Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases

Abstract

The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcription by eukaryotic RNA polymerases I, II and III.
Fig. 2: Structures of RNA polymerases I, II and III and of their general transcription factors.
Fig. 3: Organization of genes and promoters of RNA polymerases I, II and III.
Fig. 4: Transcription initiation.
Fig. 5: Transcript elongation and co-transcriptional RNA processing.
Fig. 6: Transcription termination.

Similar content being viewed by others

References

  1. Roeder, R. G. & Rutter, W. J. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224, 234–237 (1969).

    Article  CAS  PubMed  Google Scholar 

  2. Roeder, R. G. & Rutter, W. J. Specific nucleolar and nucleoplasmic RNA polymerases. Proc. Natl Acad. Sci. USA 65, 675–682 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abraham, K. J. et al. Nucleolar RNA polymerase II drives ribosome biogenesis. Nature 585, 298–302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III–transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Chiu, Y.-H., MacMillan, J. B. & Chen, Z. J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palazzo, A. F. & Lee, E. S. Non-coding RNA: what is functional and what is junk? Front. Genet. 6, 2 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zhou, M. & Law, J. A. RNA Pol IV and V in gene silencing: rebel polymerases evolving away from Pol II’s rules. Curr. Opin. Plant. Biol. 27, 154–164 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 ångstrom resolution. Science 292, 1863–1876 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3Å resolution. Science 292, 1876–1882 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Fernández-Tornero, C. et al. Crystal structure of the 14-subunit RNA polymerase I. Nature 502, 644–649 (2013).

    Article  PubMed  CAS  Google Scholar 

  11. Engel, C., Sainsbury, S., Cheung, A. C., Kostrewa, D. & Cramer, P. RNA polymerase I structure and transcription regulation. Nature 502, 650–655 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Hoffmann, N. A. et al. Molecular structures of unbound and transcribing RNA polymerase III. Nature 528, 231–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Misiaszek, A. D. et al. Cryo-EM structures of human RNA polymerase I. Nat. Struct. Mol. Biol. 28, 997–1008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao, D. et al. Structure of the human RNA polymerase I elongation complex. Cell Discov. 7, 97 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bernecky, C., Herzog, F., Baumeister, W., Plitzko, J. M. & Cramer, P. Structure of transcribing mammalian RNA polymerase II. Nature 529, 551–554 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Girbig, M. et al. Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Nat. Struct. Mol. Biol. 28, 210–219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramsay, E. P. et al. Structure of human RNA polymerase III. Nat. Commun. 11, 6409 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, Q. et al. Structural insights into transcriptional regulation of human RNA polymerase III. Nat. Struct. Mol. Biol. 28, 220–227 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Li, L. et al. Structure of human RNA polymerase III elongation complex. Cell Res. 31, 791–800 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Edwards, A. M., Kane, C. M., Young, R. A. & Kornberg, R. D. Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. J. Biol. Chem. 266, 71–75 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Jasiak, A. J., Armache, K. J., Martens, B., Jansen, R. P. & Cramer, P. Structural biology of RNA polymerase III: subcomplex C17/25 X-ray structure and 11 subunit enzyme model. Mol. Cell 23, 71–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Allison, L. A., Moyle, M., Shales, M. & James Ingles, C. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42, 599–610 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Kuhn, C.-D. D. et al. Functional architecture of RNA polymerase I. Cell 131, 1260–1272 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Geiger, S. R. et al. RNA polymerase I contains a TFIIF-related DNA-binding subcomplex. Mol. Cell 39, 583–594 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Vorländer, M. K., Khatter, H., Wetzel, R., Hagen, W. J. H. & Müller, C. W. Molecular mechanism of promoter opening by RNA polymerase III. Nature 553, 295–300 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Abascal-Palacios, G., Ramsay, E. P., Beuron, F., Morris, E. & Vannini, A. Structural basis of RNA polymerase III transcription initiation. Nature 553, 301–306 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Han, Y., Yan, C., Fishbain, S., Ivanov, I. & He, Y. Structural visualization of RNA polymerase III transcription machineries. Cell Discov. 4, 40 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chédin, S., Riva, M., Schultz, P., Sentenac, A. & Carles, C. The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS-like subunit and is important for transcription termination. Genes Dev. 12, 3857–3871 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    Article  CAS  PubMed  Google Scholar 

  31. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Andersson, R. & Sandelin, A. Determinants of enhancer and promoter activities of regulatory elements. Nat. Rev. Genet. 21, 71–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Birch, J. L. & Zomerdijk, J. C. B. M. Structure and function of ribosomal RNA gene chromatin. Biochem. Soc. Trans. 36, 619–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Németh, A. & Längst, G. Genome organization in and around the nucleolus. Trends Genet. 27, 149–156 (2011).

    Article  PubMed  CAS  Google Scholar 

  35. Goodfellow, S. J. & Zomerdijk, J. C. B. M. Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Subcell. Bochem. 61, 211–236 (2012).

    Article  CAS  Google Scholar 

  36. McStay, B. & Grummt, I. The epigenetics of rRNA genes: from molecular to chromosome biology. Annu. Rev. Cell Dev. Biol. 24, 131–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Radebaugh, C. A., Gong, X., Bartholomew, B. & Paule, M. R. Identification of previously unrecognized common elements in eukaryotic promoters: a ribosomal RNA gene initiator element for RNA polymerase I. J. Biol. Chem. 272, 3141–3144 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Panov, K. I., Friedrich, J. K., Russell, J. & Zomerdijk, J. C. B. M. UBF activates RNA polymerase I transcription by stimulating promoter escape. EMBO J. 25, 3310–3322 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Knutson, B. A., Smith, M. L., Belkevich, A. E. & Fakhouri, A. M. Molecular topology of RNA polymerase I upstream activation factor. Mol. Cell. Biol. 40, e00056–20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grummt, I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17, 1691–1702 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Gonzalez, I. L. & Sylvester, J. E. Complete sequence of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer. Genomics 27, 320–328 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Grimaldi, G. & Di Nocera, P. P. Multiple repeated units in Drosophila melanogaster ribosomal DNA spacer stimulate rRNA precursor transcription. Proc. Natl Acad. Sci. USA 85, 5502–5506 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mayer, C., Schmitz, K.-M., Li, J., Grummt, I. & Santoro, R. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol. Cell 22, 351–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Santoro, R., Schmitz, K. M., Sandoval, J. & Grummt, I. Intergenic transcripts originating from a subclass of ribosomal DNA repeats silence ribosomal RNA genes in trans. EMBO Rep. 11, 52–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Németh, A., Guibert, S., Tiwari, V. K., Ohlsson, R. & Längst, G. Epigenetic regulation of TTF-I-mediated promoter–terminator interactions of rRNA genes. EMBO J. 27, 1255–1265 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sylvester, J. E. et al. The human ribosomal RNA genes: structure and organization of the complete repeating unit. Hum. Genet. 73, 193–198 (1986).

    Article  CAS  PubMed  Google Scholar 

  47. Parks, M. M. et al. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Sci. Adv. 4, eaao0665 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gagnon-Kugler, T., Langlois, F., Stefanovsky, V., Lessard, F. & Moss, T. Loss of human ribosomal gene CpG methylation enhances cryptic RNA polymerase II transcription and disrupts ribosomal RNA processing. Mol. Cell 35, 414–425 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Zentner, G. E., Saiakhova, A., Manaenkov, P., Adams, M. D. & Scacheri, P. C. Integrative genomic analysis of human ribosomal DNA. Nucleic Acids Res. 39, 4949–4960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maiser, A. et al. Super-resolution in situ analysis of active ribosomal DNA chromatin organization in the nucleolus. Sci. Rep. 10, 1–11 (2020).

    Article  CAS  Google Scholar 

  51. Ngoc, L. V., Cassidy, C. J., Huang, C. Y., Duttke, S. H. C. & Kadonaga, J. T. The human initiator is a distinct and abundant element that is precisely positioned in focused core promoters. Genes Dev. 31, 6–11 (2017).

    Article  CAS  Google Scholar 

  52. Ngoc, L. V., Kassavetis, G. A. & Kadonaga, J. T. The RNA polymerase II core promoter in Drosophila. Genetics 212, 13–24 (2019).

    Article  CAS  Google Scholar 

  53. Haberle, V. & Stark, A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat. Rev. Mol. Cell Biol. 19, 621–637 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, C., Bolotin, E., Jiang, T., Sladek, F. M. & Martinez, E. Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters. Gene 389, 52–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Deng, W. & Roberts, S. G. E. A core promoter element downstream of the TATA box that is recognized by TFIIB. Genes Dev. 19, 2418–2423 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kutach, A. K. & Kadonaga, J. T. The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol. Cell. Biol. 20, 4754–4764 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sloutskin, A., Shir-Shapira, H., Freiman, R. N. & Juven-Gershon, T. The core promoter is a regulatory hub for developmental gene expression. Front. Cell Dev. Biol. 9, 2557 (2021).

    Article  Google Scholar 

  58. Guiro, J. & Murphy, S. Regulation of expression of human RNA polymerase II-transcribed snRNA genes. Open Biol. 7, 170073 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Lim, C. Y. et al. The MTE, a new core promoter element for transcription by RNA polymerase II. Genes Dev. 18, 1606–1617 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, D.-H. et al. Functional characterization of core promoter elements: the downstream core element is recognized by TAF1. Mol. Cell. Biol. 25, 9674–9686 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tokusumi, Y., Ma, Y., Song, X., Jacobson, R. H. & Takada, S. The new core promoter element XCPE1 (X core promoter element 1) directs activator-, mediator-, and TATA-binding protein-dependent but TFIID-independent RNA polymerase II transcription from TATA-less promoters. Mol. Cell. Biol. 27, 1844–1858 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nozaki, T. et al. Tight associations between transcription promoter type and epigenetic variation in histone positioning and modification. BMC Genomics 12, 1–10 (2011).

    Article  CAS  Google Scholar 

  63. Panigrahi, A. & O’Malley, B. W. Mechanisms of enhancer action: the known and the unknown. Genome Biol. 22, 1–30 (2021).

    Article  CAS  Google Scholar 

  64. Jin, C. et al. H3.3/H2A.Z double variant–containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions. Nat. Genet. 41, 941–945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lorch, Y., LaPointe, J. W. & Kornberg, R. D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210 (1987).

    Article  CAS  PubMed  Google Scholar 

  66. Canella, D., Praz, V., Reina, J. H., Cousin, P. & Hernandez, N. Defining the RNA polymerase III transcriptome: genome-wide localization of the RNA polymerase III transcription machinery in human cells. Genome Res. 20, 710–721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Krol, A., Carbon, P., Ebel, J. & Appel, B. Xenopus tropicalis U6 snRNA genes transcribed by Pot III contain the upstream promoter elements used by pol II dependent U snRNA genes. Nucleic Acids Res. 15, 2463–2478 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kunkel, G. R. & Pederson, T. Upstream elements required for efficient transcription of a human U6 RNA gene resemble those of U1 and U2 genes even though a different polymerase is used. Genes Dev. 2, 196–204 (1988).

    Article  CAS  PubMed  Google Scholar 

  69. Fowlkes, D. M. & Shenk, T. Transcriptional control regions of the adenovirus VAI RNA gene. Cell 22, 405–413 (1980).

    Article  CAS  PubMed  Google Scholar 

  70. Sakonju, S., Bogenhagen, D. F. & Brown, D. D. A control region in the center of the 5S RNA gene directs specific initiation of transcription: I. The 5′ border of the region. Cell 19, 13–25 (1980).

    Article  CAS  PubMed  Google Scholar 

  71. Bogenhagen, D. F., Sakonju, S. & Brown, D. D. A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3′ border of the region. Cell 19, 27–35 (1980).

    Article  CAS  PubMed  Google Scholar 

  72. Das, G., Henning, D., Wright, D. & Reddy, R. Upstream regulatory elements are necessary and sufficient for transcription of a U6 RNA gene by RNA polymerase III. EMBO J. 7, 503–512 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pieler, T., Hamm, J. & Roeder, R. G. The 5S gene internal control region is composed of three distinct sequence elements, organized as two functional domains with variable spacing. Cell 48, 91–100 (1987).

    Article  CAS  PubMed  Google Scholar 

  74. Galli, G., Hofstetter, H. & Birnstiel, M. L. Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature 294, 626–631 (1981).

    Article  CAS  PubMed  Google Scholar 

  75. Helbo, A. S., Lay, F. D., Jones, P. A., Liang, G. & Grønbæk, K. Nucleosome positioning and NDR structure at RNA polymerase III promoters. Sci. Rep. 7, 1–11 (2017).

    Article  CAS  Google Scholar 

  76. Park, J. L. et al. Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics 9, 171–187 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Moorefield, B., Greene, E. A. & Reeder, R. H. RNA polymerase I transcription factor Rrn3 is functionally conserved between yeast and human. Proc. Natl Acad. Sci. USA 97, 4724–4729 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yamamoto, R. T., Nogi, Y., Dodd, J. A. & Nomura, M. RRN3 gene of Saccharomyces cerevisiae encodes an essential RNA polymerase I transcription factor which interacts with the polymerase independently of DNA template. EMBO J. 15, 3964–3973 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Blattner, C. et al. Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth. Genes Dev. 25, 2093–2105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Milkereit, P. & Tschochner, H. A specialized form of RNA polymerase I, essential for initiation and growth-dependent regulation of rRNA synthesis, is disrupted during transcription. EMBO J. 17, 3692–3703 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Milkereit, P., Schultz, P. & Tschochner, H. Resolution of RNA polymerase I into dimers and monomers and their function in transcription. Biol. Chem. 378, 1433–1443 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Heiss, F. B., Daiß, J. L., Becker, P. & Engel, C. Conserved strategies of RNA polymerase I hibernation and activation. Nat. Commun. 12, 758 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mayer, C., Bierhoff, H. & Grummt, I. The nucleolus as a stress sensor: JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis. Genes Dev. 19, 933–941 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mayer, C., Zhao, J., Yuan, X. & Grummt, I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev. 18, 423–434 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Engel, C., Plitzko, J. & Cramer, P. RNA polymerase I–Rrn3 complex at 4.8 Å resolution. Nat. Commun. 7, 12129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pilsl, M. et al. Structure of the initiation-competent RNA polymerase I and its implication for transcription. Nat. Commun. 7, 12126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sadian, Y. et al. Structural insights into transcription initiation by yeast RNA polymerase I. EMBO J. 36, 2698–2709 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Engel, C. et al. Structural basis of RNA polymerase I transcription initiation. Cell 169, 120–131.e22 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Han, Y. et al. Structural mechanism of ATP-independent transcription initiation by RNA polymerase I. eLife 6, e27414 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sadian, Y. et al. Molecular insight into RNA polymerase I promoter recognition and promoter melting. Nat. Commun. 10, 5543 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pilsl, M. & Engel, C. Structural basis of RNA polymerase I pre-initiation complex formation and promoter melting. Nat. Commun. 11, 1206 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Comai, L. et al. Reconstitution of transcription factor SL1: exclusive binding of TBP by SL1 or TFIID subunits. Science 266, 1966–1972 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Bedwell, G. J., Appling, F. D., Anderson, S. J. & Schneider, D. A. Efficient transcription by RNA polymerase I using recombinant core factor. Gene 492, 94–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Baudin, F. et al. Mechanism of RNA polymerase I selection by transcription factor UAF. Preprint at bioRxiv https://doi.org/10.1101/2022.02.10.479882 (2022).

    Article  Google Scholar 

  95. Panov, K. I., Friedrich, J. K. & Zomerdijk, J. C. B. M. A step subsequent to preinitiation complex assembly at the ribosomal RNA gene promoter is rate limiting for human RNA polymerase I-dependent transcription. Mol. Cell. Biol. 21, 2641–2649 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hahn, S. & Young, E. T. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 189, 705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sainsbury, S., Bernecky, C. & Cramer, P. Structural basis of transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 129–143 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P. A. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56, 549–561 (1989).

    Article  CAS  PubMed  Google Scholar 

  99. Soutourina, J. Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 19, 262–274 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Plaschka, C. et al. Architecture of the RNA polymerase II–Mediator core initiation complex. Nature 518, 376–380 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Plaschka, C. et al. Transcription initiation complex structures elucidate DNA opening. Nature 533, 353–358 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Schilbach, S. et al. Structures of transcription pre-initiation complex with TFIIH and Mediator. Nature 551, 204–209 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tsai, K.-L. et al. Mediator structure and rearrangements required for holoenzyme formation. Nature 544, 196–201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dienemann, C., Schwalb, B., Schilbach, S. & Cramer, P. Promoter distortion and opening in the RNA polymerase II cleft. Mol. Cell 73, 97–106.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Schilbach, S., Aibara, S., Dienemann, C., Grabbe, F. & Cramer, P. Structure of RNA polymerase II pre-initiation complex at 2.9 Å defines initial DNA opening. Cell 184, 4064–4072.e28 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Yang, C. et al. Structural visualization of de novo transcription initiation by Saccharomyces cerevisiae RNA polymerase II. Mol. Cell 82, 660–676.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. He, Y. et al. Near-atomic resolution visualization of human transcription promoter opening. Nature 533, 359–365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Abdella, R. et al. Structure of the human Mediator-bound transcription preinitiation complex. Science 372, 52–56 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen, X. et al. Structural insights into preinitiation complex assembly on core promoters. Science 372, eaba8490 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Rengachari, S., Schilbach, S., Aibara, S., Dienemann, C. & Cramer, P. Structure of the human Mediator–RNA polymerase II pre-initiation complex. Nature 594, 129–133 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Aibara, S., Schilbach, S. & Cramer, P. Structures of mammalian RNA polymerase II pre-initiation complexes. Nature 594, 124–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, X. et al. Structures of the human Mediator and Mediator-bound preinitiation complex. Science 372, eabg0635 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Cianfrocco, M. A. et al. Human TFIID binds to core promoter DNA in a reorganized structural state. Cell 152, 120–131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Patel, A. B. et al. Structure of human TFIID and mechanism of TBP loading onto promoter DNA. Science 362, eaau8872 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kim, Y., Geiger, J. H., Hahn, S. & Sigler, P. B. Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520 (1993).

    Article  CAS  PubMed  Google Scholar 

  116. Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19, 464–478 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Fisher, R. P. & Morgan, D. O. A novel cyclin associates with M015/CDK7 to form the CDK-activating kinase. Cell 78, 713–724 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Joo, Y. J. et al. Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation. Genes Dev. 31, 2162–2174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yudkovsky, N., Ranish, J. A. & Hahn, S. A transcription reinitiation intermediate that is stabilized by activator. Nature 408, 225–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Baek, I., Friedman, L. J., Gelles, J. & Buratowski, S. Single-molecule studies reveal branched pathways for activator-dependent assembly of RNA polymerase II pre-initiation complexes. Mol. Cell 81, 3576–3588.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Dergai, O. & Hernandez, N. How to recruit the correct RNA polymerase? Lessons from snRNA genes. Trends Genet. 35, 457–469 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Sadowski, C. L., Henry, R. W., Lobo, S. M. & Hernandez, N. Targeting TBP to a non-TATA box cis-regulatory element: a TBP-containing complex activates transcription from snRNA promoters through the PSE. Genes Dev. 7, 1535–1548 (1993).

    Article  CAS  PubMed  Google Scholar 

  123. Dergai, O. et al. Mechanism of selective recruitment of RNA polymerases II and III to snRNA gene promoters. Genes Dev. 32, 711–722 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim, M. K. et al. Assembly of SNAPc, Bdp1, and TBP on the U6 snRNA gene promoter in Drosophila melanogaster. Mol. Cell. Biol. https://doi.org/10.1128/MCB.00641-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gouge, J. et al. Redox signaling by the RNA polymerase III TFIIB-related factor Brf2. Cell 163, 1375–1387 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gouge, J. et al. Molecular mechanisms of Bdp1 in TFIIIB assembly and RNA polymerase III transcription initiation. Nat. Commun. 8, 130 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Knutson, B. A. & Hahn, S. Yeast Rrn7 and human TAF1B are TFIIB-related RNA polymerase I general transcription factors. Science 333, 1637–1640 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Colbert, T. & Hahn, S. A yeast TFIIB-related factor involved in RNA polymerase III transcription. Genes Dev. 6, 1940–1949 (1992).

    Article  CAS  PubMed  Google Scholar 

  129. Vannini, A. & Cramer, P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol. Cell 45, 439–446 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, Z. & Roeder, R. G. Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation. Genes Dev. 11, 1315–1326 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Brun, I., Sentenac, A. & Werner, M. Dual role of the C34 subunit of RNA polymerase III in transcription initiation. EMBO J. 16, 5730–5741 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Landrieux, E. et al. A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation. EMBO J. 25, 118–128 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Kassavetis, G. A., Prakash, P. & Shim, E. The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening. J. Biol. Chem. 285, 2695–2706 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Wu, C.-C., Lin, Y.-C. & Chen, H.-T. The TFIIF-like Rpc37/53 dimer lies at the center of a protein network to connect TFIIIC, Bdp1, and the RNA polymerase III active center. Mol. Cell. Biol. 31, 2715–2728 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ducrot, C. et al. Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors. J. Biol. Chem. 281, 11685–11692 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Kassavetis, G. A. et al. The role of the TATA-binding protein in the assembly and function of the multisubunit yeast RNA polymerase III transcription factor, TFIIIB. Cell 71, 1055–1064 (1992).

    Article  CAS  PubMed  Google Scholar 

  137. Kassavetis, G. A., Braun, B. R., Nguyen, L. H. & Geiduschek, E. P. S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 60, 235–245 (1990).

    Article  CAS  PubMed  Google Scholar 

  138. Cieśla, M., Skowronek, E. & Boguta, M. Function of TFIIIC, RNA polymerase III initiation factor, in activation and repression of tRNA gene transcription. Nucleic Acids Res. 46, 9444–9455 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Male, G. et al. Architecture of TFIIIC and its role in RNA polymerase III pre-initiation complex assembly. Nat. Commun. 6, 7387 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Vorländer, M. K. et al. Structure of the TFIIIC subcomplex τA provides insights into RNA polymerase III pre-initiation complex formation. Nat. Commun. 11, 4905 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Willis, I. M. & Moir, R. D. Signaling to and from the RNA polymerase III transcription and processing machinery. Annu. Rev. Biochem. 87, 75–100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Vorländer, M. K. et al. Structural basis for RNA polymerase III transcription repression by Maf1. Nat. Struct. Mol. Biol. 27, 229–232 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Tafur, L. et al. Molecular structures of transcribing RNA polymerase I. Mol. Cell 64, 1135–1143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Neyer, S. et al. Structure of RNA polymerase I transcribing ribosomal DNA genes. Nature 540, 607–610 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. McNamar, R., Abu-Adas, Z., Rothblum, K., Knutson, B. A. & Rothblum, L. I. Conditional depletion of the RNA polymerase I subunit PAF53 reveals that it is essential for mitosis and enables identification of functional domains. J. Biol. Chem. 294, 19907–19922 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tafur, L. et al. The cryo-EM structure of a 12-subunit variant of RNA polymerase I reveals dissociation of the A49-A34.5 heterodimer and rearrangement of subunit A12.2. eLife 8, e43204 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Scull, C. E., Lucius, A. L. & Schneider, D. A. The N-terminal domain of the A12.2 subunit stimulates RNA polymerase I transcription elongation. Biophys. J. 120, 1883–1893 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wada, T. et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schneider, D. A. et al. RNA polymerase II elongation factors Spt4p and Spt5p play roles in transcription elongation by RNA polymerase I and rRNA processing. Proc. Natl Acad. Sci. USA 103, 12707–12712 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Viktorovskaya, O. V., Appling, F. D. & Schneider, D. A. Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly. J. Biol. Chem. 286, 18825–18833 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Anderson, S. J. et al. The transcription elongation factor Spt5 influences transcription by RNA polymerase I positively and negatively. J. Biol. Chem. 286, 18816–18824 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Huffines, A. K., Edwards, Y. J. K. & Schneider, D. A. Spt4 promotes Pol I processivity and transcription elongation. Genes 12, 413 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang, Y., Sikes, M. L., Beyer, A. L. & Schneider, D. A. The Paf1 complex is required for efficient transcription elongation by RNA polymerase I. Proc. Natl Acad. Sci. USA 106, 2153–2158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Stefanovsky, V., Langlois, F., Gagnon-Kugler, T., Rothblum, L. I. & Moss, T. Growth factor signaling regulates elongation of RNA polymerase I transcription in mammals via UBF phosphorylation and r-chromatin remodeling. Mol. Cell 21, 629–639 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Fath, S., Kobor, M. S., Philippi, A., Greenblatt, J. & Tschochner, H. Dephosphorylation of RNA polymerase I by Fcp1p is required for efficient rRNA synthesis. J. Biol. Chem. 279, 25251–25259 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Turowski, T. W. et al. Nascent transcript folding plays a major role in determining RNA polymerase elongation rates. Mol. Cell 79, 488–503.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schneider, D. A. et al. Transcription elongation by RNA polymerase I is linked to efficient rRNA processing and ribosome assembly. Mol. Cell 26, 217–229 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Osheim, Y. N. et al. Pre-18S ribosomal RNA is structurally compacted into the SSU processome prior to being cleaved from nascent transcripts in Saccharomyces cerevisiae. Mol. Cell 16, 943–954 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Miller, O. L. & Beatty, B. R. Visualization of nucleolar genes. Science 164, 955–957 (1969).

    Article  PubMed  Google Scholar 

  160. Albert, B., Perez-Fernandez, J., Léger-Silvestre, I. & Gadal, O. Regulation of ribosomal RNA production by RNA polymerase I: does elongation come first? Genet. Res. Int. 2012, 1–13 (2012).

    Article  CAS  Google Scholar 

  161. El Hage, A., French, S. L., Beyer, A. L. & Tollervey, D. Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24, 1546–1558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yamaguchi, Y. et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41–51 (1999).

    Article  CAS  PubMed  Google Scholar 

  163. Vos, S. M., Farnung, L., Urlaub, H. & Cramer, P. Structure of paused transcription complex Pol II–DSIF–NELF. Nature 560, 601–606 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Vos, S. M. et al. Structure of activated transcription complex Pol II–DSIF–PAF–SPT6. Nature 560, 607–612 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Bernecky, C., Plitzko, J. M. & Cramer, P. Structure of a transcribing RNA polymerase II–DSIF complex reveals a multidentate DNA–RNA clamp. Nat. Struct. Mol. Biol. 24, 809–815 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Cheung, A. C. M. & Cramer, P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 471, 249–253 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Vos, S. M., Farnung, L., Linden, A., Urlaub, H. & Cramer, P. Structure of complete Pol II–DSIF–PAF–SPT6 transcription complex reveals RTF1 allosteric activation. Nat. Struct. Mol. Biol. 27, 668–677 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Chen, Y. et al. Allosteric transcription stimulation by RNA polymerase II super elongation complex. Mol. Cell 81, 3386–3399.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Rossi, M. J. et al. A high-resolution protein architecture of the budding yeast genome. Nature 592, 309–314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kujirai, T. et al. Structural basis of the nucleosome transition during RNA polymerase II passage. Science 362, 595–598 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Farnung, L., Vos, S. M. & Cramer, P. Structure of transcribing RNA polymerase II-nucleosome complex. Nat. Commun. 9, 5432 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ehara, H. et al. Structural insight into nucleosome transcription by RNA polymerase II with elongation factors. Science 363, 744–747 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Farnung, L., Ochmann, M., Engeholm, M. & Cramer, P. Structural basis of nucleosome transcription mediated by Chd1 and FACT. Nat. Struct. Mol. Biol. 28, 382–387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Orphanides, G., LeRoy, G., Chang, C.-H., Luse, D. S. & Reinberg, D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92, 105–116 (1998).

    Article  CAS  PubMed  Google Scholar 

  175. Jeronimo, C. et al. FACT is recruited to the +1 nucleosome of transcribed genes and spreads in a Chd1-dependent manner. Mol. Cell 81, 3542–3559.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Cho, E.-J., Takagi, T., Moore, C. R. & Buratowski, S. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 11, 3319–3326 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wahl, M. C., Will, C. L. & Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Zhang, S. et al. Structure of a transcribing RNA polymerase II–U1 snRNP complex. Science 371, 305–309 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Zhang, J., Cavallaro, M. & Hebenstreit, D. Timing RNA polymerase pausing with TV-PRO-seq. Cell Rep. Methods 1, 100083 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  180. Alic, N. et al. Selectivity and proofreading both contribute significantly to the fidelity of RNA polymerase III transcription. Proc. Natl Acad. Sci. USA 104, 10400–10405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. French, S. L. et al. Visual analysis of the yeast 5S rRNA gene transcriptome: Regulation and role of La protein. Mol. Cell. Biol. 28, 4576–4587 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Jarrous, N., Mani, D. & Ramanathan, A. Coordination of transcription and processing of tRNA. FEBS J. https://doi.org/10.1111/febs.15904 (2021).

    Article  PubMed  Google Scholar 

  183. Maraia, R. J., Mattijssen, S., Cruz-Gallardo, I. & Conte, M. R. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. Wiley Interdiscip. Rev. RNA 8, e1430 (2017).

    Article  CAS  Google Scholar 

  184. Serruya, R. et al. Human RNase P ribonucleoprotein is required for formation of initiation complexes of RNA polymerase III. Nucleic Acids Res. 43, 5442–5450 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Henras, A. K. et al. Biochemical and genomic analysis of substrate recognition by the double-stranded RNA binding domain of yeast RNase III. RNA 11, 1225–1237 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mekhail, K., Seebacher, J., Gygi, S. P. & Moazed, D. Role for perinuclear chromosome tethering in maintenance of genome stability. Nature 456, 667–670 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Takeuchi, Y., Horiuchi, T. & Kobayashi, T. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev. 17, 1497–1506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wu, H., Henras, A., Chanfreau, G. & Feigon, J. Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. Proc. Natl Acad. Sci. USA 101, 8307–8312 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. El Hage, A., Koper, M., Kufel, J. & Tollervey, D. Efficient termination of transcription by RNA polymerase I requires the 5′ exonuclease Rat1 in yeast. Genes Dev. 22, 1069–1081 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Reeder, R. H., Guevara, P. & Roan, J. G. Saccharomyces cerevisiae RNA polymerase I terminates transcription at the Reb1 terminator in vivo. Mol. Cell. Biol. 19, 7369–7376 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lang, W. H. & Reeder, R. H. The REB1 site is an essential component of a terminator for RNA polymerase I in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 649–658 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Reiter, A. et al. The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast. EMBO J. 31, 3480–3493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lang, W. H. & Reeder, R. H. Transcription termination of RNA polymerase I due to a T-rich element interacting with Reb1p. Proc. Natl Acad. Sci. USA 92, 9781–9785 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Jaiswal, R. et al. Functional architecture of the Reb1-Ter complex of Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 113, E2267–E2276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Jeong, S. W., Lang, W. H. & Reeder, R. H. The yeast transcription terminator for RNA polymerase I is designed to prevent polymerase slippage. J. Biol. Chem. 271, 16104–16110 (1996).

    Article  CAS  PubMed  Google Scholar 

  196. Prescott, E. M. et al. Transcriptional termination by RNA polymerase I requires the small subunit Rpa12p. Proc. Natl Acad. Sci. USA 101, 6068–6073 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Grummt, I., Rosenbauer, H., Niedermeyer, I., Maier, U. & Öhrlein, A. A repeated 18 bp sequence motif in the mouse rDNA spacer mediates binding of a nuclear factor and transcription termination. Cell 45, 837–846 (1986).

    Article  CAS  PubMed  Google Scholar 

  198. Jansa, P., Mason, S. W., Hoffmann-Rohrer, U. & Grummt, I. Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J. 17, 2855–2864 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Smid, A., Finsterer, M. & Grummt, I. Limited proteolysis unmasks specific DNA-binding of the murine RNA polymerase I-specific transcription termination factor TTFI. J. Mol. Biol. 227, 635–647 (1992).

    Article  CAS  PubMed  Google Scholar 

  200. Akamatsu, Y. & Kobayashi, T. The human RNA polymerase I transcription terminator complex acts as a replication fork barrier that coordinates the progress of replication with rRNA transcription activity. Mol. Cell. Biol. 35, 1871–1881 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Porrua, O. & Libri, D. Transcription termination and the control of the transcriptome: why, where and how to stop. Nat. Rev. Mol. Cell Biol. 16, 190–202 (2015).

    Article  CAS  PubMed  Google Scholar 

  202. Eaton, J. D. & West, S. Termination of transcription by RNA polymerase II: BOOM! Trends Genet. 36, 664–675 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Kumar, A., Clerici, M., Muckenfuss, L. M., Passmore, L. A. & Jinek, M. Mechanistic insights into mRNA 3′-end processing. Curr. Opin. Struct. Biol. 59, 143–150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lunde, B. M. et al. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 17, 1195–1201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517–522 (2004).

    Article  CAS  PubMed  Google Scholar 

  206. West, S., Gromak, N. & Proudfoot, N. J. Human 5’→3’ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522–525 (2004).

    Article  CAS  PubMed  Google Scholar 

  207. Kamieniarz-Gdula, K. et al. Selective roles of vertebrate PCF11 in premature and full-length transcript termination. Mol. Cell 74, 158–172.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Cortazar, M. A. et al. Control of RNA Pol II speed by PNUTS-PP1 and Spt5 dephosphorylation facilitates termination by a “sitting duck torpedo” mechanism. Mol. Cell 76, 896–908.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Parua, P. K. et al. A Cdk9–PP1 switch regulates the elongation–termination transition of RNA polymerase II. Nature 558, 460–464 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kecman, T. et al. Elongation/Termination factor exchange mediated by PP1 phosphatase orchestrates transcription termination. Cell Rep. 25, 259–269.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Steinmetz, E. J., Conrad, N. K., Brow, D. A. & Corden, J. L. RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 413, 327–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  212. Vasiljeva, L., Kim, M., Mutschler, H., Buratowski, S. & Meinhart, A. The Nrd1–Nab3–Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 15, 795–804 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Porrua, O. & Libri, D. A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nat. Struct. Mol. Biol. 20, 884–891 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Leonaitė, B. et al. Sen1 has unique structural features grafted on the architecture of the Upf1-like helicase family. EMBO J. 36, 1590–1604 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Han, Z. et al. Termination of non-coding transcription in yeast relies on both an RNA Pol II CTD interaction domain and a CTD-mimicking region in Sen1. EMBO J. 39, e101548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Han, Z., Libri, D. & Porrua, O. Biochemical characterization of the helicase Sen1 provides new insights into the mechanisms of non-coding transcription termination. Nucleic Acids Res. 45, 1355–1370 (2017).

    Article  CAS  PubMed  Google Scholar 

  217. Baillat, D. et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123, 265–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  218. Yamamoto, J. et al. DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes. Nat. Commun. 5, 4263 (2014).

    Article  CAS  PubMed  Google Scholar 

  219. Zheng, H. et al. Identification of Integrator-PP2A complex (INTAC), an RNA polymerase II phosphatase. Science 370, eabb5872 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Fianu, I. et al. Structural basis of Integrator-mediated transcription regulation. Science 374, 883–887 (2021).

    Article  CAS  PubMed  Google Scholar 

  221. Cozzarelli, N. R., Gerrard, S. P., Schlissel, M., Brown, D. D. & Bogenhagen, D. F. Purified RNA polymerase III accurately and efficiently terminates transcription of 5S RNA genes. Cell 34, 829–835 (1983).

    Article  CAS  PubMed  Google Scholar 

  222. Dieci, G. & Sentenac, A. Facilitated recycling pathway for RNA polymerase III. Cell 84, 245–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  223. James, P. & Hall, B. D. Ret1-1, a yeast mutant affecting transcription termination by RNA polymerase III. Genetics 125, 293–303 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Shaaban, S. A., Krupp, B. M. & Hall, B. D. Termination-altering mutations in the second-largest subunit of yeast RNA polymerase III. Mol. Cell. Biol. 15, 1467–1478 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Rijal, K. & Maraia, R. J. Active center control of termination by RNA polymerase III and tRNA gene transcription levels in vivo. PLoS Genet. 12, e1006253 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Rijal, K. & Maraia, R. J. RNA polymerase III mutants in TFIIFα-like C37 that cause terminator readthrough with no decrease in transcription output. Nucleic Acids Res. 41, 139–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  227. Arimbasseri, A. G. & Maraia, R. J. Distinguishing core and holoenzyme mechanisms of transcription termination by RNA polymerase III. Mol. Cell. Biol. 33, 1571–1581 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Arimbasseri, A. G. & Maraia, R. J. Mechanism of transcription termination by RNA polymerase III utilizes a non-template strand sequence-specific signal element. Mol. Cell 58, 1124–1132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Iben, J. R. et al. Point mutations in the Rpb9-homologous domain of Rpc11 that impair transcription termination by RNA polymerase III. Nucleic Acids Res. 39, 6100–6113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Hou, H. et al. Structural insights into RNA polymerase III-mediated transcription termination through trapping poly-deoxythymidine. Nat. Commun. 12, 6135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Girbig, M. et al. Architecture of the yeast Pol III pre-termination complex and pausing mechanism on poly-dT termination signals. bioRxiv https://doi.org/10.1101/2022.02.28.482286 (2022).

    Article  Google Scholar 

  232. Martin, F. H. & Tinoco, I. DNA-RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucleic Acids Res. 8, 2295–2300 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Mishra, S., Hasan, S. H., Sakhawala, R. M., Chaudhry, S. & Maraia, R. J. Mechanism of RNA polymerase III termination-associated reinitiation-recycling conferred by the essential function of the N terminal-and-linker domain of the C11 subunit. Nat. Commun. 12, 5900 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Rivosecchi, J. et al. Senataxin homologue Sen1 is required for efficient termination of RNA polymerase III transcription. EMBO J. 38, e101955 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Xie, J. et al. An integrated model for termination of RNA polymerase III transcription. bioRxiv https://doi.org/10.1101/2021.08.27.457903 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Ferrari, R., Rivetti, C., Acker, J. & Dieci, G. Distinct roles of transcription factors TFIIIB and TFIIIC in RNA polymerase III transcription reinitiation. Proc. Natl Acad. Sci. USA 101, 13442–13447 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Steffan, J. S., Keys, D. A., Vu, L. & Nomura, M. Interaction of TATA-binding protein with upstream activation factor is required for activated transcription of ribosomal DNA by RNA polymerase I in Saccharomyces cerevisiae in vivo. Mol. Cell. Biol. 18, 3752–3761 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Bell, S. P., Learned, R. M., Jantzen, H.-M. & Tjian, R. Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science 241, 1192–1197 (1988).

    Article  CAS  PubMed  Google Scholar 

  239. Timmers, H. T. M. SAGA and TFIID: Friends of TBP drifting apart. Biochim. Biophys. Acta - Gene Regul. Mech. 1864, 194604 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Molecular Biology Laboratory (M.G., A.D.M. and C.W.M.) and the European Molecular Biology Laboratory International PhD Programme (M.G. and A.D.M.). The authors thank F. Baudin for feedback on the manuscript. M.G. acknowledges support from a Boehringer Ingelheim Fonds PhD fellowship. The authors apologize to those authors whose work has not been included because of space limitations.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this article.

Corresponding author

Correspondence to Christoph W. Müller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Shun-ichi Sekine, Dong Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Active site

A common term for the catalytic centre of RNA polymerases.

Stalk

A mobile structural element found in archaeal and eukaryotic RNA polymerases that is composed of one or two subunits and functions in transcription initiation.

Alu elements

Short, primate-specific transposons transcribed by RNA polymerase III (Pol III) or Pol II.

Microsatellites

Tandem repeats of 1–6 bp that are often used as genetic markers.

Transposons

Mobile DNA elements that can relocate within the genome.

Spacer promoters

Sequences in the spacer regions of ribosomal DNA repeats adjacent to ribosomal DNA promoters, with which they share a high degree of similarity.

Proximal terminators

Terminator elements directly upstream of ribosomal RNA gene promoters which prevent readthrough of polymerases from the intergenic spacer into the promoter that is bound by the stable RNA polymerase I (Pol I) preinitiation complex.

R-loops

Three-stranded RNA–DNA hybrid structures that form when a transcribed RNA invades the double-stranded DNA and hybridizes with its complementary template strand, thereby rendering the non-template single-stranded.

Terminator sequences

Nucleic acid sequences that mark the end of a gene and stimulate transcription termination.

Activator-dependent promoter

Promoter element that exerts high and specific promoter activity only when accompanied by additional motifs bound by other activators.

Stably positioned nucleosomes

Nucleosomes that are stably (strongly) positioned in the genome across many cells.

Dynamic nucleosomes

Nucleosomes whose positions are fuzzy owing to, for example, DNA sequences or activity of chromatin remodellers.

Dock

A small protein domain found in subunit A190 of RNA polymerase I (Pol I), subunit RPB1 of Pol II and subunit C160 of Pol III, which serves as a binding platform for transcription initiation factors.

Clamp domain

A mobile protein domain found in all DNA-dependent RNA polymerases that adopts an ‘open’ conformation in DNA-unbound polymerases, but closes upon DNA binding, and thereby participates in various steps during the transcription process.

Ribosome processomes

Large ribonucleoprotein complexes formed between the pre-ribosomal RNA, ribosomal proteins and RNA-processing factors during the process of ribosome maturation.

Funnel

Structural element of RNA polymerases that serves as the entry channel for nucleoside triphosphates and the exit channel for the RNA 3′ end, which is expelled from the active site upon polymerase backtracking.

Backtracking

RNA polymerase backward movement owing to stalling (for example, due to nucleotide misincorporation), which requires intrinsic or extrinsic RNA cleavage to restore transcript elongation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girbig, M., Misiaszek, A.D. & Müller, C.W. Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol 23, 603–622 (2022). https://doi.org/10.1038/s41580-022-00476-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00476-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing