Skip to main content
Log in

Manage Pension Deficit with Heterogeneous Insurance

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

This paper considers a positive and increasing pension deficit of a certain pay-as-you-go (PAYG) pension system, and tries to make up for this deficit by using heterogeneous insurance. The positive pension deficit is formulated as a mathematical function in continuous time. The surplus of an appropriate heterogeneous insurance is described by diffusion approximation of a Cramér-Lundberg process. The system of extended Hamilton-Jacobi-Bellman equations under mean-variance criterion is established. The closed-form solution and optimal surplus-multiplier of heterogenous insurance are obtained. Some interpretations further explain the theoretical values of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alonso-García J, Devolder P (2016) Optimal mix between pay-as-you-go and funding for DC pension schemes in an overlapping generations model. Insurance Math Econom 70:224–236

    Article  MathSciNet  Google Scholar 

  • Angrisani M, Attias A, Bianchi S, Varga Z (2012) Sustainability of a pay-as-you go pension system by dynamic immigration control. Appl Math Comput 219:2442–2452

    MathSciNet  MATH  Google Scholar 

  • Bi J, Liang Z, Xu F (2016) Optimal mean variance investment and reinsurance problems for the risk model with common shock dependence. Insurance Math Econom 70:245–258

    Article  MathSciNet  Google Scholar 

  • Björk T, Murgoci A (2010) A general theory of Markovian time inconsistent stochastic control problems. Working Paper, Stockholm School of Economics

  • Blake D, Mayhew L (2006) On the sustainability of the UK state pension system in the light of population ageing and declining fertility. Econ J 116:286–305

    Article  Google Scholar 

  • Boonen TJ, Waegenaere AD, Norde H (2017) Redistribution of longevity risk: The effect of heterogeneous mortality beliefs. Insurance Math Econom 72:175–188

    Article  MathSciNet  Google Scholar 

  • Bowers NL, Gerber H, Hickman J, Jones D, Nesbitt C (1997) Actuarial mathematics. The Society of Actuaries

  • Brown JR (2003) Redistribution and insurance: mandatory annuitization with mortality heterogeneity. J Risk Insur 70:17–41

    Article  Google Scholar 

  • Browne S (1995) Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin. Math Oper Res 20:937–957

    Article  MathSciNet  Google Scholar 

  • Cutler DM, Finkelstein A, McGarry K (2008) Preference heterogeneity and insurance markets: explaining a puzzle of insurance. Am Econ Rev 98:157–162

    Article  Google Scholar 

  • Dardanoni V, Donni PL (2016) The welfare cost of unpriced heterogeneity in insurance markets. Rand J Econ 47:998–1028

    Article  Google Scholar 

  • Dong Y, Zheng H (2019) Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan. Eur J Oper Res 281(2):341–356

    Article  MathSciNet  Google Scholar 

  • Egger P, Radulescu D, Rees R (2015) Heterogeneous Beliefs and the Demand for D&O Insurance by Listed Companies. J Risk Insur 82:823–852

    Article  Google Scholar 

  • European Commission (2010) Green paper towards adequate, sustainable and safe European pension systems

  • European Commission (2012) White paper an agenda for adequate, safe and sustainable pensions

  • Fehr H, Habermann C (2006) Pension reform and demographic uncertainty: the case of Germany. J Pension Econ Finance 5:69–90

    Article  Google Scholar 

  • Geruso M (2017) Demand heterogeneity in insurance markets: Implications for equity and efficiency. Quant Econ 8:929–975

    Article  MathSciNet  Google Scholar 

  • Godinez-Olivares H, del Carmen Boado-Penas M, Haberman S (2016) Optimal strategies for pay-as-you-go pension finance: A sustainability framework. Insurance Math Econom 69:117–126

    Article  MathSciNet  Google Scholar 

  • Gong G, Webb A (2008) Mortality hererogeneity and the distributional consequences of mandatory annuitization. J Risk Insur 75:1055–1079

    Article  Google Scholar 

  • Grandll J (1991) Aspects of Risk Theory. Springer-Verlag, New York

    Book  Google Scholar 

  • Grenander U (1957) On heterogeneity in non-life insurance. Scand Actuar J 1–2:71–84

    Article  MathSciNet  Google Scholar 

  • Li D, Bi J, Hu M (2021) Alpha-robust mean-variance investment strategy for DC pension plan with uncertainty about jump-diffusion risk. RAIRO Operations Research 55(Supplement):S2983–S2997

    Article  MathSciNet  Google Scholar 

  • Liang Z, Yuen KC (2016) Optimal dynamic reinsurance with dependent risks: variance premium principle. J Scand Actuar 1:18–36

    Article  MathSciNet  Google Scholar 

  • Munnell AH (2015) Social security's financial outlook: The 2015 update in perspective

  • Peter R, Richter A, Steinorth P (2016) Yes, No, Perhaps? Premium Risk and Guaranteed Renewable Insurance Contracts With Heterogeneous Incomplete Private Information. J Risk Insur 83:363–385

    Article  Google Scholar 

  • Ronkachmielowiec W, Poprawska E (2005) Selected Methods of Credibility Theory and its Application to Calculating Insurance Premium in Heterogeneous Insurance Portfolios. Springer, Berlin Heidelberg, Berlin

    MATH  Google Scholar 

  • Sánchez Martín AR (2010) Endogenous retirement and public pension system reform in Spain. Ecol Modell 27:336–349

    Article  Google Scholar 

  • Shreve SE (2004) Stochastic Calculus for Finance II. Springer-Verlag, New York

    Book  Google Scholar 

  • Verlaak R, Beirlant J (2003) Optimal reinsurance programs: An optimal combination of several reinsurance protections on a heterogeneous insurance portfolio. Insurance Math Econom 33(2):381–403

    Article  MathSciNet  Google Scholar 

  • Wang P, Shen Y, Kang Y (2021) Equilibrium investment strategy for a DC pension plan with learning about stock return predictability. Insurance Math Econom 100(c):384–407

    Article  MathSciNet  Google Scholar 

  • Wang P, Rong X, Zhao H, Wang S (2021) Robust optimal investment and benefit payment adjustment strategy for target benefit pension plans under default risk. J Comput Appl Math. https://doi.org/10.1016/j.cam.2021.113382

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S, Lu Y (2019) Optimal investment strategies and risk-sharing arrangements for a hybrid pension plan. Insurance Math Econom 89(c):46–62

  • Yuen KC, Guo J, Wu X (2002) On a correlated aggregate claim model with Poisson and Erlang risk process. Insurance Math Econom 31:205–214

    Article  Google Scholar 

  • Zhao H, Wang S (2021) Optimal investment and benefit adjustment problem for a target benefit pension plan with Cobb-Douglas utility and Epstein-Zin recursive utility. Eur J Oper Res. https://doi.org/10.1016/j.ejor.2021.11.033

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by China Postdoctoral Science Foundation funded project (Grant No. 2017M611192), and also supported by the Youth Science Foundation of National Natural Science Fund (Grant No. 11801179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danping Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Proof of Theorem 3.2

Proof

The dynamics of an appropriate heterogenous insurance’s surplus-scale divided by the positive pension deficit is given by

$$\begin{aligned} \begin{aligned} \mathrm{d} X^{k}(t)&= \frac{ \big [~ k_{t} \tilde{G}(t) \theta \lambda \mu - R(t) \big ( p(t) \psi _{2}(t) - c(t) \psi _{1}(t) \big ) ~\big ] }{ \tilde{G}(t)^{2} } ~ \mathrm{d} t + \frac{ k_{t} \sqrt{ \lambda } \sigma }{ \tilde{G}(t) } ~ \mathrm{d}W(t) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \mathrm{d}R(t) = \theta \lambda \mu \mathrm{d}t + \sqrt{ \lambda } \sigma \mathrm{d}W(t). \end{aligned}$$

Use the definition of infinitesimal generator, we have

$$\begin{aligned} \begin{aligned} \mathscr {A}\kern 0.14em^{k}V(t, x, R)&= V_{t} + V_{x} \frac{ \big [~ k_{t} \tilde{G}(t) \theta \lambda \mu - R \big ( p(t) \psi _{2}(t) - c(t) \psi _{1}(t) \big ) ~\big ] }{ \tilde{G}(t)^{2} } + V_{R} ~ \theta \lambda \mu \\&~~~ ~~~ + \frac{1}{2} V_{xx} \frac{ k_{t}^{2} \lambda \sigma ^{2} }{ \tilde{G}(t)^{2} } + \frac{1}{2} V_{RR} ~ \lambda \sigma ^{2} + V_{xR} \frac{ k_{t} \lambda \sigma ^{2} }{ \tilde{G}(t) } ~ , \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned}&(\mathscr {A}\kern 0.14em^{k}(G\diamond g))(t, x, R) \\&~~ = G_{y} \big \{~ g_{t} + g_{x} \frac{ \big [~ k_{t} \tilde{G}(t) \theta \lambda \mu - R \big ( p(t) \psi _{2}(t) - c(t) \psi _{1}(t) \big ) ~\big ] }{ \tilde{G}(t)^{2} } + g_{R} ~ \theta \lambda \mu ~\big \} \\&~~~ ~~~ + \frac{1}{2} ( G_{yy} g_{x}^{2} + G_{y} g_{xx} ) \frac{ k_{t}^{2} \lambda \sigma ^{2} }{ \tilde{G}(t)^{2} } + \frac{1}{2} ( G_{yy} g_{R}^{2} + G_{y} g_{RR} ) ~ \lambda \sigma ^{2} + ( G_{yy} g_{x} g_{R} + G_{y} g_{xR} ) \frac{ k_{t} \lambda \sigma ^{2} }{ \tilde{G}(t) } ~ , \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&(\mathscr {H}\kern 0.18em^{k}g)(t, x, R) \\&~~ = G_{y} \big \{ ~ g_{t} + g_{x} \frac{ \big [~ k_{t} \tilde{G}(t) \theta \lambda \mu - R \big ( p(t) \psi _{2}(t) - c(t) \psi _{1}(t) \big ) ~\big ] }{ \tilde{G}(t)^{2} } + g_{R} ~ \theta \lambda \mu \\&~~~ ~~~ + \frac{1}{2} g_{xx} \frac{ k_{t}^{2} \lambda \sigma ^{2} }{ \tilde{G}(t)^{2} } + \frac{1}{2} g_{RR} ~ \lambda \sigma ^{2} + g_{xR} \frac{ k_{t} \lambda \sigma ^{2} }{ \tilde{G}(t) } ~ \big \} \end{aligned} \end{aligned}$$

Since \(G(y)= \frac{\gamma }{2} y^{2}\), \(G_{y} = \gamma y\) and \(G_{yy} = \gamma\) , so that

$$\begin{aligned} \begin{aligned}&\sup \limits _{k\in \Lambda } \big \{~ (\mathscr {A}\kern 0.14em^{k}V)(t, x, R) - (\mathscr {A}\kern 0.14em^{k}(G\diamond g))(t, x, R) + (\mathscr {H}\kern 0.18em^{k}g)(t, x, R) ~ \big \} \\&= \sup \limits _{k\in \Lambda } \big \{ V_{t} + V_{x} \frac{ \big [~ k_{t} \tilde{G}(t) \theta \lambda \mu - R \big ( p(t) \psi _{2}(t) - c(t) \psi _{1}(t) \big ) ~\big ] }{ \tilde{G}(t)^{2} } + V_{R} ~ \theta \lambda \mu \\&~~~ ~~~ + \frac{1}{2} V_{xx} \frac{ k_{t}^{2} \lambda \sigma ^{2} }{ \tilde{G}(t)^{2} } + \frac{1}{2} V_{RR} ~ \lambda \sigma ^{2} + V_{xR} \frac{ k_{t} \lambda \sigma ^{2} }{ \tilde{G}(t) } \\&~~~ ~~~ - \frac{\gamma }{2} g_{x}^{2} \frac{ k_{t}^{2} \lambda \sigma ^{2} }{ \tilde{G}(t)^{2} } - \frac{\gamma }{2} g_{R}^{2} ~ \lambda \sigma ^{2} - \gamma g_{x} g_{R} \frac{ k_{t} \lambda \sigma ^{2} }{ \tilde{G}(t) } \big \} = 0 . \end{aligned} \end{aligned}$$

According to the first order necessary condition of extremes, we get the following optimal surplus-multiplier \(k^{*}\) from the above equation,

$$\begin{aligned} ~ k^{*} = \frac{ ( \theta \mu V_{x} + \sigma ^{2} V_{xR} - \gamma \sigma ^{2} g_{x} g_{R} ) \tilde{G}(t) }{ ( g_{x}^{2} - V_{xx} ) \sigma ^{2} } \end{aligned}$$
(8)

and substitute \(k^{*}\) into the HJB equation of g(txR), which gives

$$\begin{aligned} \begin{aligned}&g_{t} + g_{x} \frac{ \big [~ k_{t}^{*} \tilde{G}(t) \theta \lambda \mu - R \big ( p(t) \psi _{2}(t) - c(t) \psi _{1}(t) \big ) ~\big ] }{ \tilde{G}(t)^{2} } + \theta \lambda \mu g_{R} ~ \\&~~~ ~~~ + \frac{1}{2} g_{xx} \frac{ ( k_{t}^{*} )^{2} \lambda \sigma ^{2} }{ \tilde{G}(t)^{2} } + \frac{1}{2}~ \lambda \sigma ^{2} g_{RR} + g_{xR} \frac{ k_{t}^{*} \lambda \sigma ^{2} }{ \tilde{G}(t) } = 0. \end{aligned} \end{aligned}$$

Therefore, the extended HJB system of equations as required are obtained.

Appendix B. Proof of Theorem 3.3

Proof

The derivatives of (6) are as follows

$$\begin{aligned} ~ \begin{aligned}&V_{t} = H^{'}(t) x + L^{'}(t) R + Q^{'}(t) , ~~ V_{x} = H(t), ~~ V_{R} = L(t), ~~ V_{xx} = V_{xR} = V_{RR} = 0 , \\&g_{t} = h^{'}(t) x + l^{'}(t) R + q^{'}(t) , ~~~ g_{x} = h(t) , ~~~ g_{R} = l(t), ~~~ g_{xx} = g_{xR} = g_{RR} = 0 . \end{aligned} \end{aligned}$$
(9)

Plugging (9) into (4), it gives that

$$\begin{aligned} ~ \begin{aligned}&\sup \limits _{k\in \Lambda } \big \{ H'(t) x + L'(t) R + Q'(t) + H(t) \frac{ \big [~ k_{t} \tilde{G}(t) \theta \lambda \mu - k_{t} R \big ( p(t) \psi _{2}(t) - c(t) \psi _{1}(t) \big ) ~\big ] }{ \tilde{G}(t)^{2} } + L(t) ~ \theta \lambda \mu \\&~~~ ~~~ - \frac{\gamma }{2} h(t)^{2} \frac{ k_{t}^{2} \lambda \sigma ^{2} }{ \tilde{G}(t)^{2} } - \frac{\gamma }{2} l(t)^{2} ~ \lambda \sigma ^{2} - \gamma h(t) l(t) \frac{ k_{t} \lambda \sigma ^{2} }{ \tilde{G}(t) } \big \} = 0 . \end{aligned} \end{aligned}$$
(10)

Plugging (9) into (8), it follows

$$\begin{aligned} ~ k_{t}^{*} = \frac{ \theta \mu H(t) - \gamma h(t) l(t) \sigma ^{2} }{ h(t)^{2} } \cdot \frac{ \tilde{G}(t) }{ \gamma \sigma ^{2} } . \end{aligned}$$
(11)

Replacing \(k_{t}\) in (10) with (11), the Eq. (10) becomes

$$\begin{aligned} ~ \begin{aligned}&H'(t) x + L'(t) R + Q'(t) + \frac{ \big [ \theta \mu H(t) - \gamma h(t) l(t) \sigma ^{2} \big ]^{2} }{ h(t)^{2} } \cdot \frac{ \lambda }{ 2 \gamma \sigma ^{2} } \\&~~~ ~~~- H(t) \frac{ R \big ( p(t) \psi _{2}(t) - c(t) \psi _{1}(t) \big ) }{ \tilde{G}(t)^{2} } + L(t) ~ \theta \lambda \mu - \frac{\gamma }{2} l(t)^{2} ~ \lambda \sigma ^{2} = 0 \end{aligned} \end{aligned}$$
(12)

Plugging (9) into (5) and Replacing \(k_{t}\) with \(k^{*}\), it gives that

$$\begin{aligned} ~ h'(t) x + l'(t) R + q'(t) + h(t) \frac{ \big [~ k_{t}^{*} \tilde{G}(t) \theta \lambda \mu - k_{t}^{*} R \big ( p(t) \psi _{2}(t) - c(t) \psi _{1}(t) \big ) ~\big ] }{ \tilde{G}(t)^{2} } + l(t)~ \theta \lambda \mu = 0. \end{aligned}$$
(13)

Observing the Eq. (12) and the Eq. (13), it is easy to obtain that

$$\begin{aligned} H'(t) x = 0 , ~~ h'(t) x = 0 \end{aligned}$$

So it gives

$$\begin{aligned} H(t) = h(t) \equiv 1 . \end{aligned}$$

Thus, the two equations, the Eq. (12) and the Eq. (13), are split further to the following equations

$$\begin{aligned} \left\{ \begin{aligned}&L'(t) - \frac{ \big ( p(t) \psi _{2}(t) - c(t) \psi _{1}(t) \big ) }{ \tilde{G}(t)^{2} } = 0 , \\&Q'(t) + \frac{ \lambda \big [ \theta \mu - \gamma l(t) \sigma ^{2} \big ]^{2} }{ 2 \gamma \sigma ^{2} } + L(t) ~ \theta \lambda \mu - \frac{\gamma }{2} l(t)^{2} ~ \lambda \sigma ^{2} = 0 , \\&l'(t) - \frac{ \big ( p(t) \psi _{2}(t) - c(t) \psi _{1}(t) \big ) }{ \tilde{G}(t)^{2} } = 0 , \\&q'(t) + \frac{ \theta \mu - \gamma l(t) \sigma ^{2} }{ h(t)^{2} } \cdot \frac{ \theta \lambda \mu }{ \gamma \sigma ^{2} }+ l(t)~ \theta \lambda \mu = 0. \end{aligned} \right. \end{aligned}$$

Solving the above four ordinary differential equations, we obtained

$$\begin{aligned} \left\{ \begin{aligned}&L(t) = l(t) = \frac{1}{\tilde{G}(T)} - \frac{1}{\tilde{G}(t)} , \\&Q(t) = \frac{ \lambda \theta ^{2} \mu ^{2} }{ 2 \gamma \sigma ^{2} } ( t - T ) , \\&q(t) = \frac{ \lambda \theta ^{2} \mu ^{2} }{ \gamma \sigma ^{2} } ( t - T ) . \end{aligned} \right. \end{aligned}$$

Replacing the expressions of H(t),  h(t),  l(t) into (11), the optimal surplus-multiplier \(k_{t}^{*}\) is obtained in explicit form

$$\begin{aligned} \begin{aligned} k_{t}^{*}&= \big ( \theta \mu - \gamma l(t) \sigma ^{2} \big )\cdot \frac{ \tilde{G}(t) }{ \gamma \sigma ^{2} } \\&= \frac{ \theta \mu }{ \gamma \sigma ^{2} } \cdot \tilde{G}(t) - \frac{ \tilde{G}(t) }{\tilde{G}(T)} + 1 \\&= \big ( \frac{ \theta \mu }{ \gamma \sigma ^{2} } - \frac{ 1}{\tilde{G}(T)} \big ) \cdot \tilde{G}(t) + 1 . \end{aligned} \end{aligned}$$

Substituting the expressions of H(t),  L(t),  Q(t) into V(txR), the optimal value function is also obtained explicitly

$$\begin{aligned} V(t, x, R) = x + ( \frac{1}{\tilde{G}(T)} - \frac{1}{\tilde{G}(t)} ) R + \frac{ \lambda \theta ^{2} \mu ^{2} }{ 2 \gamma \sigma ^{2} } ( t - T ) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, DL., Shi, L., Li, D. et al. Manage Pension Deficit with Heterogeneous Insurance. Methodol Comput Appl Probab 24, 1119–1141 (2022). https://doi.org/10.1007/s11009-022-09960-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-022-09960-3

Keywords

Navigation