Skip to main content
Log in

Delsarte equation for Caputo operator of fractional calculus

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

A fractional order variant of the Delsarte equation is investigated involving the Caputo differential derivative. Solvability of the resulting fractional hyperbolic Cauchy problem is achieved in the sense of distributions. A regularity result shows that the solution may be a function of time. Rigorous Delsarte representations are established. The symmetry between the fractional operators acting on space and time, induced by the Delsarte equation, opens the door to new type of fractional partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amann, H.: Vector-valued distributions and Fourier multipliers. https://www.math.uzh.ch/amann/files/distributions.ps (2003)

  2. Arendt, W.: Resolvent positive operators. Proc. London Math. Soc. (3) 54(2), 321–349 (1987)

  3. Bazhlekova, E.: The abstract Cauchy problem for the fractional evolution equation. Fract. Calc. Appl. Anal. 1(3), 255–270 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Bazhlekova, E.: Subordination principle for space-time fractional evolution equations and some applications. Integr. Transf. Spec. Funct. 30(6), 431–452 (2019)

    Article  MathSciNet  Google Scholar 

  5. Chebli, H.: Opérateurs de translation généralisé et semi-groupes de convolution. In: Théorie du potentiel et analyse harmonique, Lecture Notes in Math., Vol. 404, 35–59, Springer-Verlag, New York (1974)

  6. Delsarte, J.: Sur une extension de la formule de Taylor. J. Math. Pures Appl. 17, 213–231 (1938)

    MATH  Google Scholar 

  7. Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, vol. 2004. Springer-Verlag, Berlin (2010)

  8. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Springer-Verlag, Berlin (1992)

    MATH  Google Scholar 

  9. Emamirad, H., Rougirel, A.: Solution operators of three time variables for fractional linear problems. Mathematical Methods in the Applied Sciences 40(5), 1553–1572 (2017)

    Article  MathSciNet  Google Scholar 

  10. Emamirad, H., Rougirel, A.: Time fractional linear problems on \(L^2({\mathbb{R}}^d)\). Bull. Sci. Math. 144, 1–38 (2018)

    Article  MathSciNet  Google Scholar 

  11. Emamirad, H., Rougirel, A.: Time fractional Schrödinger equation. J. Evol. Equ. 20(1), 279–293 (2020)

    Article  MathSciNet  Google Scholar 

  12. Emamirad, H. and Rougirel, A.: Abstract differential triplet and boundary restriction operators with application to fractional differential operators. Preprint hal-02958830v2 (2021)

  13. Jacob, N.: Pseudo Differential Operators and Markov Processes. Vol. I: Fourier Analysis and Semigroups. World Scientific & Imperial College Press, London (2001)

  14. Jacob, N., Krägeloh, A.M.: The Caputo derivative, Feller semigroups, and the fractional power of the first order derivative on \(C^{\infty }({\mathbb{R}}^+_0)\). Fract. Calc. Appl. Anal. 5(4), 395–410 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals. I. Math. Z. 27(1), 565–606 (1928)

    Article  MathSciNet  Google Scholar 

  16. Levitan, B.M.: The application of generalized displacement operators to linear differential equations of the second order. Amer. Math. Soc. Translation 10, 408–541 (1951)

    MathSciNet  Google Scholar 

  17. Li, L., Liu, J.-G.: Some compactness criteria for weak solutions of time fractional PDEs. SIAM J. Math. Anal. 50(4), 3963–3995 (2018)

    Article  MathSciNet  Google Scholar 

  18. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York (1983)

  19. Peetre, J.: Sur la transformation de Fourier des fonctions à valeurs vectorielles. Rend. Sem. Mat. Univ. Padova 42, 15–26 (1969)

    MathSciNet  MATH  Google Scholar 

  20. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, Vol. 198, Academic Press, Inc., San Diego, CA (1999)

  21. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific Publishing Co., Hackensack, NJ (2014)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Emamirad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emamirad, H., Rougirel, A. Delsarte equation for Caputo operator of fractional calculus. Fract Calc Appl Anal 25, 584–607 (2022). https://doi.org/10.1007/s13540-022-00026-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00026-2

Keywords

Mathematics Subject Classification

Navigation