Skip to main content
Log in

Therapeutic Approaches in Heart Failure with Preserved Ejection Fraction (HFpEF) in Children: Present and Future

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

For a long time, pediatric heart failure (HF) with preserved systolic function (HFpEF) has been noted in patients with cardiomyopathies and congenital heart disease. HFpEF is infrequently reported in children and instead of using the  HFpEF terminology the HF symptoms are attributed to diastolic dysfunction. Identifying HFpEF in children is challenging because of heterogeneous etiologies and unknown pathophysiological mechanisms. Advances in echocardiography and cardiac magnetic resonance imaging techniques have further increased our understanding of HFpEF in children. However, the literature does not describe the incidence, etiology, clinical features, and treatment of HFpEF in children. At present, treatment of HFpEF in children is extrapolated from clinical trials in adults. There are significant differences between pediatric and adult HF with reduced ejection fraction, supported by a lack of adequate response to adult HF therapies. Evidence-based clinical trials in children are still not available because of the difficulty of conducting trials with a limited number of pediatric patients with HF. The treatment of HFpEF in children is based upon the clinician’s experience, and the majority of children receive off-level medications. There are significant differences between pediatric and adult HFpEF pharmacotherapies in many areas, including side-effect profiles, underlying pathophysiologies, the β-receptor physiology, and pharmacokinetics and pharmacodynamics. This review describes the present and future treatments for children with HFpEF compared with adults. This review also highlights the need to urgently test new therapies in children with HFpEF to demonstrate the safety and efficacy of drugs and devices with proven benefits in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. McDonagh TA, Metra M, Adamo M, ESC Scientific Document Group, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726.

    Article  CAS  PubMed  Google Scholar 

  2. Campbell RT, Petrie MC, McMurray JJV. Redefining heart failure phenotypes based on ejection fraction. Eur J Heart Fail. 2018;20:1634–5.

    Article  PubMed  Google Scholar 

  3. Bursi F, Weston SA, Redfield MM, et al. Systolic and diastolic heart failure in the community. JAMA. 2006;296:2209–16.

    Article  CAS  PubMed  Google Scholar 

  4. Recher M, Botte A, Soquet J, Baudelet JB, Godart F, Leteurtre S. Assessment of left ventricular diastolic function in pediatric intensive care patients: a review of parameters and limitations compared with those for adults. World J Pediatr. 2021;17:21–30.

    Article  PubMed  Google Scholar 

  5. McMahon CJ, Nagueh SF, Pignatelli RH, et al. Characterization of left ventricular diastolic function by tissue Doppler imaging and clinical status in children with hypertrophic cardiomyopathy. Circulation. 2004;109:1756–62.

    Article  PubMed  Google Scholar 

  6. Friedberg MK, Silverman NH. The systolic to diastolic ratio in children with heart failure secondary to restrictive cardiomyopathy. J Am Soc Echocard. 2006;19:1326–31.

    Article  Google Scholar 

  7. Budts W, Ravekes WJ, Danford DA, Kutty S. Diastolic heart failure with Fontan circulation: a review. JAMA Cardiol. 2020;5:590–7.

    Article  PubMed  Google Scholar 

  8. Alsaied T, Moore RA, Lang SM, et al. Myocardial fibrosis, diastolic dysfunction and elevated liver stiffness in the Fontan circulation. Open Heart. 2020;7: e001434.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hui W, Abd El Rahman MY, Schuck R, et al. Diastolic asynchrony and myocardial dysfunction in patients with univentricular heart after Fontan operation. J Echocardiogr. 2013;11:130–7.

    Article  PubMed  Google Scholar 

  10. Kao AC, Trigt PV, Shaeffer-McCall GS, et al. Allograft diastolic dysfunction and chronotropic incompetence limit cardiac output response to exercise two to six years after heart transplantation. J Heart Lung Transplant. 1995;14:11–22.

    CAS  PubMed  Google Scholar 

  11. Tallaj JA, Kirklin JK, Brown RN, et al. post-heart transplant diastolic dysfunction is a risk factor for mortality. J Am Coll Cardiol. 2007;50:1064–9.

    Article  PubMed  Google Scholar 

  12. Korang-Asante A, Fickey M, Boucek MM, et al. Diastolic performance assessed by tissue Doppler after pediatric heart transplantation. J Heart Lung Transplant. 2004;23:865–72.

    Article  Google Scholar 

  13. Kindel SJ, Law YM, Chin C, et al. Improved detection of cardiac allograft vasculopathy: a multi-institutional analysis of functional parameters in pediatric heart transplant recipients. J Am Coll Cardiol. 2015;66:547–57.

    Article  PubMed  Google Scholar 

  14. Blanco J, Muriel-Bombin A, Sagredo V, et al. Incidence, organ dysfunction and mortality in severe sepsis: a Spanish multicenter study. Crit Care. 2008;12:R158.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jain A, Sankar J, Anubhuti A, Yadav DK, Sankar MJ. Myocardial dysfunction in children with “sepsis” “with” and “without shock”: a prospective observational study. J Trop Pediatr. 2018;64:501–9.

    Article  PubMed  Google Scholar 

  16. Vallabhajosyula S, Pruthi S, Shah S, Wiley BM, Mankad SV, Jentxer JC. Basic and advanced echocardiographic evaluation of myocardial dysfunction in sepsis and septic shock. Anaesth Intensive Care. 2018;46:13–24.

    Article  CAS  PubMed  Google Scholar 

  17. Mitsnefes MM, Kimball TR, Border WL, et al. Impaired left ventricular diastolic function in children with chronic renal failure. Kidney Int. 2004;65:1461–6.

    Article  PubMed  Google Scholar 

  18. Mitsnefes MM. Cardiovascular complications of pediatric chronic kidney disease. Pediatr Nephrol. 2008;23:27–39.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Unger ED, Dubin RF, Deo R, et al. Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2016;18:103–12.

    Article  PubMed  Google Scholar 

  20. Doyon A, Haas P, Erdem S, et al. Impaired systolic and diastolic left ventricular function in children with chronic kidney disease: results from the 4C Study. Sci Rep. 2019;9:11462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Mehta SK, Holliday C, Hayduk L, et al. Comparison of myocardial function in children with body mass indexes 25 versus those < 25 kg/m2. Am J Cardiol. 2004;93:1567–9.

    Article  PubMed  Google Scholar 

  22. Casagrande SS, Menke A, Linder B, Osganian SK, Cowie CC. Cardiovascular risk factors in adolescents with prediabetes. Diabet Med. 2018. https://doi.org/10.1111/dme.13661.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Procar-Almela M, Codoner-Franch P, Tuzon M, Navarro-Solera M, Carrasco-Luna J, Ferrando J. Left ventricular diastolic function and cardiometabolic factors in obese normotensive children. Nutr Metab Cardiovasc Dis. 2015;25:108–15.

    Article  CAS  Google Scholar 

  24. Amin RS, Kimball TR, Kalra M, et al. Left ventricular function in children with sleep-disordered breathing. Am J Cardiol. 2005;95:801–4.

    Article  PubMed  Google Scholar 

  25. Hui W, Slorach C, Guerra V, et al. Effect of obstructive sleep apnea on cardiovascular function in obese youth. Am J Cardiol. 2019;123:341–7.

    Article  PubMed  Google Scholar 

  26. Seliem MA, Al-Saad HI, Bou-Holaaigah IH, Khan MN, Palileo MR. Left ventricular diastolic dysfunction in congenital chronic anemias during childhood as determined by comprehensive echocardiographic imaging including acoustic quantification. Eur J Echocardiogr. 2002;3:103–10.

    Article  CAS  PubMed  Google Scholar 

  27. Allen KY, Jones S, Jackson T, et al. Echocardiographic screening of cardiovascular status in pediatric sickle cell disease. Pediatric Cardiol. 2019;40:1670–8.

    Article  Google Scholar 

  28. Lipshultz SE, Miller TL, Wilkinson JD, et al. Cardiac effects in perinatally HIV-infected and HIV-exposed but uninfected children and adolescents: a view from the United States of America. J Int AIDS Soc. 2013;16:18597.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Perez-Atayde AR, Kearney DI, Bricker JT, P2C2 HIV Study Group, et al. Cardiac, aortic, and pulmonary arteriopathy in HIV-infected children: the prospective P2C2 HIV multicenter study. Pediatr Dev Pathol. 2004;7:61–70.

    Article  CAS  PubMed  Google Scholar 

  30. Antony I, Kannichamy V, Banerjee A, Gandhi AB, Valaiyaduppu Subas S, Hamid P. An outlook on the impact of HIV infection and highly active antiretroviral therapy on the cardiovascular system: a review. Cureus. 2020;12: e11539.

    PubMed  PubMed Central  Google Scholar 

  31. Casaretti L, Paolillo S, Formisano R, et al. Metabolic and cardiovascular effects of combined antiretroviral therapy in patients with HIV infection: systematic review of literature. Monaldi Arch Chest Dis. 2011;76:175–82.

    PubMed  Google Scholar 

  32. Nicol M, Baudet M, Cohen-Solal A. Subclinical left ventricular dysfunction during chemotherapy. Card Fail Rev. 2019;5:31–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Adams MJ, Lipsitz SR, Colan SD, et al. Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J Clin Oncol. 2004;22:3139–48.

    Article  PubMed  Google Scholar 

  34. Singh GK, Holland MR. Diastolic dysfunction in pediatric cardiac patients: evaluation and management. Curr Treat Options Cardiovasc Med. 2010;12:503–17.

    Article  CAS  PubMed  Google Scholar 

  35. Dragulescu A, Mertens L, Friedberg MK. Interpretation of left ventricular diastolic dysfunction in children with cardiomyopathy by echocardiography: problems and limitations. Circ Cardiovasc Imaging. 2013;6:254–61.

    Article  PubMed  Google Scholar 

  36. Eidem BW, McMahon CJ, Cohen RR, et al. Impact of cardiac growth on Doppler tissue imaging velocities: a study in healthy children. J Am Soc Echocardiogr. 2004;17:212–21.

    Article  PubMed  Google Scholar 

  37. Schmitz L, Xanthopoulos A, Koch H, Lange PE. Doppler flow parameters of left ventricular filling in infants: how long does it take for the maturation of the diastolic function in a normal left ventricle to occur? Pediatr Cardiol. 2004;25:482–91.

    Article  CAS  PubMed  Google Scholar 

  38. Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29:277–314.

    Article  PubMed  Google Scholar 

  39. Margossian R, Sleeper LA, Pearson GD, Pediatric Heart Network Investigators, et al. Assessment of diastolic function in single-ventricle patients after the Fontan procedure. J Am Soc Echocardiogr. 2016;29:1066–73.

    Article  PubMed  PubMed Central  Google Scholar 

  40. McMohan CJ, Pignatelli RH, Naguesh SF, et al. Left ventricular non-compaction cardiomyopathy in children: characterization of clinical status using tissue Doppler-derived indices of left ventricular diastolic relaxation. Heart. 2007;93:676–81.

    Article  Google Scholar 

  41. Niemann M, Liu D, Hu K, et al. Echocardiographic quantification of regional deformation helps to distinguish isolated left ventricular non-compaction from dilated cardiomyopathy. Eur J Heart Failure. 2012;14:155–61.

    Article  Google Scholar 

  42. Nagueh SF, Lakkis NM, Middleton KJ, et al. Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation. 1999;99:254–61.

    Article  CAS  PubMed  Google Scholar 

  43. Geske JB, Sorajja P, Nishimura RA, et al. Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: correlation with direct left atrial pressure measurement at cardiac catheterization. Circulation. 2007;116:2702–8.

    Article  PubMed  Google Scholar 

  44. Haland TF, Edvardsen T. The role of echocardiography in management of hypertrophic cardiomyopathy. J Echocardiogr. 2020;8:77–85.

    Article  Google Scholar 

  45. Ryan TD, Madueme PC, Jefferies JL, et al. Utility of echocardiography in the assessment of left ventricular diastolic function and restrictive physiology in children and young adults with restrictive cardiomyopathy: a comparative echocardiography-catheterization study. Pediatr Cardiol. 2017;38:381–9.

    Article  PubMed  Google Scholar 

  46. Butz T, Piper C, Langer C, et al. Diagnostic superiority of a combined assessment of the systolic and early diastolic mitral annular velocities by tissue Doppler imaging for the differentiation of restrictive cardiomyopathy from constrictive pericarditis. Clin Res Cardiol. 2010;99:207–15.

    Article  PubMed  Google Scholar 

  47. Afonso L, Kondur A, Simegn M, et al. Two- dimensional strain profiles in patients with physiological and pathological hypertrophy and preserved left ventricular systolic function: a comparative analyses. BMJ Open. 2012;2: e001390.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Margossian R, Schwartz ML, Prakash A, et al. Comparison of echocardiographic and cardiac magnetic resonance imaging measurements of functional single ventricular volumes, mass, and ejection fraction (from the Pediatric Heart Network Fontan Cross-Sectional Study). Am J Cardiol. 2009;104:419–28.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chowdhury SM, Butts RJ, Hlavacek AM, et al. Echocardiographic detection of increased ventricular diastolic stiffness in pediatric heart transplant recipients: a pilot study. J Am Soc Echocardiogr. 2018;31:342-8.e1.

    Article  PubMed  Google Scholar 

  50. Matsubara D, Chang J, Kauffman HL, et al. Longitudinal assessment of cardiac outcomes of multisystem inflammatory syndrome in children associated with COVID-19 infections. J Am Heart Assoc. 2022;19: e023251.

    Article  Google Scholar 

  51. Rihal CS, Nishimura RA, Hatle LK, et al. Systolic and diastolic dysfunction in patients with a clinical diagnosis of dilated cardiomyopathy: relation to symptoms and prognosis. Circulation. 1994;90:2772–9.

    Article  CAS  PubMed  Google Scholar 

  52. Dujardin KS, Tei C, Yeo T, et al. Prognostic value of a Doppler index combining systolic and diastolic performance in idiopathic dilated cardiomyopathy. Am J Cardiol. 1998;82:1071–6.

    Article  CAS  PubMed  Google Scholar 

  53. Eidem BW, McMohan CJ, Ayres NA. Impact of chronic left ventricular preload and afterload on Doppler tissue imaging velocities; a study in congenital heart disease. J Am Soc Echocardiogr. 2005;18:830–8.

    Article  PubMed  Google Scholar 

  54. Masutani S, Saiki H, Kurishima C, Ishido H, Tamura M, Senzaki H. Heart failure with preserved ejection fraction in children: hormonal imbalance between aldosterone and brain natriuretic peptide. Circ J. 2013;77:2375–82.

    Article  PubMed  Google Scholar 

  55. Andrade AC, Jerosch-Herold M, Wegner P, et al. Determinants of left ventricular dysfunction and remodeling in patients with corrected Tetralogy of Fallot. J Am Heart Assoc. 2019;8(17):e009618.48.

    Article  Google Scholar 

  56. Klitsie LM, Hazekamp MG, Roest AA, et al. Tissue Doppler imaging detects impaired biventricular performance shortly after congenital heart defect surgery. Pediatr Cardiol. 2013;34:630–8.

    Article  PubMed  Google Scholar 

  57. Harada K, Tamura M, Yasuoka K, Toyono M, Takada G. A comparison of tissue Doppler imaging and velocities of transmitral flow in children with elevated left ventricular preload. Cardio Young. 2001;11:261–8.

    Article  CAS  Google Scholar 

  58. Vassalos A, Lilley S, Young D, et al. Tissue Doppler imaging following pediatric cardiac surgery: early patterns of change and relationship to outcome. Interact Cardiovasc Thoracic Surg. 2009;9:173–7.

    Article  Google Scholar 

  59. Panesar D, Burch M. Assessment of diastolic function in congenital heart disease. Front Cardiovasc Med. 2017;4:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Mawad W, Friedberg MK. The continuing challenges of evaluating diastolic function by echocardiography in children: developing concepts and newer modalities. Curr Opin Cardiol. 2017;32:93–100.

    Article  PubMed  Google Scholar 

  61. Schiattarella GG, Alcaide P, Condorelli G, et al. Immunometabolic mechanisms of heart failure with preserved ejection fraction. Nat Cardiovasc Res. 2022;1:211–22.

    Article  Google Scholar 

  62. Lipshultz SE. Ventricular dysfunction clinical research in infants, children, and adolescents. Prog Pediatr Cardiol. 2000;12:1–28.

    Article  CAS  PubMed  Google Scholar 

  63. van Heerebeek L, Hamdani N, Falcao-Pires I, et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012;126:830–9.

    Article  PubMed  CAS  Google Scholar 

  64. Schiattarella GG, Altamirano F, Tong D, et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature. 2019;568:351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Adeniran I, Maclver DH, Hancox JC, Zhang H. Abnormal calcium homeostasis in heart failure with preserved ejection fraction is related to reduced contractile function and incomplete relaxation: an electromechanically detailed biophysical modeling study. Front Physiol. 2015;6:78. https://doi.org/10.3389/fphys.2015.00078.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Peana D, Doeier TL. Cardiomyocyte Ca2+ homeostasis as a therapeutic target in heart failure with reduced and preserved ejection fraction. Curr Opin Pharmacol. 2017;33:17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Selby DE, Palmer BM, LeWinter MM, Meyer M. Tachycardia-induced diastolic dysfunction and resting tone in myocardium from patients with a normal ejection fraction. J Am Coll Cardiol. 2011;58:147–54.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Price JF, Younan S, Cabrera AG, et al. Diuretic responsiveness and its prognostic significance in children with heart failure. J Cardiac Fail. 2019;25:941–7.

    Article  Google Scholar 

  69. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium: fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991;83:1849–65.

    Article  CAS  PubMed  Google Scholar 

  70. Silvestre JS, Heymes C, Oubénaissa A, et al. Role of cardiac aldosterone in post-infarction ventricular remodeling in rats. Arch Mal Coeur Vaiss. 1999;92:991–6.

    CAS  PubMed  Google Scholar 

  71. Degre S, Detry JM, Unger P, Cosyns J, Brochet C, Kormos N. Effects of spironolactone-altizide on left ventricular hypertrophy. Acta Cardiol. 1998;53:261–7.

    CAS  PubMed  Google Scholar 

  72. Edelmann F, Wachter R, Schmidt AG, et al. Effects of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection function: the Aldo-DHF randomized controlled trial. JAMA. 2013;309:781–91.

    Article  CAS  PubMed  Google Scholar 

  73. Böckmann I, Lischka J, Richter B, et al. FGF23-mediated activation of local RAAS promotes cardiac hypertrophy and fibrosis. Int J Mol Sci. 2019;20:4634.

    Article  PubMed Central  CAS  Google Scholar 

  74. Lu M, Qin Q, Yao J, Sun L, Qin X. Induction of LOX by TGF-beta1/Smad/AP-1 signaling aggravates rat myocardial fibrosis and heart failure. IUBMB Life. 2019;71:1729–39.

    Article  CAS  PubMed  Google Scholar 

  75. Brilla CG, Rupp H, Funck R, Maisch B. The renin-angiotensin-aldosterone system and myocardial collagen matrix remodeling in congestive heart failure. Eur Heart J. 1995;Suppl. O:107–9.

    Article  Google Scholar 

  76. Ramirez Gil JF, Delcayre C, Robert V, et al. In vivo left ventricular function and collagen expression in aldosterone/salt-induced hypertension. J Cardiovasc Pharmacol. 1998;32:927–34.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang WW, Zheng RH, Bai F, et al. Steroidogenic acute regulatory protein/aldosterone synthetase mediates angiotensin II-induced cardiac fibrosis and hypertrophy. Mol Biol Rep. 2020;47:1207–22.

    Article  CAS  PubMed  Google Scholar 

  78. Gang C, Qiang C, Xiangli C, Shifen P, Chong S, Lihong L. Puerarin suppresses angiotensin II-induced cardiac hypertrophy by inhibiting NADPH oxidase activation and oxidative stress-triggered AP-1 signaling pathways. J Pharm Sci. 2015;18:235–48.

    Google Scholar 

  79. Stas S, Whaley-Connell A, Habibi J, et al. Mineralocorticoid receptor blockade attenuates chronic overexpression of the renin–angiotensin–aldosterone system stimulation of reduced nicotinamide adenine dinucleotide phosphate oxidase and cardiac remodeling. Endocrinology. 2007;148:3773–80.

    Article  CAS  PubMed  Google Scholar 

  80. Brunner-La Rocca HP, Vaddadi G, Esler MD. Recent insight into therapy of congestive heart failure: focus on ACE inhibition and angiotensin-II antagonism. J Am Coll Cardiol. 1999;33:1163–73.

    Article  CAS  PubMed  Google Scholar 

  81. Brilla CG, Maisch B, Rupp H, Funck R, Zhou G, Weber KT. Pharmacological modulation of cardiac fibroblast function. Herz. 1995;20:127–34.

    CAS  PubMed  Google Scholar 

  82. Chrysant SG. Vascular remodeling: the role of angiotensin-converting enzyme inhibitors. Am Heart J. 1998;135:S21-30.

    Article  CAS  PubMed  Google Scholar 

  83. Saha SA, Molnar J, Arora RR. Tissue ACE inhibitors for secondary prevention of cardiovascular disease in patients with preserved left ventricular function: a pooled meta-analysis of randomized placebo-controlled trials. J Cardiovasc Pharmacol Ther. 2007;12:192–204.

    Article  CAS  PubMed  Google Scholar 

  84. Hsu DT, Zak V, Mahony L, Pediatric Heart Network Investigators, et al. Enalapril in infants with single ventricle: results of a multicenter randomized trial. Circulation. 2010;122:333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Giardini A, Formigari R, Bronzetti G, et al. Modulation of neurohormonal activity after treatment of children in heart failure with carvedilol. Cardiol Young. 2003;13:333–6.

    Article  PubMed  Google Scholar 

  86. Miyamoto SD, Stauffer BL, Nakano S, et al. Beta-adrenergic adaptation in paediatric idiopathic dilated cardiomyopathy. Eur Heart J. 2014;35:33–41.

    Article  CAS  PubMed  Google Scholar 

  87. Mamidi R, Li J, Doh CY, et al. Impact of the myosin modulator mavacamten on force generation and cross-bridge behavior in a murine model of hypercontractility. J Am Heart Assoc. 2018;7(17): e009627.

    Article  PubMed  PubMed Central  Google Scholar 

  88. del Rio CL, Ueyama Y, Baker DC, et al. In vivo cardiac effects of mavacamten (MYK-461): evidence for negative inotropy and improved compliance. Circulation. 2017;136(Suppl. 1):A20593.

    Google Scholar 

  89. Setaro JF, Zaret BL, Schulman DS, Black HR, Soufer R. Usefulness of verapamil for congestive heart failure associated with abnormal left ventricular diastolic filling and normal left ventricular systolic performance. Am J Cardiol. 1990;66:981–6.

    Article  CAS  PubMed  Google Scholar 

  90. Betocchi S, Chiariello M. Effects of calcium antagonists on left ventricular structure and function. J Hypertens Suppl. 1993;11:S33–7.

    Article  CAS  PubMed  Google Scholar 

  91. Iliceto S. Left ventricular dysfunction: which role for calcium antagonists? Eur Heart J. 1997;18 Suppl. A:A87-91.

    Article  PubMed  Google Scholar 

  92. Hoffman TM, Wernovsky G, Atz AM, et al. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation. 2003;107:996–1002.

    Article  CAS  PubMed  Google Scholar 

  93. Price JF, et al. Outpatient continuous parenteral inotropic therapy as bridge to transplantation in children with advanced heart failure. J Card Fail. 2006;12(2):139–43.

    Article  PubMed  Google Scholar 

  94. Rossano JW, Cabrera AG, Jefferies JL, Naim M, Humlicek T. Pediatric cardiac intensive care society 2014 consensus statement: pharmacotherapies in cardiac critical care chronic heart failure. Pediatr Crit Care Med. 2016;17:S20-34.

    Article  PubMed  Google Scholar 

  95. Lechner E, Hofer A, Leitner-Pender G, et al. Levosimendan versus milrinone in neonates and infants after corrective open-heart surgery: a pilot study. Ped Crit Care Med. 2012;13:542–8.

    Article  Google Scholar 

  96. Wang A, Cui C, Fan Y, et al. Prophylactic use of levosimendan in pediatric patients undergoing cardiac surgery: a prospective randomized controlled trial. Crit Care. 2019;23:428.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Namachivayam P, Crossland DS, Butt WW, Shekherdemian LS. Early experience with levosimendan in children with ventricular dysfunction. Pediatr Crit Care Med. 2006;7:445–8.

    Article  PubMed  Google Scholar 

  98. Egan JE, Clarke AJB, Williams S, et al. Levosimendan for low cardiac output: a pediatric experience. J Intensive Care Med. 2006;21:183–7.

    Article  PubMed  Google Scholar 

  99. Bayes-Genis A, Barallat J, Richards AM. A test in context: neprilysin: function, inhibition, and biomarker. J Am Coll Cardiol. 2016;68:639–53.

    Article  CAS  PubMed  Google Scholar 

  100. Gori M, D’Elia E, Senni M. Sacubitril/valsartan therapeutic strategy in HFpEF: clinical insights and perspectives. Int J Cardiol. 2019;281:158–65.

    Article  PubMed  Google Scholar 

  101. Vaduganathan M, Claggett BL, Desai AS, et al. Prior heart failure hospitalization, clinical outcomes, and response to sacubitril/valsartan compared with valsartan in HFpEF. J Am Coll Cardiol. 2020;75:245–54.

    Article  CAS  PubMed  Google Scholar 

  102. Cunningham JW, Claggett BL, O’Meara E, Prescott MF, Pfeffer MA, Shah SJ, et al. Effect of sacubitril/valsartan on biomarkers of extracellular matrix regulation in patients with HFpEF. J Am Coll Cardiol. 2020;76:503–14.

    Article  CAS  PubMed  Google Scholar 

  103. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381:1609–20.

    Article  CAS  PubMed  Google Scholar 

  104. FDA approves Entresto for pediatric heart failure patients. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/207620s013lbl.pdf. Accessed 13 Oct 2021.

  105. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008.

    Article  CAS  PubMed  Google Scholar 

  106. Packer M, Anker SD, Butler J, et al. Effect of empagliflozin on the clinical stability of patients with heart failure and reduced ejection fraction: the EMPEROR-reduced trial. Circulation. 2021;143:326–36.

    Article  PubMed  CAS  Google Scholar 

  107. Januzzi JL Jr, Ibrahim NE. Understanding the mechanistic benefit of heart failure drugs matters. J Am Coll Cardiol. 2020;76:2752–4.

    Article  CAS  PubMed  Google Scholar 

  108. Omar M, Jensen J, Frederiksen PH, et al. Effect of empagliflozin on hemodynamics in patients with heart failure and reduced ejection fraction. J Am Coll Cardiol. 2020;76:2740–51.

    Article  CAS  PubMed  Google Scholar 

  109. Lee MT, George J, Shahab H, Hermel M, Rana JS, Virani SS. Highlights of cardiovascular disease studies presented at the 2021 American Heart Association Scientific Sessions. Curr Atheroscler Rep. 2022;24:1–12. https://doi.org/10.1007/s11883-022-00985-0.

    Article  CAS  Google Scholar 

  110. Iborra-Egea O, Santiago-Vacas E, Yurista SR, et al. Unraveling the molecular mechanism of action of empagliflozin in heart failure with reduced ejection fraction with or without diabetes. JACC Basic Transl Sci. 2019;4:831–40.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Nassif ME, Kosiborod M. Effects of sodium-glucose cotransporter type 2 inhibitors on heart failure. Diabetes Obes Metab. 2019;Suppl. 2:19–23.

    Article  CAS  Google Scholar 

  112. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.

    Article  PubMed  Google Scholar 

  113. Takimoto E, Belardi D, Tocchetti C, et al. Compartmentalization of cardiac beta-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation. 2007;115:2159–67.

    Article  CAS  PubMed  Google Scholar 

  114. Redfield MM, Chen HH, Borlaug BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. (RELAX) trial: rationale and design. JAMA. 2013;309:1268–77.

    Article  CAS  PubMed  Google Scholar 

  115. Borbely A, van der Velden J, Papp Z, et al. Cardiomyocyte stiffness in diastolic heart failure. Circulation. 2005;111:774–81.

    Article  PubMed  Google Scholar 

  116. Rochette L, Lorin J, Zeller M, et al. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacol Ther. 2013;140:239–57.

    Article  CAS  PubMed  Google Scholar 

  117. Jeong EM, Monasky MM, Gu L, et al. Tetrahydrobiopterin improves diastolic dysfunction by reversing changes on myofilament properties. J Mol Cell Cardiol. 2013;56:44–54.

    Article  CAS  PubMed  Google Scholar 

  118. Alkaitis MS, Crabtree MJ. Recoupling the cardia nitric oxide synthases: tetrahydrobiopterin synthesis and recycling. Curr Heart Fail Rep. 2012;9:200–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Follmann M, Ackerstaff J, Redlich G, et al. Discovery of the soluble guanylate cyclase stimulator vericiguat (BAY 1021189) for the treatment of chronic heart failure. J Med Chem. 2017;60:5146–61.

    Article  CAS  PubMed  Google Scholar 

  120. De Angelis A, Cappetta D, Piegari E, et al. Long-term administration of ranolazine attenuates diastolic dysfunction and adverse myocardial remodeling in a model of heart failure with preserved ejection fraction. Int J Cardiol. 2016;217:69–79.

    Article  PubMed  Google Scholar 

  121. Lovelock JD, Monasky MM, Jeong EM, et al. Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circ Reas. 2012;110:841–50.

    Article  CAS  Google Scholar 

  122. Maier LS, Layug B, Karwatowska-Prokopczuk E, et al. Ranolazine for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC Heart Fail. 2013;1:115–22.

    Article  PubMed  Google Scholar 

  123. Lipshultz SE, Messiah SE, Miller TL. (Editors). Pediatric metabolic syndrome: comprehensive clinical review and related health issues. Springer-Verlag London Ltd., London, 2012; p. 1–378

  124. Antoniades C, Bakogiannis C, Leeson P, et al. Rapid, direct effects of statin treatment on arterial redox state and nitric oxide bioavailability in human atherosclerosis via tetrahydrobiopterin-mediated endothelial nitric oxide synthase coupling. Circulation. 2011;124:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nochioka K, Sakata Y, Miyata S, et al. Prognostic impact of statin use in patients with heart failure and preserved ejection fraction: a report from the CHART-2 study. Circ J. 2015;79:574–658.

    Article  CAS  PubMed  Google Scholar 

  126. Marume K, Takashio S, Nagai T, et al. Effect of statins on mortality in heart failure with preserved ejection fraction without coronary artery disease: report from the JASPER Study. Circ J. 2019;83:357–67.

    Article  CAS  PubMed  Google Scholar 

  127. Oikawa T, Sakata Y, Nochioka K, et al. Prognostic impact of statin intensity in heart failure patients with ischemic heart disease: a report from the CHART-2 Study. J Am Heart Assoc. 2018;7: e007524.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. de Ferranti SD, Steinberger J, Ameduri R, et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association. Circulation. 2019;139:e603–4.

    Article  PubMed  Google Scholar 

  129. Aoki T. Failure with preserved ejection fraction (HFpEF) patients: HFpEF as a manifestation of systemic disease. Circ J. 2019;83:277–8.

    Article  PubMed  Google Scholar 

  130. Graziani F, Lillo R, Crea F. Rationale for the use of pirfenidone in heart failure with preserved ejection fraction. Front Cardiovasc Med. 2021;8: 678530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Van Tassell BW, Arena R, Biondi-Zoccai G, et al. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am J Cardiol. 2014;113:321–7.

    Article  PubMed  CAS  Google Scholar 

  132. Rosalia L, Ozturk C, Shoar S, et al. Device-based solutions to improve cardiac physiology and hemodynamics in heart failure with preserved ejection fraction. JACC Basic Transl Sci. 2021;6(9–10):772–95. https://doi.org/10.1016/j.jacbts.2021.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Burkoff D, Maurer MS, Joseph SM, et al. Left atrial decompression pump for severe heart failure with preserved ejection fraction. JACC Heart Fail. 2015;3:275–82.

    Article  Google Scholar 

  134. Søndergaard L, Reddy V, Kaye D, et al. Transcatheter treatment of heart failure with preserved or mildly reduced ejection fraction using a novel interatrial implant to lower left atrial pressure. Eur J Heart Fail. 2014;16:796–801.

    Article  PubMed  Google Scholar 

  135. Hasenfuß G, Hayward C, Burkhoff D, REDUCE LAP-HF Study Investigators, et al. A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF): a multicentre, open-label, single-arm, phase 1 trial. Lancet. 2016;387:1298–304.

    Article  PubMed  Google Scholar 

  136. Emani S, Burkhoff D, Lilly SM. Interatrial shunt devices for the treatment of heart failure. Trends Cardiovasc Med. 2021;31:427–32.

    PubMed  Google Scholar 

  137. Feldman T, Mauri L, Kahwash R, et al. Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation. 2005;112:2254–62.

    Article  Google Scholar 

  138. Kaye DM, Hasenfuß G, Neuzil P, et al. One-year outcomes after transcatheter insertion of an interatrial shunt device for the management of heart failure with preserved ejection fraction. Circ Heart Fail. 2016;9: e003662.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Shah SJ, Feldman T, Ricciardi MJ, et al. One-year safety and clinical outcomes of a transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction in the reduce elevated left atrial pressure in patients with heart failure (REDUCE LAP-HF I) trial: a randomized clinical trial. JAMA Cardiol. 2018;3:968–77.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Gupta A, Bailey SR. Update on devices for diastolic dysfunction: options for a no option condition? Curr Cardiol Rep. 2018;20:85. https://doi.org/10.1007/s11886-018-1027-2.

    Article  PubMed  Google Scholar 

  141. Adamson PB, Abraham WT, Bourge RC, et al. Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circ Heart Fail. 2014;7:935–44.

    Article  PubMed  Google Scholar 

  142. Abraham WT, Stevenson LW, Bourge RC, Lindenfeld JA, Bauman JG, Adamson PB, CHAMPION Trial Study Group. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomized trial. Lancet. 2016;387:453–61.

    Article  PubMed  Google Scholar 

  143. Vardas PE, Auricchio A, Blanc JJ, et al. Guidelines for cardiac pacing and cardiac resynchronization therapy. The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. Europace. 2007;9:959–98.

    Article  PubMed  Google Scholar 

  144. Penicka M, Bartunek J, Trakalova H, et al. Cardiac resynchronization therapy for the causal treatment of heart failure with preserved ejection fraction: insight from a pressure-volume loop analysis. Eur J Heart Fail. 2010;12:634–6.

    Article  PubMed  Google Scholar 

  145. Morris DA, Vaz Perez A, Blaschke F, Eichstadt H, Ozcelik C, Haverkamp W. Myocardial systolic and diastolic consequences of left ventricular mechanical dyssynchrony in heart failure with normal left ventricular ejection fraction. Eur Heart J Cardiovasc Imaging. 2012;13:556–67.

    Article  PubMed  Google Scholar 

  146. Tschöpe C, Kherad B, Klein O, et al. Cardiac contractility modulation: mechanisms of action in heart failure with reduced ejection fraction and beyond. Eur J Heart Fail. 2019;21:14–22.

    Article  PubMed  Google Scholar 

  147. Feld Y, Dubi S, Reisner Y, et al. Energy transfer from systole to diastole: a novel device-based approach for the treatment of diastolic heart failure. Acute Card Care. 2011;13:232–42.

    Article  PubMed  Google Scholar 

  148. Corolla® TAA for heart failure with preserved ejection fraction (HFpEF) and diastolic dysfunction (DD). October 8, 2020. ClinicalTrials.gov identifier: NCT02499601. https://clinicaltrials.gov/ct2/show/NCT02499601. Accessed 18 Oct 2021.

  149. Brandt MC, Mahfoud F, Reda S, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59:901–9.

    Article  PubMed  Google Scholar 

  150. Mahfoud F, Urban D, Teller D, et al. effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multicentre cardiovascular magnetic resonance imaging trial. Eur Heart J. 2014;35:2224–31.

    Article  PubMed  Google Scholar 

  151. Schirmer SH, Sayed MMYA, Reil J-C, et al. Atrial remodeling following catheter-based renal denervation occurs in a blood pressure and heart rate-independent manner. JACC Cardiovasc Interv. 2015;8:972–80.

    Article  PubMed  Google Scholar 

  152. Patel HC, Rosen SD, Hayward C, et al. Renal denervation in heart failure with preserved ejection fraction (RDT-PEF): a randomized controlled trial. Eur J Heart Fail. 2016;18:703–12.

    Article  CAS  PubMed  Google Scholar 

  153. Granegger M, Dave H, Knirsch W, Thasmen B, Schweiger M, Hobler M. A valveless pulsatile pump for the treatment of heart failure with preserved ejection fraction: a simulation study. Cardiovasc Eng Techn. 2019;10:69–79.

    Article  Google Scholar 

  154. Landesberg A, Shenhav A, Shofty R, et al. Effects of synchronized cardiac assist device on cardiac energetics. Ann N Y Acad Sci. 2006;1080:466–78.

    Article  PubMed  Google Scholar 

  155. Tate CA, Helgason T, Hyek MF, et al. SERCA2a and mitochondrial cytochrome oxidase expression are increased in the hearts of exercise-trained old rats. Am J Physiol. 1996;271:H68-72.

    CAS  PubMed  Google Scholar 

  156. Schmidt U, del Monte F, Miyamoto MI, et al. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca2+-ATPase. Circulation. 2000;101:790–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhuti B. Das.

Ethics declarations

Funding

No external funding was used in the preparation of this article.

Conflict of interest/competing interests

Bibhuti Das has no potential conflicts of interest that might be relevant to the contents of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for Publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Authors’ contributions

BBD conceptualized, wrote, and revised this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B.B. Therapeutic Approaches in Heart Failure with Preserved Ejection Fraction (HFpEF) in Children: Present and Future. Pediatr Drugs 24, 235–246 (2022). https://doi.org/10.1007/s40272-022-00508-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-022-00508-z

Navigation