys. 115, 6330 (2001)

    Article  ADS  Google Scholar 

  44. J. Farago, B. Rousseau, P.-A. Artola, On a variational approach to the Soret coefficient. J. Chem. Phys. 125, 164508 (2006)

    Article  ADS  Google Scholar 

  45. K.I. Morozov, Soret effect in molecular mixtures. Phys. Rev. E 79, 031204 (2009)

    Article  ADS  Google Scholar 

  46. S. Villain-Guillot, A. Würger, Thermal diffusion in a binary liquid due to rectified molecular fluctuations. Phys. Rev. E 83, 030501(R) (2011)

    Article  ADS  Google Scholar 

  47. M.G. Gonzalez-Bagnoli, A.A. Shapiro, E.H. Stenby, Evaluation of thermodynamics models for thermal diffusion factor. Philos. Mag. 83, 2171–2183 (2003)

    Article  ADS  Google Scholar 

  48. B. Hafskjold, T. Ikeshoji, S.K. Ratkje, On the molecular mechanism of thermal diffusion in liquids. Mol. Phys. 80, 1389–1412 (1993)

    Article  ADS  Google Scholar 

  49. D. Reith, F. Müller-Plathe, On the nature of thermal diffusion in binary Lennard-Jones liquids. J. Chem. Phys. 112, 2436 (2000)

    Article  ADS  Google Scholar 

  50. P. Bordat, D. Reith, F. Müller-Plathe, The influence of interaction details on the thermal diffusion in binary Lennard-Jones liquids. J. Chem. Phys. 115, 8978 (2001)

    Article  ADS  Google Scholar 

  51. M. Zhang, F. Müller-Plathe, The Soret effect in dilute polymer solutions: influence of chain length, chain stiffness, and solvent quality. J. Chem. Phys. 125, 124903 (2006)

    Article  ADS  Google Scholar 

  52. S. Yeganegi, M. Zolfaghari, Non-equilibrium molecular dynamics calculation of thermal diffusion factor in binary mixtures of hard spheres. Fluid Phase Equilibria 243, 161–165 (2006)

    Article  Google Scholar 

  53. G. Galliero, M. Bugel, B. Duguay, F. Montel, Mass effect on thermodiffusion using molecular dynamics. J. Non Equilib. Thermodyn. 32, 251–258 (2007)

    Article  ADS  MATH  Google Scholar 

  54. G. Galliero, C. Boned, Molecular dynamics study of the repulsive form influence of the interaction potential on structural, thermodynamic, interfacial, and transport properties. J. Chem. Phys. 129, 074506 (2008)

    Article  ADS  Google Scholar 

  55. M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Oxford University Press, New York, 1987)

    MATH  Google Scholar 

  56. P. Ungerer, B. Tavitian, A. Boutin, Applications of Molecular Simulation in the Oil and Gas Industry: Monte Carlo Methods (Editions Technip, Paris, 2005)

    Google Scholar 

  57. D.N. Theodorou, Progress and outlook in Monte Carlo simulations. Ind. Eng. Chem. Res. 49, 3047–3058 (2010)

    Article  Google Scholar 

  58. S. Di Lecce, T. Albrecht, F. Bresme, A computational approach to calculate the heat of transport of aqueous solutions. Sci. Rep. 7, 44833 (2017)

    Article  ADS  Google Scholar 

  59. C. Debuschewitz, W. Köhler, Molecular origin of thermal diffusion in benzene \(+\) cyclohexane mixtures. Phys. Rev. Lett. 87, 055901 (2001)

    Article  ADS  Google Scholar 

  60. M.J. Assael, J.P.M. Trusler, T.F. Tsolakis, Thermophysical Properties of Fluids (Imperial College Press, London, 1996)

    Book  Google Scholar 

  61. G. Galliero, C. Boned, Shear viscosity of the Lennard-Jones chain fluid in its gaseous, supercritical, and liquid states. Phys. Rev. E 79, 021201 (2009)

    Article  ADS  Google Scholar 

  62. G. Galliero, C. Boned, Thermal conductivity of the Lennard-Jones chain fluid model. Phys. Rev. E 80, 061202 (2009)

    Article  ADS  Google Scholar 

  63. I.H. Bell, S. Delage-Santacreu, H. Hoang, G. Galliero, Dynamic crossover in fluids: from hard spheres to molecules. J. Phys. Chem. Lett. 12, 6411–6417 (2021)

    Article  Google Scholar 

  64. A. Ern, V. Giovangigli, Multicomponent Transport Algorithms. Lecture Notes in Physics m24 (Springer, Berlin, 1994)

    Book  MATH  Google Scholar 

  65. J.M. Kincaid, E.G.D. Cohen, M. López de Haro, The Enskog theory for multicomponent mixtures. IV. Thermal diffusion. J. Chem. Phys. 86, 963 (1987)

    Article  ADS  Google Scholar 

  66. J.M. Kincaid, B. Hafskjold, Thermal diffusion factors for the Lennard-Jones/spline system. Mol. Phys. 82, 1099–1114 (1994)

    Article  ADS  Google Scholar 

  67. K.G. Denbigh, The heat of transport in binary regular solutions. Trans. Faraday Soc. 48, 1–8 (1952)

    Article  Google Scholar 

  68. M. Eslamian, M.Z. Saghir, A dynamic thermodiffusion model for binary liquid mixtures. Phys. Rev. E 80, 011201 (2009)

    Article  ADS  Google Scholar 

  69. E.A. Müller, K.E. Gubbins, Molecular-based equations of state for associating fluids: a review of SAFT and related approaches. Ind. Eng. Chem. Res. 40, 2193–2211 (2001)

    Article  Google Scholar 

  70. F. Montel, H. Hoang, G. Galliero, Linking up pressure, chemical potential and thermal gradients. Eur. Phys. J. E 42, 65 (2019)

    Article  Google Scholar 

  71. H. Eyring, The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)

    Article  ADS  Google Scholar 

  72. M.G. Evans, M. Polanyi, Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935)

    Article  Google Scholar 

  73. R.G. Mortimer, H. Eyring, Elementary transition state theory of the Soret and Dufour effects. Proc. Natl. Acad. Sci. USA 77, 1728–1731 (1980)

    Article  ADS  Google Scholar 

  74. B. Hafskjold, S.K. Ratkje, Criteria for local equilibrium in a system with transport of heat and mass. J. Stat. Phys. 78, 463 (1995)

    Article  ADS  MATH  Google Scholar 

  75. A. Díaz Márquez, Molecular Basis of Thermophoresis, Phd Thesis, Université de Paris (2021)

  76. G. Galliero, B. Duguay, J.P. Caltagirone, F. Montel, On thermal diffusion in binary and ternary Lennard-Jones mixtures by non-equilibrium molecular dynamics. Philos. Mag. 83, 2097–2108 (2003)

    Article  ADS  Google Scholar 

  77. K.S. Shing, K.E. Gubbins, The chemical potential in dense fluids and fluid mixtures via computer simulation. Mol. Phys. 46, 1109–1128 (1982)

    Article  ADS  Google Scholar 

  78. P. Sindzingre, G. Ciccotti, D. Massobrio, D. Frenkel, Partial enthalpies and related quantities in mixtures from computer simulation. Chem. Phys. Lett. 136, 35–41 (1987)

    Article  ADS  Google Scholar 

  79. P. Sindzingre, C. Massobrio, G. Ciccotti, D. Frenkel, Calculation of partial enthalpies of an argon-krypton mixture by molecular dynamics. Chem. Phys. 129, 213–224 (1989)

    Article  Google Scholar 

  80. D.M. Heyes, A.C. Brańka, The influence of potential softness on the transport coefficients of simple fluids. J. Chem. Phys. 122, 234504 (2005)

    Article  ADS  Google Scholar 

  81. J.E. Lennard-Jones, On the determination of molecular fields. Proc. R. Soc. Lond. 106, 441 (1924)

    ADS  Google Scholar 

  82. F. Müller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106, 6082 (1997)

    Article  ADS  Google Scholar 

  83. H. Hoang, S. Delage-Santacreu, G. Galliero, Simultaneous description of equilibrium, interfacial, and transport properties of fluids using a Mie chain coarse-grained force field. Ind. Eng. Chem. Res. 56, 9213–9226 (2017)

    Article  Google Scholar 

  84. D. Bedrov, G.D. Smith, Thermal conductivity of molecular fluids from molecular dynamics simulations: application of a new imposed-flux method. J. Chem. Phys. 113, 8080 (2000)

    Article  ADS  Google Scholar 

  85. C. Nieto-Draghi, J. Bonet Avalos, Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems. Mol. Phys. 101, 2303–2307 (2003)

    Article  ADS  Google Scholar 

  86. P. Wirnsberger, D. Frenkel, C. Dellago, An enhanced version of the heat exchange algorithm with excellent energy conservation properties. J. Chem. Phys. 143, 124104 (2015)

  87. G. Galliero, Thermal diffusion in Lennard-Jones fluids in the frame of the law of the corresponding states. Fluid Phase Equilib. 224, 13–22 (2004)

    Article  Google Scholar 

  88. W.M. Rutherford, Effect of mass distribution on the isotopic thermal diffusion of substituted benzenes. J. Chem. Phys. 81, 6136 (1984)

    Article  ADS  Google Scholar 

  89. W.M. Rutherford, Effect of mass distribution on the isotopic thermal diffusion of benzene. J. Chem. Phys. 86, 5217 (1987)

    Article  ADS  Google Scholar 

  90. J. Olarte-Plata, J.M. Rubi, F. Bresme, Thermophoretic torque in colloidal particles with mass asymmetry. Phys. Rev. E 97, 052607 (2018)

    Article  ADS  Google Scholar 

  91. J. Kolafa, I. Nezbeda, The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state. Fluid Phase Equilib. 100, l (1994)

    Article  Google Scholar 

  92. V. Taghikhani, M.K. Khoshkbarchi, J.H. Vera, On the expression for the chemical potential in mixtures of hard spheres. Fluid Phase Equilib. 165, 141 (1999)

    Google Scholar 

  93. Y. Zhu, X. Lu, J. Zhou, Y. Wang, J. Shi, Prediction of diffusion coefficients for gas, liquid and supercritical fluid: application to pure real fluids and infinite dilute binary solutions based on the simulation of Lennard-Jones fluid. Fluid Phase Equilib. 194–197, 1141 (2002)

    Article  Google Scholar 

  94. H. Sigurgeirsson, D.M. Heyes, Transport coefficients of hard sphere fluids. Mol. Phys. 101, 469 (2003)

    Article  ADS  Google Scholar 

  95. G. Galliero, C. Boned, A. Baylaucq, Molecular dynamics study of the Lennard-Jones fluid viscosity: application to real fluids. Ind. Eng. Chem. Res. 44, 6963 (2005)

    Article  Google Scholar 

  96. S.K. Schnell, R. Skorpa, D. Bedeaux, S. Kjelstrup, T.J.H. Vlugt, J.-M. Simon, Partial molar enthalpies and reaction enthalpies from equilibrium molecular dynamics simulation. J. Chem. Phys. 141, 144501 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Dr. Fabrizio Croccolo is acknowledged for providing the opportunity to write this Colloquium. This work has benefited from the numerous discussion about thermodiffusion with Dr. François Montel. In addition, Pau University and the MCIA are acknowledged for providing computational facilities.

Author information

Authors and Affiliations

Authors

Contributions

H. Hoang (H.H.) and G. Galliero (G.G) conceived the idea of this work. G.G. proposed the methodology. H.H. performed the simulations and wrote the first draft. G.G. and H.H. reviewed the draft to obtain the final manuscript.

Corresponding author

Correspondence to Guillaume Galliero.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (docx 50 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, H., Galliero, G. Predicting thermodiffusion in simple binary fluid mixtures. Eur. Phys. J. E 45, 42 (2022). https://doi.org/10.1140/epje/s10189-022-00197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00197-z

Navigation