Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immunology of multiple sclerosis

Abstract

Our incomplete understanding of the causes and pathways involved in the onset and progression of multiple sclerosis (MS) limits our ability to effectively treat this complex neurological disease. Recent studies explore the role of immune cells at different stages of MS and how they interact with cells of the central nervous system (CNS). The findings presented here begin to question the exclusivity of an antigen-specific cause and highlight how seemingly distinct immune cell types can share common functions that drive disease. Innovative techniques further expose new disease-associated immune cell populations and reinforce how environmental context is critical to their phenotype and subsequent role in disease. Importantly, the differentiation of immune cells into a pathogenic state is potentially reversible through therapeutic manipulation. As such, understanding the mechanisms that provide plasticity to causal cell types is likely key to uncoupling these disease processes and may identify novel therapeutic targets that replace the need for cell ablation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common multiple sclerosis-associated features shared across the immune repertoire.
Fig. 2: Immune surveillance of the brain.
Fig. 3: Multifaceted roles of immune cells in brain pathology in multiple sclerosis.

Similar content being viewed by others

References

  1. International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019). This work presents fine-mapped GWAS data that reveal how the immune system, in particular T cells, NK cells and microglia, are the primary drivers in MS genetic susceptibility.

    PubMed Central  Google Scholar 

  2. Alfredsson, L. & Olsson, T. Lifestyle and environmental factors in multiple sclerosis. Cold Spring Harb. Perspect. Med. 9, a028944 (2019).

    PubMed  PubMed Central  Google Scholar 

  3. Jacobs, B. M. et al. Gene–environment interactions in multiple sclerosis: a UK Biobank study. Neurol. Neuroimmunol. Neuroinflamm. 8, e1007 (2021).

    PubMed  PubMed Central  Google Scholar 

  4. Ramien, C. et al. Sex effects on inflammatory and neurodegenerative processes in multiple sclerosis. Neurosci. Biobehav. Rev. 67, 137–146 (2016).

    PubMed  Google Scholar 

  5. Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 14, 577–589 (2018).

    PubMed  Google Scholar 

  6. Bjornevik, K. et al. Serum neurofilament light chain levels in patients with presymptomatic multiple sclerosis. JAMA Neurol. 77, 58–64 (2019).

    PubMed Central  Google Scholar 

  7. Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein–Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022). This high-powered study is the first to confirm that EBV infection is directly associated with, and precedes, the development of MS.

    PubMed  Google Scholar 

  8. Carassiti, D. et al. Neuronal loss, demyelination and volume change in the multiple sclerosis neocortex. Neuropathol. Appl. Neurobiol. 44, 377–390 (2018).

    PubMed  Google Scholar 

  9. Scalfari, A. et al. The cortical damage, early relapses, and onset of the progressive phase in multiple sclerosis. Neurology 90, e2107–e2118 (2018).

    PubMed  Google Scholar 

  10. Reay, W. R. & Cairns, M. J. Advancing the use of genome-wide association studies for drug repurposing. Nat. Rev. Genet. 22, 658–671 (2021).

    PubMed  Google Scholar 

  11. King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 15, e1008489 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Gregory, A. P. et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature 488, 508–511 (2012). This study reveals why anti-TNF therapy for MS causes disease worsening, in contrast to the benefits observed in treating other autoimmune diseases.

    PubMed  PubMed Central  Google Scholar 

  13. Moutsianas, L. et al. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat. Genet. 47, 1107–1113 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. van Oosten, B. W. et al. Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 49, 351–357 (1997).

    PubMed  Google Scholar 

  15. Mundt, S. et al. Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Sci. Immunol. 4, eaau8380 (2019).

    PubMed  Google Scholar 

  16. Kaur, G., Trowsdale, J. & Fugger, L. Natural killer cells and their receptors in multiple sclerosis. Brain 136, 2657–2676 (2013).

    PubMed  Google Scholar 

  17. International Multiple Sclerosis Genetics Consortium. A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nat. Commun. 10, 2236 (2019).

    Google Scholar 

  18. Gresle, M. M. et al. Multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells. Life Sci. Alliance 3, e202000650 (2020).

    PubMed  PubMed Central  Google Scholar 

  19. Dendrou, C. A. et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci. Transl. Med. 8, 363ra149 (2016). This study demonstrates how functional genomics can be used to understand biological processes that can inform drug development pipelines.

    PubMed  PubMed Central  Google Scholar 

  20. Benton, M. L. et al. The influence of evolutionary history on human health and disease. Nat. Rev. Genet. 22, 269–283 (2021).

    PubMed  PubMed Central  Google Scholar 

  21. Lünemann, J. D. et al. Elevated Epstein–Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis. Ann. Neurol. 67, 159–169 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Pender, M. P., Csurhes, P. A., Burrows, J. M. & Burrows, S. R. Defective T-cell control of Epstein–Barr virus infection in multiple sclerosis. Clin. Transl. Immunol. 6, e126 (2017).

    Google Scholar 

  23. Engdahl, E. et al. Increased serological response against human herpesvirus 6A is associated with risk for multiple sclerosis. Front. Immunol. 10, 2715 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Handel, A. E. et al. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS ONE 5, e12496 (2010).

    PubMed  PubMed Central  Google Scholar 

  25. Endriz, J., Ho, P. P. & Steinman, L. Time correlation between mononucleosis and initial symptoms of MS. Neurol. Neuroimmunol. Neuroinflamm 4, e308 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Jacobs, B. M., Giovannoni, G., Cuzick, J. & Dobson, R. Systematic review and meta-analysis of the association between Epstein–Barr virus, multiple sclerosis and other risk factors. Mult. Scler. 26, 1281–1297 (2020).

    PubMed  PubMed Central  Google Scholar 

  27. Ochoa-Repáraz, J. et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J. Immunol. 183, 6041–6050 (2009).

    PubMed  Google Scholar 

  28. Rizzo, F. et al. Interferon-β therapy specifically reduces pathogenic memory B cells in multiple sclerosis patients by inducing a FAS-mediated apoptosis. Immunol. Cell Biol. 94, 886–894 (2016).

    PubMed  Google Scholar 

  29. Aksoy, S. et al. Rituximab-related viral infections in lymphoma patients. Leuk. Lymphoma 48, 1307–1312 (2007).

    PubMed  Google Scholar 

  30. Perlejewski, K. et al. Search for viral agents in cerebrospinal fluid in patients with multiple sclerosis using real-time PCR and metagenomics. PLoS ONE 15, e0240601 (2020).

    PubMed  PubMed Central  Google Scholar 

  31. Cermelli, C. et al. High frequency of human herpesvirus 6 DNA in multiple sclerosis plaques isolated by laser microdissection. J. Infect. Dis. 187, 1377–1387 (2003).

    PubMed  Google Scholar 

  32. Veroni, C., Serafini, B., Rosicarelli, B., Fagnani, C. & Aloisi, F. Transcriptional profile and Epstein–Barr virus infection status of laser-cut immune infiltrates from the brain of patients with progressive multiple sclerosis. J. Neuroinflammation 15, 18 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Serafini, B. et al. Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain. J. Exp. Med. 204, 2899–2912 (2007).

    PubMed  PubMed Central  Google Scholar 

  34. Hedström, A. K., Olsson, T. & Alfredsson, L. High body mass index before age 20 is associated with increased risk for multiple sclerosis in both men and women. Mult. Scler. 18, 1334–1336 (2012).

    PubMed  Google Scholar 

  35. Wesnes, K. et al. Body size and the risk of multiple sclerosis in Norway and Italy: the EnvIMS study. Mult. Scler. 21, 388–395 (2015).

    PubMed  Google Scholar 

  36. Bosch-Queralt, M. et al. Diet-dependent regulation of TGFβ impairs reparative innate immune responses after demyelination. Nat. Metab. 3, 211–227 (2021).

    PubMed  PubMed Central  Google Scholar 

  37. Berer, K. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl Acad. Sci. USA 114, 10719–10724 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011).

    PubMed  Google Scholar 

  39. Colpitts, S. L. et al. A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis. Gut Microbes 8, 561–573 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. Duscha, A. et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 180, 1067–1080.e16 (2020).

    PubMed  Google Scholar 

  41. Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Jensen, S. N. et al. Isoflavone diet ameliorates experimental autoimmune encephalomyelitis through modulation of gut bacteria depleted in patients with multiple sclerosis. Sci. Adv. 7, eabd4595 (2021).

    PubMed  PubMed Central  Google Scholar 

  44. Cignarella, F. et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 27, 1222–1235.e6 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Zhang, D. et al. High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-β cytokine activation. Immunity 51, 671–681.e5 (2019).

    PubMed  Google Scholar 

  46. Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Na, S.-Y., Janakiraman, M., Leliavski, A. & Krishnamoorthy, G. High-salt diet suppresses autoimmune demyelination by regulating the blood–brain barrier permeability. Proc. Natl Acad. Sci. USA 118, e2025944118 (2021).

    PubMed  PubMed Central  Google Scholar 

  48. Matthias, J. et al. Salt generates antiinflammatory TH17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. J. Clin. Invest. 130, 4587–4600 (2020).

    PubMed  PubMed Central  Google Scholar 

  49. Parks, N. E., Jackson-Tarlton, C. S., Vacchi, L., Merdad, R. & Johnston, B. C. Dietary interventions for multiple sclerosis-related outcomes. Cochrane Database Syst. Rev. 5, CD004192 (2020).

    PubMed  Google Scholar 

  50. Brown, J. W. L. et al. Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 321, 175–187 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. He, A. et al. Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study. Lancet Neurol. 19, 307–316 (2020).

    PubMed  Google Scholar 

  52. Kunkl, M., Frascolla, S., Amormino, C., Volpe, E. & Tuosto, L. T helper cells: the modulators of inflammation in multiple sclerosis. Cells 9, 482 (2020).

    PubMed Central  Google Scholar 

  53. Schafflick, D. et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat. Commun. 11, 247 (2020).

    PubMed  PubMed Central  Google Scholar 

  54. Tuzlak, S. et al. Repositioning TH cell polarization from single cytokines to complex help. Nat. Immunol. 22, 1210–1217 (2021).

    PubMed  Google Scholar 

  55. Murphy, A. C., Lalor, S. J., Lynch, M. A. & Mills, K. H. G. Infiltration of TH1 and TH17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav. Immun. 24, 641–651 (2010).

    PubMed  Google Scholar 

  56. Tahmasebinia, F. & Pourgholaminejad, A. The role of TH17 cells in auto-inflammatory neurological disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 79, 408–416 (2017).

    PubMed  Google Scholar 

  57. Wekerle, H., Kojima, K., lannes-Vieira, J., Lassmann, H. & Linington, C. Animal models. Ann. Neurol. 36, S47–S53 (1994).

    PubMed  Google Scholar 

  58. Cruciani, C. et al. T-cell specificity influences disease heterogeneity in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm 8, e1075 (2021).

    PubMed  PubMed Central  Google Scholar 

  59. Lodygin, D. et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature 566, 503–508 (2019). This study provides evidence to support a role for immune cells in grey matter pathology, indicating how the immune system may cause neuronal decline and contribute directly to neurodegeneration.

    PubMed  Google Scholar 

  60. Kaufmann, M. et al. Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis. Med 2, 296–312.e8 (2021). This study harnesses the ability of natalizumab to trap pathogenic immune cells in the periphery to reveal their identity and phenotype.

    PubMed  Google Scholar 

  61. Galli, E. et al. GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nat. Med. 25, 1290–1300 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Cano-Gamez, E. et al. Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4+ T cells to cytokines. Nat. Commun. 11, 1801 (2020).

    PubMed  PubMed Central  Google Scholar 

  63. Kiner, E. et al. Gut CD4+ T cell phenotypes are a continuum molded by microbes, not by TH archetypes. Nat. Immunol. 22, 216–228 (2021).

    PubMed  PubMed Central  Google Scholar 

  64. Hiltensperger, M. et al. Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity. Nat. Immunol. 22, 880–892 (2021).

    PubMed  PubMed Central  Google Scholar 

  65. Yu, N. et al. CD4+CD25+CD127low/– T cells: a more specific Treg population in human peripheral blood. Inflammation 35, 1773–1780 (2012).

    PubMed  Google Scholar 

  66. Kohm, A. P., Carpentier, P. A., Anger, H. A. & Miller, S. D. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 169, 4712–4716 (2002).

    PubMed  Google Scholar 

  67. Venken, K. et al. Compromised CD4+CD25high regulatory T-cell function in patients with relapsing–remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology 123, 79–89 (2008).

    PubMed  PubMed Central  Google Scholar 

  68. Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17, 673–675 (2011).

    PubMed  PubMed Central  Google Scholar 

  69. Sumida, T. et al. Activated β-catenin in Foxp3+ regulatory T cells links inflammatory environments to autoimmunity. Nat. Immunol. 19, 1391–1402 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Lucca, L. E. et al. TIGIT signaling restores suppressor function of TH1 Tregs. JCI Insight 4, e124427 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Verma, N. D. et al. Multiple sclerosis patients have reduced resting and increased activated CD4+CD25+FOXP3+ T regulatory cells. Sci. Rep. 11, 10476 (2021).

    PubMed  PubMed Central  Google Scholar 

  72. Dominguez-Villar, M., Walker, L. S. K. & Piconese, S. Control of Regulatory T Cell Stability, Plasticity and Function in Health and Disease (Frontiers Media SA, 2021).

  73. Zhao, H., Liao, X. & Kang, Y. Tregs: where we are and what comes next? Front. Immunol. 8, 1578 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Mascanfroni, I. D. et al. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat. Med. 21, 638–646 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Astier, A. L. & Hafler, D. A. Abnormal Tr1 differentiation in multiple sclerosis. J. Neuroimmunol. 191, 70–78 (2007).

    PubMed  PubMed Central  Google Scholar 

  76. Dankers, W. et al. Human memory TH17 cell populations change into anti-inflammatory cells with regulatory capacity upon exposure to active vitamin D. Front. Immunol. 10, 1504 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. Farez, M. F. et al. Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell 162, 1338–1352 (2015).

    PubMed  PubMed Central  Google Scholar 

  78. Mitsdoerffer, M. & Kuchroo, V. New pieces in the puzzle: how does interferon-β really work in multiple sclerosis? Ann. Neurol. 65, 487–488 (2009).

    PubMed  Google Scholar 

  79. Babbe, H. et al. Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192, 393–404 (2000).

    PubMed  PubMed Central  Google Scholar 

  80. Machado-Santos, J. et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 141, 2066–2082 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Fransen, N. L. et al. Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain 143, 1714–1730 (2020).

    PubMed  Google Scholar 

  82. Pender, M. P., Csurhes, P. A., Pfluger, C. M. & Burrows, S. R. Deficiency of CD8+ effector memory T cells is an early and persistent feature of multiple sclerosis. Mult. Scler. 20, 1825–1832 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Smolders, J. et al. Tissue-resident memory T cells populate the human brain. Nat. Commun. 9, 4593 (2018).

    PubMed  PubMed Central  Google Scholar 

  84. Tzartos, J. S. et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172, 146–155 (2008).

    PubMed  PubMed Central  Google Scholar 

  85. Huseby, E. S. et al. A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J. Exp. Med. 194, 669–676 (2001).

    PubMed  PubMed Central  Google Scholar 

  86. van Nierop, G. P. et al. Phenotypic and functional characterization of T cells in white matter lesions of multiple sclerosis patients. Acta Neuropathol. 134, 383–401 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022). This work presents direct evidence showing autoimmune cross-reactivity between an EBV protein and a CNS-specific protein as a potential cause for MS.

    PubMed  PubMed Central  Google Scholar 

  88. Sabolek, M. K. et al. Communication of CD8+ T cells with mononuclear phagocytes in multiple sclerosis. Ann. Clin. Transl. Neurol. 6, 1151–1164 (2019).

    Google Scholar 

  89. Ji, Q., Castelli, L. & Goverman, J. M. MHC class I-restricted myelin epitopes are cross-presented by Tip-DCs that promote determinant spreading to CD8+ T cells. Nat. Immunol. 14, 254–261 (2013).

    PubMed  PubMed Central  Google Scholar 

  90. Page, N. et al. Persistence of self-reactive CD8+ T cells in the CNS requires TOX-dependent chromatin remodeling. Nat. Commun. 12, 1009 (2021).

    PubMed  PubMed Central  Google Scholar 

  91. Najafian, N. et al. Regulatory functions of CD8+CD28 T cells in an autoimmune disease model. J. Clin. Invest. 112, 1037–1048 (2003).

    PubMed  PubMed Central  Google Scholar 

  92. Jiang, H., Zhang, S. I. & Pernis, B. Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science 256, 1213–1215 (1992).

    PubMed  Google Scholar 

  93. Baughman, E. J. et al. Neuroantigen-specific CD8+ regulatory T-cell function is deficient during acute exacerbation of multiple sclerosis. J. Autoimmun. 36, 115–124 (2011).

    PubMed  PubMed Central  Google Scholar 

  94. Cunnusamy, K. et al. Disease exacerbation of multiple sclerosis is characterized by loss of terminally differentiated autoregulatory CD8+ T cells. Clin. Immunol. 152, 115–126 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Pannemans, K. et al. HLA-E restricted CD8+ T cell subsets are phenotypically altered in multiple sclerosis patients. Mult. Scler. 20, 790–801 (2014).

    PubMed  Google Scholar 

  96. Karandikar, N. J. et al. Glatiramer acetate (Copaxone) therapy induces CD8+ T cell responses in patients with multiple sclerosis. J. Clin. Invest. 109, 641–649 (2002).

    PubMed  PubMed Central  Google Scholar 

  97. Tennakoon, D. K. et al. Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J. Immunol. 176, 7119–7129 (2006).

    PubMed  Google Scholar 

  98. Saligrama, N. et al. Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature 572, 481–487 (2019). This work describes the expansion of regulatory CD8+ T cells generated in a coordinated effort to counteract autoreactive CD4+ T cells and γδ T cells in EAE, a phenomenon that is predicted to occur in patients with MS and has also been observed in coeliac disease.

    PubMed  PubMed Central  Google Scholar 

  99. Florou, D., Katsara, M., Feehan, J., Dardiotis, E. & Apostolopoulos, V. Anti-CD20 agents for multiple sclerosis: spotlight on ocrelizumab and ofatumumab. Brain Sci. 10, 758 (2020).

    PubMed Central  Google Scholar 

  100. Cencioni, M. T., Mattoscio, M., Magliozzi, R., Bar-Or, A. & Muraro, P. A. B cells in multiple sclerosis — from targeted depletion to immune reconstitution therapies. Nat. Rev. Neurol. 17, 399–414 (2021).

    PubMed  Google Scholar 

  101. Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E. & Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 14, 164–174 (2004).

    PubMed  Google Scholar 

  102. Kuenz, B. et al. Cerebrospinal fluid B cells correlate with early brain inflammation in multiple sclerosis. PLoS ONE 3, e2559 (2008).

    PubMed  PubMed Central  Google Scholar 

  103. Villar, L. M. et al. Immunoglobulin M oligoclonal bands: biomarker of targetable inflammation in primary progressive multiple sclerosis. Ann. Neurol. 76, 231–240 (2014).

    PubMed  Google Scholar 

  104. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    PubMed  Google Scholar 

  105. von Büdingen, H.-C. et al. B cell exchange across the blood–brain barrier in multiple sclerosis. J. Clin. Invest. 122, 4533–4543 (2012).

    Google Scholar 

  106. Palanichamy, A. et al. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci. Transl. Med. 6, 248ra106 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Stern, J. N. H. et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci. Transl. Med. 6, 248ra107 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Brändle, S. M. et al. Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proc. Natl Acad. Sci. USA 113, 7864–7869 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. Mancuso, R. et al. Effects of natalizumab on oligoclonal bands in the cerebrospinal fluid of multiple sclerosis patients: a longitudinal study. Mult. Scler. 20, 1900–1903 (2014).

    PubMed  Google Scholar 

  110. Wang, J. et al. HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell 183, 1264–1281.e20 (2020). This work shows that memory B cells from patients who are HLA-DRB1*15:01+ can activate CD4+ T cells in the absence of exogenous peptides by presenting self-peptides, including RASGRP2, and peptides derived from HLA-DRB1*15:01 and HLA-DRB5*01:01 molecules themselves.

    PubMed  PubMed Central  Google Scholar 

  111. Lisak, R. P. et al. Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro. J. Neuroimmunol. 246, 85–95 (2012).

    PubMed  Google Scholar 

  112. Lisak, R. P. et al. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J. Neuroimmunol. 309, 88–99 (2017).

    PubMed  Google Scholar 

  113. Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 373, eabf9277 (2021).

    PubMed  PubMed Central  Google Scholar 

  114. Rojas, O. L. et al. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell 176, 610–624.e18 (2019).

    PubMed  PubMed Central  Google Scholar 

  115. Mitsdoerffer, M. et al. Formation and immunomodulatory function of meningeal B cell aggregates in progressive CNS autoimmunity. Brain 144, 1697–1710 (2021).

    PubMed  Google Scholar 

  116. McKenzie, D. R. et al. IL-17-producing γδ T cells switch migratory patterns between resting and activated states. Nat. Commun. 8, 15632 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Ammitzbøll, C. et al. MAIT cell subtypes in multiple sclerosis. J. Neuroimmunol. 339, 577117 (2020).

    PubMed  Google Scholar 

  118. De Biasi, S. et al. iNKT cells in secondary progressive multiple sclerosis patients display pro-inflammatory profiles. Front. Immunol. 7, 555 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Rinaldi, L. et al. Longitudinal analysis of immune cell phenotypes in early stage multiple sclerosis: distinctive patterns characterize MRI-active patients. Brain 129, 1993–2007 (2006).

    PubMed  Google Scholar 

  120. Hvas, J., Oksenberg, J. R., Fernando, R., Steinman, L. & Bernard, C. C. γδ T cell receptor repertoire in brain lesions of patients with multiple sclerosis. J. Neuroimmunol. 46, 225–234 (1993).

    PubMed  Google Scholar 

  121. Stinissen, P. et al. Increased frequency of γδ T cells in cerebrospinal fluid and peripheral blood of patients with multiple sclerosis. Reactivity, cytotoxicity, and T cell receptor V gene rearrangements. J. Immunol. 154, 4883–4894 (1995). This study provides evidence to support a role for unconventional T cells in MS pathogenesis.

    PubMed  Google Scholar 

  122. Shimonkevitz, R., Colburn, C., Burnham, J. A., Murray, R. S. & Kotzin, B. L. Clonal expansions of activated γδ T cells in recent-onset multiple sclerosis. Proc. Natl Acad. Sci. USA 90, 923–927 (1993).

    PubMed  PubMed Central  Google Scholar 

  123. Freedman, M. S., Buu, N. N., Ruijs, T. C., Williams, K. & Antel, J. P. Differential expression of heat shock proteins by human glial cells. J. Neuroimmunol. 41, 231–238 (1992).

    PubMed  Google Scholar 

  124. Zeine, R. et al. Mechanism of γδ T cell-induced human oligodendrocyte cytotoxicity: relevance to multiple sclerosis. J. Neuroimmunol. 87, 49–61 (1998).

    PubMed  Google Scholar 

  125. Schirmer, L., Rothhammer, V., Hemmer, B. & Korn, T. Enriched CD161highCCR6+ γδ T cells in the cerebrospinal fluid of patients with multiple sclerosis. JAMA Neurol. 70, 345–351 (2013).

    PubMed  Google Scholar 

  126. Singh, A. K. et al. High interferon-γ uniquely in Vδ1 T cells correlates with markers of inflammation and axonal damage in early multiple sclerosis. Front. Immunol. 8, 260 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. Willing, A., Jäger, J., Reinhardt, S., Kursawe, N. & Friese, M. A. Production of IL-17 by MAIT cells is increased in multiple sclerosis and is associated with IL-7 receptor expression. J. Immunol. 200, 974–982 (2018).

    PubMed  Google Scholar 

  128. Illés, Z., Shimamura, M., Newcombe, J., Oka, N. & Yamamura, T. Accumulation of Vα7.2-Jα33 invariant T cells in human autoimmune inflammatory lesions in the nervous system. Int. Immunol. 16, 223–230 (2004).

    PubMed  Google Scholar 

  129. Abrahamsson, S. V. et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 136, 2888–2903 (2013).

    PubMed  PubMed Central  Google Scholar 

  130. Held, K. et al. αβ T-cell receptors from multiple sclerosis brain lesions show MAIT cell-related features. Neurol. Neuroimmunol. Neuroinflamm 2, e107 (2015).

    PubMed  PubMed Central  Google Scholar 

  131. Willing, A. et al. CD8+ MAIT cells infiltrate into the CNS and alterations in their blood frequencies correlate with IL-18 serum levels in multiple sclerosis. Eur. J. Immunol. 44, 3119–3128 (2014).

    PubMed  Google Scholar 

  132. Salou, M. et al. Neuropathologic, phenotypic and functional analyses of mucosal associated invariant T cells in multiple sclerosis. Clin. Immunol. 166–167, 1–11 (2016).

    PubMed  Google Scholar 

  133. Carnero Contentti, E., Farez, M. F. & Correale, J. Mucosal-associated invariant T cell features and TCR repertoire characteristics during the course of multiple sclerosis. Front. Immunol. 10, 2690 (2019).

    PubMed  PubMed Central  Google Scholar 

  134. Ammitzbøll, C. et al. Smoking reduces circulating CD26hiCD161hi MAIT cells in healthy individuals and patients with multiple sclerosis. J. Leukoc. Biol. 101, 1211–1220 (2017).

    PubMed  Google Scholar 

  135. Mexhitaj, I. et al. Abnormal effector and regulatory T cell subsets in paediatric-onset multiple sclerosis. Brain 142, 617–632 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. Dias, J., Leeansyah, E. & Sandberg, J. K. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc. Natl Acad. Sci. USA 114, E5434–E5443 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Illés, Z. et al. Differential expression of NK T cell Vα24JαQ invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J. Immunol. 164, 4375–4381 (2000).

    PubMed  Google Scholar 

  138. O’Keeffe, J. et al. T-cells expressing natural killer (NK) receptors are altered in multiple sclerosis and responses to α-galactosylceramide are impaired. J. Neurol. Sci. 275, 22–28 (2008).

    PubMed  PubMed Central  Google Scholar 

  139. Gigli, G., Caielli, S., Cutuli, D. & Falcone, M. Innate immunity modulates autoimmunity: type 1 interferon-beta treatment in multiple sclerosis promotes growth and function of regulatory invariant natural killer T cells through dendritic cell maturation. Immunol. 122, 409–417 (2007).

    Google Scholar 

  140. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    PubMed  Google Scholar 

  141. Kwong, B. et al. T-bet-dependent NKp46+ innate lymphoid cells regulate the onset of TH17-induced neuroinflammation. Nat. Immunol. 18, 1117–1127 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Eken, A. et al. Fingolimod alters tissue distribution and cytokine production of human and murine innate lymphoid cells. Front. Immunol. 10, 217 (2019).

    PubMed  PubMed Central  Google Scholar 

  143. Grigg, J. B. et al. Antigen-presenting innate lymphoid cells orchestrate neuroinflammation. Nature 600, 707–712 (2021). This work shows that antigen presentation by inflammatory ILC3s is required to promote T cell responses in the CNS and the development of MS-like disease in mouse models.

    PubMed  PubMed Central  Google Scholar 

  144. Russi, A. E., Ebel, M. E., Yang, Y. & Brown, M. A. Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. Proc. Natl Acad. Sci. USA 115, E1520–E1529 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Hirose, S. et al. Type 2 innate lymphoid cells induce CNS demyelination in an HSV-IL-2 mouse model of multiple sclerosis. iScience 23, 101549 (2020).

    PubMed  PubMed Central  Google Scholar 

  146. Gross, C. C. et al. Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation. Proc. Natl Acad. Sci. USA 113, E2973–E2982 (2016).

    PubMed  PubMed Central  Google Scholar 

  147. Han, S. et al. Comprehensive immunophenotyping of cerebrospinal fluid cells in patients with neuroimmunological diseases. J. Immunol. 192, 2551–2563 (2014).

    PubMed  Google Scholar 

  148. Rodríguez-Martín, E. et al. Natural killer cell subsets in cerebrospinal fluid of patients with multiple sclerosis. Clin. Exp. Immunol. 180, 243–249 (2015).

    PubMed  PubMed Central  Google Scholar 

  149. Caruana, P., Lemmert, K., Ribbons, K., Lea, R. & Lechner-Scott, J. Natural killer cell subpopulations are associated with MRI activity in a relapsing–remitting multiple sclerosis patient cohort from Australia. Mult. Scler. 23, 1479–1487 (2017).

    PubMed  Google Scholar 

  150. Saraste, M., Irjala, H. & Airas, L. Expansion of CD56bright natural killer cells in the peripheral blood of multiple sclerosis patients treated with interferon-β. Neurol. Sci. 28, 121–126 (2007).

    PubMed  Google Scholar 

  151. Martínez-Rodríguez, J. E. et al. Natural killer cell phenotype and clinical response to interferon-β therapy in multiple sclerosis. Clin. Immunol. 141, 348–356 (2011).

    PubMed  Google Scholar 

  152. Gross, C. C. et al. Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm 3, e289 (2016).

    PubMed  PubMed Central  Google Scholar 

  153. Medina, S. et al. Optimal response to dimethyl fumarate associates in MS with a shift from an inflammatory to a tolerogenic blood cell profile. Mult. Scler. 24, 1317–1327 (2018).

    PubMed  Google Scholar 

  154. Montes Diaz, G., Fraussen, J., Van Wijmeersch, B., Hupperts, R. & Somers, V. Dimethyl fumarate induces a persistent change in the composition of the innate and adaptive immune system in multiple sclerosis patients. Sci. Rep. 8, 8194 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. Skarica, M., Eckstein, C., Whartenby, K. A. & Calabresi, P. A. Novel mechanisms of immune modulation of natalizumab in multiple sclerosis patients. J. Neuroimmunol. 235, 70–76 (2011).

    PubMed  Google Scholar 

  156. Darlington, P. J. et al. Natural killer cells regulate TH17 cells after autologous hematopoietic stem cell transplantation for relapsing remitting multiple sclerosis. Front. Immunol. 9, 834 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Nielsen, N., Ødum, N., Ursø, B., Lanier, L. L. & Spee, P. Cytotoxicity of CD56bright NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A. PLoS ONE 7, e31959 (2012).

    PubMed  PubMed Central  Google Scholar 

  158. Morandi, F. et al. Intrathecal soluble HLA-E correlates with disease activity in patients with multiple sclerosis and may cooperate with soluble HLA-G in the resolution of neuroinflammation. J. Neuroimmune Pharmacol. 8, 944–955 (2013).

    PubMed  Google Scholar 

  159. Plantone, D. et al. Circulating CD56dim NK cells expressing perforin are increased in progressive multiple sclerosis. J. Neuroimmunol. 265, 124–127 (2013).

    PubMed  Google Scholar 

  160. Mishra, M. K., Wang, J., Silva, C., Mack, M. & Yong, V. W. Kinetics of proinflammatory monocytes in a model of multiple sclerosis and its perturbation by laquinimod. Am. J. Pathol. 181, 642–651 (2012).

    PubMed  Google Scholar 

  161. Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373, eabf7844 (2021). This work presents evidence in mice supporting that a large proportion of continuously replenished myeloid cells in the dura mater are not blood derived but, rather, transit from cranial bone marrow through specialized channels.

    PubMed  PubMed Central  Google Scholar 

  162. Akaishi, T., Takahashi, T. & Nakashima, I. Peripheral blood monocyte count at onset may affect the prognosis in multiple sclerosis. J. Neuroimmunol. 319, 37–40 (2018).

    PubMed  Google Scholar 

  163. Kouwenhoven, M., Teleshova, N., Ozenci, V., Press, R. & Link, H. Monocytes in multiple sclerosis: phenotype and cytokine profile. J. Neuroimmunol. 112, 197–205 (2001).

    PubMed  Google Scholar 

  164. Makhlouf, K., Weiner, H. L. & Khoury, S. J. Increased percentage of IL-12+ monocytes in the blood correlates with the presence of active MRI lesions in MS. J. Neuroimmunol. 119, 145–149 (2001).

    PubMed  Google Scholar 

  165. Fiedler, S. E., Spain, R. I., Kim, E. & Salinthone, S. Lipoic acid modulates inflammatory responses of monocytes and monocyte-derived macrophages from healthy and relapsing–remitting multiple sclerosis patients. Immunol. Cell Biol. 99, 107–115 (2021).

    PubMed  Google Scholar 

  166. Spain, R. et al. Lipoic acid in secondary progressive MS: a randomized controlled pilot trial. Neurol. Neuroimmunol. Neuroinflamm 4, e374 (2017).

    PubMed  PubMed Central  Google Scholar 

  167. Guilliams, M., Mildner, A. & Yona, S. Developmental and functional heterogeneity of monocytes. Immunity 49, 595–613 (2018).

    PubMed  Google Scholar 

  168. Locatelli, G. et al. Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model. Nat. Neurosci. 21, 1196–1208 (2018).

    PubMed  Google Scholar 

  169. Giladi, A. et al. Cxcl10+ monocytes define a pathogenic subset in the central nervous system during autoimmune neuroinflammation. Nat. Immunol. 21, 525–534 (2020). This study identifies two pathogenic monocyte subsets expressing CXCL10 and SAA3, which may be candidates for targeted therapeutic intervention.

    PubMed  Google Scholar 

  170. Blecher-Gonen, R. et al. Single-cell analysis of diverse pathogen responses defines a molecular roadmap for generating antigen-specific immunity. Cell Syst. 8, 109–121.e6 (2019).

    PubMed  Google Scholar 

  171. White, M. P. J., Webster, G., Leonard, F. & La Flamme, A. C. Innate IFN-γ ameliorates experimental autoimmune encephalomyelitis and promotes myeloid expansion and PDL-1 expression. Sci. Rep. 8, 259 (2018).

    PubMed  PubMed Central  Google Scholar 

  172. Smith, B. C., Sinyuk, M., Jenkins, J. E., Psenicka, M. W. & Williams, J. L. The impact of regional astrocyte interferon-γ signaling during chronic autoimmunity: a novel role for the immunoproteasome. J. Neuroinflammation 17, 184 (2020).

    PubMed  PubMed Central  Google Scholar 

  173. King, I. L., Dickendesher, T. L. & Segal, B. M. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113, 3190–3197 (2009).

    PubMed  PubMed Central  Google Scholar 

  174. Lotfi, N., Zhang, G.-X., Esmaeil, N. & Rostami, A. Evaluation of the effect of GM-CSF blocking on the phenotype and function of human monocytes. Sci. Rep. 10, 1567 (2020).

    PubMed  PubMed Central  Google Scholar 

  175. Lee, K. M. C., Achuthan, A. A. & Hamilton, J. A. GM-CSF: a promising target in inflammation and autoimmunity. Immunotargets Ther. 9, 225–240 (2020).

    PubMed  PubMed Central  Google Scholar 

  176. Constantinescu, C. S. et al. Randomized phase 1b trial of MOR103, a human antibody to GM-CSF, in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2, e117 (2015).

    PubMed  PubMed Central  Google Scholar 

  177. Haas, J., Schwarz, A., Korporal-Kuhnke, M., Jarius, S. & Wildemann, B. Myeloid dendritic cells exhibit defects in activation and function in patients with multiple sclerosis. J. Neuroimmunol. 301, 53–60 (2016).

    PubMed  Google Scholar 

  178. Thewissen, K. et al. Circulating dendritic cells of multiple sclerosis patients are proinflammatory and their frequency is correlated with MS-associated genetic risk factors. Mult. Scler. 20, 548–557 (2014).

    PubMed  Google Scholar 

  179. Krumbholz, M. et al. CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions. J. Neuroimmunol. 190, 72–79 (2007).

    PubMed  Google Scholar 

  180. Barcellos, L. F. et al. CC-chemokine receptor 5 polymorphism and age of onset in familial multiple sclerosis. Multiple Sclerosis Genetics Group. Immunogenetics 51, 281–288 (2000).

    PubMed  Google Scholar 

  181. Gade-Andavolu, R. et al. Association of CCR5 Δ32 deletion with early death in multiple sclerosis. Genet. Med. 6, 126–131 (2004).

    PubMed  Google Scholar 

  182. Karni, A. et al. Innate immunity in multiple sclerosis: myeloid dendritic cells in secondary progressive multiple sclerosis are activated and drive a proinflammatory immune response. J. Immunol. 177, 4196–4202 (2006).

    PubMed  Google Scholar 

  183. Ko, H.-J. et al. GM-CSF-responsive monocyte-derived dendritic cells are pivotal in TH17 pathogenesis. J. Immunol. 192, 2202–2209 (2014).

    PubMed  Google Scholar 

  184. Nutt, S. L. & Chopin, M. Transcriptional networks driving dendritic cell differentiation and function. Immunity 52, 942–956 (2020).

    PubMed  Google Scholar 

  185. Sie, C. & Korn, T. Dendritic cells in central nervous system autoimmunity. Semin. Immunopathol. 39, 99–111 (2017).

    PubMed  Google Scholar 

  186. Segal, B. M. et al. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing–remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 7, 796–804 (2008).

    PubMed  Google Scholar 

  187. Mondal, S. et al. IL-12 p40 monomer is different from other IL-12 family members to selectively inhibit IL-12Rβ1 internalization and suppress EAE. Proc. Natl Acad. Sci. USA 117, 21557–21567 (2020).

    PubMed  PubMed Central  Google Scholar 

  188. Schwab, N., Zozulya, A. L., Kieseier, B. C., Toyka, K. V. & Wiendl, H. An imbalance of two functionally and phenotypically different subsets of plasmacytoid dendritic cells characterizes the dysfunctional immune regulation in multiple sclerosis. J. Immunol. 184, 5368–5374 (2010).

    PubMed  Google Scholar 

  189. Balashov, K. E., Aung, L. L., Vaknin-Dembinsky, A., Dhib-Jalbut, S. & Weiner, H. L. Interferon-β inhibits Toll-like receptor 9 processing in multiple sclerosis. Ann. Neurol. 68, 899–906 (2010).

    PubMed  PubMed Central  Google Scholar 

  190. Stasiolek, M. et al. Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain 129, 1293–1305 (2006).

    PubMed  Google Scholar 

  191. Huang, Y. et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat. Neurosci. 21, 530–540 (2018).

    PubMed  Google Scholar 

  192. Krogsgaard, M. et al. Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)–DR2–MBP 85–99 complex. J. Exp. Med. 191, 1395–1412 (2000).

    PubMed  PubMed Central  Google Scholar 

  193. Wolf, Y. et al. Microglial MHC class II is dispensable for experimental autoimmune encephalomyelitis and cuprizone-induced demyelination. Eur. J. Immunol. 48, 1308–1318 (2018).

    PubMed  Google Scholar 

  194. Prinz, M., Jung, S. & Priller, J. Microglia biology: one century of evolving concepts. Cell 179, 292–311 (2019).

    PubMed  Google Scholar 

  195. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).

    PubMed  Google Scholar 

  196. Tozaki-Saitoh, H. et al. Transcription factor MafB contributes to the activation of spinal microglia underlying neuropathic pain development. Glia 67, 729–740 (2019).

    PubMed  Google Scholar 

  197. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    PubMed  PubMed Central  Google Scholar 

  198. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021). This work uses barcoded viral tracing with single-cell RNA sequencing to identify novel mediators of microglia–astrocyte interactions that promote CNS pathology in EAE and, potentially, MS.

    PubMed  PubMed Central  Google Scholar 

  199. Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).

    PubMed  PubMed Central  Google Scholar 

  200. Sanmarco, L. M., Polonio, C. M., Wheeler, M. A. & Quintana, F. J. Functional immune cell–astrocyte interactions. J. Exp. Med. 218, e20202715 (2021).

    PubMed  PubMed Central  Google Scholar 

  201. Medawar, P. B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948).

    PubMed  PubMed Central  Google Scholar 

  202. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    PubMed  PubMed Central  Google Scholar 

  203. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    PubMed  PubMed Central  Google Scholar 

  204. Absinta, M. et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. eLife 6, e29738 (2017).

    PubMed  PubMed Central  Google Scholar 

  205. Giles, D. A., Duncker, P. C., Wilkinson, N. M., Washnock-Schmid, J. M. & Segal, B. M. CNS-resident classical DCs play a critical role in CNS autoimmune disease. J. Clin. Invest. 128, 5322–5334 (2018).

    PubMed  PubMed Central  Google Scholar 

  206. Sage, P. T. et al. Dendritic cell PD-L1 limits autoimmunity and follicular T cell differentiation and function. J. Immunol. 200, 2592–2602 (2018).

    PubMed  Google Scholar 

  207. Filippi, M. et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 142, 1858–1875 (2019).

    PubMed  PubMed Central  Google Scholar 

  208. Woo, M. S. et al. Neuronal metabotropic glutamate receptor 8 protects against neurodegeneration in CNS inflammation. J. Exp. Med. 218, e20201290 (2021).

    PubMed  PubMed Central  Google Scholar 

  209. International Multiple Sclerosis Genetics Consortium. Genome-wide association study of severity in multiple sclerosis. Genes. Immun. 12, 615–625 (2011).

    Google Scholar 

  210. Absinta, M. et al. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol. 76, 1474–1483 (2019).

    PubMed  PubMed Central  Google Scholar 

  211. Elliott, C. et al. Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain 142, 2787–2799 (2019).

    PubMed  PubMed Central  Google Scholar 

  212. Bevan, R. J., Evans, R., Griffiths, L. & Watkins, L. M. Meningeal inflammation and cortical demyelination in acute multiple sclerosis. Ann. Neurol. 84, 829–842 (2018).

    PubMed  Google Scholar 

  213. Choi, S. R., Howell, O. W., Carassiti, D. & Magliozzi, R. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 135, 2925–2937 (2012).

    PubMed  Google Scholar 

  214. Schläger, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    PubMed  Google Scholar 

  215. Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

    PubMed  Google Scholar 

  216. Zhan, J., Kipp, M., Han, W. & Kaddatz, H. Ectopic lymphoid follicles in progressive multiple sclerosis: from patients to animal models. Immunology 164, 450–466 (2021).

    PubMed  PubMed Central  Google Scholar 

  217. Magliozzi, R., Howell, O. W. & Reeves, C. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 68, 477–493 (2010).

    PubMed  Google Scholar 

  218. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019). This work uses single-nucleus RNA-sequencing of MS brain tissue to identify lineage and region-specific transcriptomic changes associated with selective cortical neuron damage and glial activation contributing to progression of MS lesions.

    PubMed  PubMed Central  Google Scholar 

  219. Wagner, C. A., Roqué, P. J. & Goverman, J. M. Pathogenic T cell cytokines in multiple sclerosis. J. Exp. Med. 217, e20190460 (2020).

    PubMed  Google Scholar 

  220. Yates, R. L. et al. Fibrin(ogen) and neurodegeneration in the progressive multiple sclerosis cortex. Ann. Neurol. 82, 259–270 (2017).

    PubMed  Google Scholar 

  221. Ryu, J. K. et al. Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Nat. Immunol. 19, 1212–1223 (2018).

    PubMed  PubMed Central  Google Scholar 

  222. Werneburg, S. et al. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity 52, 167–182.e7 (2020).

    PubMed  Google Scholar 

  223. Mahad, D., Ziabreva, I., Lassmann, H. & Turnbull, D. Mitochondrial defects in acute multiple sclerosis lesions. Brain 131, 1722–1735 (2008).

    PubMed  PubMed Central  Google Scholar 

  224. Friese, M. A., Schattling, B. & Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 10, 225–238 (2014).

    PubMed  Google Scholar 

  225. Kaufmann, T. et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat. Neurosci. 22, 1617–1623 (2019).

    PubMed  PubMed Central  Google Scholar 

  226. Eshaghi, A. et al. Progression of regional grey matter atrophy in multiple sclerosis. Brain 141, 1665–1677 (2018).

    PubMed  PubMed Central  Google Scholar 

  227. Peng, C., Trojanowski, J. Q. & Lee, V. M.-Y. Protein transmission in neurodegenerative disease. Nat. Rev. Neurol. 16, 199–212 (2020).

    PubMed  PubMed Central  Google Scholar 

  228. Schattling, B. et al. Bassoon proteinopathy drives neurodegeneration in multiple sclerosis. Nat. Neurosci. 22, 887–896 (2019).

    PubMed  Google Scholar 

  229. Ontaneda, D., Thompson, A. J., Fox, R. J. & Cohen, J. A. Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet 389, 1357–1366 (2017).

    PubMed  Google Scholar 

  230. Wang, A., Rojas, O., Lee, D. & Gommerman, J. L. Regulation of neuroinflammation by B cells and plasma cells. Immunol. Rev. 299, 45–60 (2021).

    PubMed  Google Scholar 

  231. Quinn, J. L., Kumar, G., Agasing, A., Ko, R. M. & Axtell, R. C. Role of TFH cells in promoting T helper 17-induced neuroinflammation. Front. Immunol. 9, 382 (2018).

    PubMed  PubMed Central  Google Scholar 

  232. Guo, J. et al. T follicular helper-like cells are involved in the pathogenesis of experimental autoimmune encephalomyelitis. Front. Immunol. 9, 944 (2018).

    PubMed  PubMed Central  Google Scholar 

  233. Plastini, M. J., Desu, H. L. & Brambilla, R. Dynamic responses of microglia in animal models of multiple sclerosis. Front. Cell. Neurosci. 14, 269 (2020).

    PubMed  PubMed Central  Google Scholar 

  234. Malik, S., Want, M. Y. & Awasthi, A. The emerging roles of γδ T cells in tissue inflammation in experimental autoimmune encephalomyelitis. Front. Immunol. 7, 14 (2016).

    PubMed  PubMed Central  Google Scholar 

  235. Croxford, J. L., Miyake, S., Huang, Y.-Y., Shimamura, M. & Yamamura, T. Invariant Vα19i T cells regulate autoimmune inflammation. Nat. Immunol. 7, 987–994 (2006).

    PubMed  Google Scholar 

  236. Cui, Y. & Wan, Q. NKT cells in neurological diseases. Front. Cell. Neurosci. 13, 245 (2019).

    PubMed  PubMed Central  Google Scholar 

  237. Steinbach, K. et al. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. J. Exp. Med. 213, 1571–1587 (2016).

    PubMed  PubMed Central  Google Scholar 

  238. Urban, S. L. et al. Peripherally induced brain tissue-resident memory CD8+ T cells mediate protection against CNS infection. Nat. Immunol. 21, 938–949 (2020). This work shows that peripheral infections generate antigen-specific CD8+ memory T cells in the brain that adopt a unique tissue-resident memory signature.

    PubMed  PubMed Central  Google Scholar 

  239. Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 8, a028936 (2018).

    PubMed  PubMed Central  Google Scholar 

  240. Prineas, J. W. & Parratt, J. D. E. Oligodendrocytes and the early multiple sclerosis lesion. Ann. Neurol. 72, 18–31 (2012).

    PubMed  Google Scholar 

  241. Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017).

    PubMed  Google Scholar 

  242. Spelman, T. et al. Treatment escalation vs immediate initiation of highly effective treatment for patients with relapsing–remitting multiple sclerosis: data from 2 different national strategies. JAMA Neurol. 78, 1197–1204 (2021).

    PubMed  Google Scholar 

  243. Spath, S. et al. Dysregulation of the cytokine GM-CSF induces spontaneous phagocyte invasion and immunopathology in the central nervous system. Immunity 46, 245–260 (2017).

    PubMed  Google Scholar 

  244. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    PubMed  Google Scholar 

  245. Seyedmirzaei, H. & Rezaei, N. Cytokine alterations in psoriasis: an updated review. Expert Rev. Clin. Immunol. 17, 1323–1335 (2021).

    PubMed  Google Scholar 

  246. Papp, K. et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N. Engl. J. Med. 379, 1313–1321 (2018).

    PubMed  Google Scholar 

  247. Afrasiabi, A. et al. The interaction of human and Epstein–Barr virus miRNAs with multiple sclerosis risk loci. Int. J. Mol. Sci. 22, 2927 (2021).

    PubMed  PubMed Central  Google Scholar 

  248. Ricigliano, V. A. G. et al. EBNA2 binds to genomic intervals associated with multiple sclerosis and overlaps with vitamin D receptor occupancy. PLoS ONE 10, e0119605 (2015). This study shows that direct interaction of environmental factors with regions of the genome that contain MS-associated SNPs supports the significance of the gene–environment axis in disease cause.

    PubMed  PubMed Central  Google Scholar 

  249. Afrasiabi, A., Parnell, G. P., Swaminathan, S., Stewart, G. J. & Booth, D. R. The interaction of multiple sclerosis risk loci with Epstein–Barr virus phenotypes implicates the virus in pathogenesis. Sci. Rep. 10, 193 (2020).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to discussion of the content. K.E.A., L.T.J. and M.A.F. wrote the article. M.K. designed the figures. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Lars Fugger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks B. Becher, T. Korn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Relapsing–remitting MS

(RRMS). Fluctuations in multiple sclerosis (MS) disease activity involving periods of complete or partial symptom relief (remission) between clinical episodes (relapse).

Primary progressive MS

(PPMS). Clinical worsening of multiple sclerosis (MS) disease from onset, without periods of clinical improvement (remissions).

Natalizumab

Monoclonal antibody against the integrin very late antigen 4 (VLA4) that is used to treat patients with relapsing–remitting multiple sclerosis (RRMS).

Grey matter

Brain tissue that largely consists of unmyelinated, neuronal cell bodies.

White matter

Brain tissue that largely consists of myelinated neuronal axons.

Secondary progressive MS

(SPMS). Patients with relapsing–remitting multiple sclerosis (RRMS) will typically progress into a secondary progressive phase, in which clinical worsening persists without any periods of remission.

T follicular helper cells

(TFH cells). A specialist subset of CD4+ T cells that promote the generation of germinal centres within secondary lymphoid organs where they support B cell proliferation and their development into antibody-producing plasma cells.

Glatiramer acetate

An immunomodulatory drug used to treat relapsing–remitting multiple sclerosis (RMMS), consisting of synthetic polypeptides composed of four amino acids resembling myelin basic protein (MBP).

Unconventional T cells

T cells characterized by their ability to raise public responses to a wide range of antigens compared with the highly specific T cell receptor (TCR) repertoire expressed by conventional T cells.

NKT cells

A subset of CD1d-restricted T cells that express both T cell receptors (TCRs) and receptors of the natural killer (NK) cell lineage.

Innate lymphoid cells

(ILCs). Cells that differentiate from a common innate lymphoid progenitor through the expression of specific transcription factors, with most populations (excluding natural killer (NK) cells), subsequently residing within tissues where they contribute to immune defence and tissue homeostasis.

Fingolimod

A sphingosine-1-phosphate receptor (S1PR) modulator that prevents the movement of lymphocytes out of lymph nodes; used as a treatment for patients with relapsing–remitting multiple sclerosis (RMMS).

Clinically isolated syndrome

(CIS). A clinical event in which neurological symptoms, involving inflammation and/or demyelination in the central nervous system (CNS), last for a period greater than 24 h, which then either fully or partially resolves. CIS may precede the onset of other neurological diseases, including multiple sclerosis (MS).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attfield, K.E., Jensen, L.T., Kaufmann, M. et al. The immunology of multiple sclerosis. Nat Rev Immunol 22, 734–750 (2022). https://doi.org/10.1038/s41577-022-00718-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-022-00718-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing