Skip to main content
Log in

Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption of dye rose bengal

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

UiO-66-NH2 is an efficient material for removing pollutants from wastewater due to its high specific surface area, high porosity and water stability. However, recycling them from wastewater is difficult. In this study, the cellulose nanofibers mat deacetylated from cellulose acetate nanofibers were used to combine with UiO-66-NH2 by the method of in-situ growth to remove the toxic dye, rose bengal. Compared to previous work, the prepared composite could not only provide ease of separation of UiO-66-NH2 from the water after adsorption but also demonstrate better adsorption capacity (683 mg·g−1 (T = 25 °C, pH = 3)) than that of the simple UiO-66-NH2 (309.6 mg·g−1 (T = 25 °C, pH = 3)). Through the analysis of adsorption kinetics and isotherms, the adsorption for rose bengal is mainly suitable for the pseudo-second-order kinetic model and Freundlich model. Furthermore, the relevant research revealed that the main adsorption mechanism of the composite was electrostatic interaction, hydrogen bonding and ππ interaction. Overall, the approach depicts an efficient model for integrating metal-organic frameworks on cellulose nanofibers to improve metal-organic framework recovery performance with potentially broad applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee L W, Pao S Y, Pathak A, Kang D Y, Lu K L. Membrane adsorber containing a new Sm(III)-organic framework for dye removal. Environmental Science: Nano, 2019, 6(4): 1067–1076

    CAS  Google Scholar 

  2. Gupta V K, Mittal A, Jhare D, Mittal J. Batch and bulk removal of hazardous colouring agent rose bengal by adsorption techniques using bottom ash as adsorbent. RSC Advances, 2012, 2(22): 8381–8389

    Article  CAS  Google Scholar 

  3. Crini G. Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 2006, 97(9): 1061–1085

    Article  CAS  PubMed  Google Scholar 

  4. McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat I M, Marchant R, Smyth W E. Microbial decolourisation and degradation of textile dyes. Applied Microbiology and Biotechnology, 2001, 56(1–2): 81–87

    Article  CAS  PubMed  Google Scholar 

  5. Fu F L, Wang Q. Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 2011, 92(3): 407–418

    Article  CAS  PubMed  Google Scholar 

  6. Dabrowski A. Adsorption—from theory to practice. Advances in Colloid and Interface Science, 2001, 93(1–3): 135–224

    Article  CAS  PubMed  Google Scholar 

  7. Rafatullah M, Sulaiman O, Hashim R, Ahmad A. Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 2010, 177(1–3): 70–80

    Article  CAS  PubMed  Google Scholar 

  8. Kumar P, Pournara A, Kim K H, Bansal V, Rapti S, Manos M J. Metal-organic frameworks: challenges and opportunities for ionexchange/sorption applications. Progress in Materials Science, 2017, 86: 25–74

    Article  CAS  Google Scholar 

  9. Schoenecker P M, Carson C G, Jasuja H, Flemming C J J, Walton K S. Effect of water adsorption on retention of structure and surface area of metal-organic frameworks. Industrial & Engineering Chemistry Research, 2012, 51(18): 6513–6519

    Article  CAS  Google Scholar 

  10. Yazaydin A O, Benin A I, Faheem S A, Jakubczak P, Low J J, Willis R R, Snurr R Q. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chemistry of Materials, 2009, 21(8): 1425–1430

    Article  CAS  Google Scholar 

  11. Kumar P, Deep A, Kim K H. Metal organic frameworks for sensing applications. Trends in Analytical Chemistry, 2015, 73: 39–53

    Article  CAS  Google Scholar 

  12. Haque E, Lo V, Minett A I, Harris A T, Church T L. Dichotomous adsorption behaviour of dyes on an amino-functionalised metal-organic framework, amino-MIL-101(Al). Journal of Materials Chemistry A, 2014, 2(1): 193–203

    Article  CAS  Google Scholar 

  13. Wang H, Yuan X Z, Wu Y, Zeng G M, Chen X H, Leng L J, Li H. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Applied Catalysis B: Environmental, 2015, 174: 445–454

    Article  Google Scholar 

  14. Abdi J, Vossoughi M, Mahmoodi N M, Alemzadeh I. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chemical Engineering Journal, 2017, 326: 1145–1158

    Article  CAS  Google Scholar 

  15. Peterson G W, Lee D T, Barton H F, Epps T H III, Parsons G N. Fibre-based composites from the integration of metal-organic frameworks and polymers. Nature Reviews Materials, 2021, 6(7): 605–621

    Article  CAS  Google Scholar 

  16. Wang C H, Cheng P, Yao Y Y, Yamauchi Y, Yan X, Li J S, Na J. In-situ fabrication of nanoarchitectured MOF filter for water purification. Journal of Hazardous Materials, 2020, 392: 122164

    Article  CAS  PubMed  Google Scholar 

  17. Yang Y Y, Huang W, Guo Z P, Zhang S Y, Wu F, Huang J J, Yang H J, Zhou Y S, Xu W L, Gu S J. Robust fluorine-free colorful superhydrophobic PDMS/NH2-MIL-125(Ti)@cotton fabrics for improved ultraviolet resistance and efficient oil-water separation. Cellulose, 2019, 26(17): 9335–9348

    Article  CAS  Google Scholar 

  18. Lis M J, Caruzi B B, Gil G A, Samulewski R B, Bail A, Scacchetti F A P, Moises M P, Bezerra F M. In-situ direct synthesis of HKUST-1 in wool fabric for the improvement of antibacterial properties. Polymers, 2019, 11(4): 713

    Article  PubMed Central  Google Scholar 

  19. Xia L, Ju J G, Xu W, Ding C K, Cheng B W. Preparation and characterization of hollow Fe2O3 ultra-fine fibers by centrifugal spinning. Materials & Design, 2016, 96: 439–445

    Article  CAS  Google Scholar 

  20. Ren L Y, Ozisik R, Kotha S P, Underhill P T. Highly efficient fabrication of polymer nanofiber assembly by centrifugal jet spinning: process and characterization. Macromolecules, 2015, 48(8): 2593–2602

    Article  CAS  Google Scholar 

  21. Hu M R, Wang Y F, Yan Z F, Zhao G D, Zhao Y X, Xia L, Cheng B W, Di Y B, Zhuang X P. Hierarchical dual-nanonet of polymer nanofibers and supramolecular nanofibrils for air filtration with a high filtration efficiency, low air resistance and high moisture permeation. Journal of Materials Chemistry A, 2021, 9(24): 14093–14100

    Article  CAS  Google Scholar 

  22. Ru J, Wang X M, Wang F B, Cui X L, Du X Z, Lu X Q. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: synthesis, applications and adsorption mechanism. Ecotoxicology and Environmental Safety, 2021, 208: 111577

    Article  CAS  PubMed  Google Scholar 

  23. Butova V V, Soldatov M A, Guda A A, Lomachenko K A, Lamberti C. Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews, 2016, 85(3): 280–307

    Article  CAS  Google Scholar 

  24. Kalwar K, Hu L, Li D L, Shan D. AgNPs incorporated on deacetylated electrospun cellulose nanofibers and their effect on the antimicrobial activity. Polymers for Advanced Technologies, 2018, 29(1): 394–400

    Article  CAS  Google Scholar 

  25. Vahidi M, Tavasoli A, Rashidi A M. Preparation of amine functionalized UiO-66, mixing with aqueous N-methyldiethanolamine and application on CO2 solubility. Journal of Natural Gas Science and Engineering, 2016, 28: 651–659

    Article  CAS  Google Scholar 

  26. Hasan Z, Khan N A, Jhung S H. Adsorptive removal of diclofenac sodium from water with Zr-based metal-organic frameworks. Chemical Engineering Journal, 2016, 284: 1406–1413

    Article  CAS  Google Scholar 

  27. Hashem T, Ibrahim A H, Woll C, Alkordi M H. Grafting zirconium-based metal-organic framework UiO-66-NH2 nanoparticles on cellulose fibers for the removal of Cr(VI) ions and methyl orange from water. ACS Applied Nano Materials, 2019, 2(9): 5804–5808

    Article  CAS  Google Scholar 

  28. Peterson G W, Lu A X, Epps T H III. Tuning the morphology and activity of electrospun polystyrene/UiO-66-NH2 metal-orgnnic framework composites to enhance chemical warfare agent removal. ACS Applied Materials & Interfaces, 2017, 9(37): 32248–32254

    Article  CAS  Google Scholar 

  29. Wang J L, Guo X. Adsorption kinetic models: physical meanings, applications, and solving methods. Journal of Hazardous Materials, 2020, 390: 122156

    Article  CAS  PubMed  Google Scholar 

  30. Zaboon S, Abid H R, Yao Z X, Gubner R, Wang S B, Barifcani A. Removal of monoethylene glycol from wastewater by using Zr-metal organic frameworks. Journal of Colloid and Interface Science, 2018, 523: 75–85

    Article  CAS  PubMed  Google Scholar 

  31. Guo X, Wang J L. A general kinetic model for adsorption: theoretical analysis and modeling. Journal of Molecular Liquids, 2019, 288: 111100

    Article  CAS  Google Scholar 

  32. Wang J L, Guo X. Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere, 2020, 258: 127279

    Article  CAS  PubMed  Google Scholar 

  33. Mohammadi N, Khani H, Gupta V K, Amereh E, Agarwal S. Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies. Journal of Colloid and Interface Science, 2011, 362(2): 457–462

    Article  CAS  PubMed  Google Scholar 

  34. Lin S, Zhao Y F, Yun Y S. Highly effective removal of nonsteroidal anti-inflammatory pharmaceuticals from water by Zr(IV)-based metal- organic framework: adsorption performance and mechanisms. ACS Applied Materials & Interfaces, 2018, 10(33): 28076–28085

    Article  CAS  Google Scholar 

  35. Peng Y G, Huang H L, Zhang Y X, Kang C F, Chen S M, Song L, Liu D H, Zhong C L. A versatile MOF-based trap for heavy metal ion capture and dispersion. Nature Communications, 2018, 9(1): 187

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen Q, He Q Q, Lv M M, Xu Y L, Yang H B, Liu X T, Wei F Y. Selective adsorption of cationic dyes by UiO-66-NH2. Applied Surface Science, 2015, 327: 77–85

    Article  CAS  Google Scholar 

  37. Yang D Q, Hennequin B, Sacher E. XPS demonstration of π-π interaction between benzyl mercaptan and multiwalled carbon nanotubes and their use in the adhesion of Pt nanoparticles. Chemistry of Materials, 2006, 18(21): 5033–5038

    Article  CAS  Google Scholar 

  38. Ting H, Chi H Y, Lam C H, Chan K Y, Kang D Y. High-permeance metal-organic framework-based membrane adsorber for the removal of dye molecules in aqueous phase. Environmental Science Nano, 2017, 4(11): 2205–2214

    Article  CAS  Google Scholar 

  39. Ahmed M A, Abdelbar N M, Mohamed A A. Molecular imprinted chitosan-TiO2 nanocomposite for the selective removal of rose bengal from wastewater. International Journal of Biological Macromolecules, 2018, 107: 1046–1053

    Article  CAS  PubMed  Google Scholar 

  40. Naushad M, Alothman Z A, Awual M R, Alfadul S M, Ahamad T. Adsorption of rose bengal dye from aqueous solution by amberlite Ira-938 resin: kinetics, isotherms, and thermodynamic studies. Desalination and Water Treatment, 2016, 57(29): 13527–13533

    Article  CAS  Google Scholar 

  41. Cai R, Du Y P, Peng S J, Bi H C, Zhang W Y, Yang D, Chen J, Lim T M, Zhang H, Cao Y C, Yan Q. Synthesis of porous, hollow metal MCO3 (M = Mn, Co, Ca) microstructures and adsorption properties thereof. Chemistry, 2014, 20(2): 421–425

    Article  CAS  PubMed  Google Scholar 

  42. Wang M, Ma Y F, Sun Y, Hong S Y, Lee S K, Yoon B, Chen L, Ci L J, Nam J D, Chen X Y, Suhr J. Hierarchical porous chitosan sponges as robust and recyclable adsorbents for anionic dye adsorption. Scientific Reports, 2017, 7(1): 18054

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Tianjin Natural Science Foundation (Grant No. 18JCQNJC71900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Xia, L., Zhuang, X. et al. Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption of dye rose bengal. Front. Chem. Sci. Eng. 16, 1387–1398 (2022). https://doi.org/10.1007/s11705-022-2154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2154-2

Keywords

Navigation