Skip to main content
Log in

Cardiorespiratory Parameters Comparison Between Incremental Protocols Performed in Aquatic and Land Environments by Healthy Individuals: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Physical properties of water cause physiological changes in the immersed human body compared with the land environment. Understanding the magnitude of cardiorespiratory alterations might ensure adequate intensity control during aquatic exercise programs.

Objective

We aimed to compare the oxygen uptake (VO2), heart rate (HR), and rating of perceived exertion (RPE) parameters during aquatic and land incremental tests.

Methods

Four databases (PubMed, LILACS, EMBASE, and SPORTDiscus) were searched in September 2020. Eligibility criteria included studies in a crossover design comparing aquatic and land incremental tests for healthy individuals with at least one of the following parameters: VO2 (maximal, VO2max; anaerobic threshold, VO2AT), HR (HRmax; HRAT), and RPE (RPEmax; RPEAT). The random-effects meta-analysis included mean difference and 95% confidence interval for VO2 and HR or standardized mean difference for RPE. The Joanna Briggs Institute Critical Appraisal tool was adapted to assess methodological quality.

Results

Twenty-eight studies were eligible and included in the meta-analysis. Aquatic protocols showed lower values compared with land for VO2max (− 7.07 mL.kg−1.min−1; − 8.43 to − 5.70; n = 502), VO2AT (− 6.19 mL.kg−1.min−1; − 7.66 to − 4.73; n = 145), HRmax (− 11.71 bpm; − 13.84 to − 9.58; n = 503), and HRAT (− 15.29 bpm; − 19.05 to − 11.53; n = 145). RPEmax (0.01; − 0.16 to 0.18; n = 299) and RPEAT (− 0.67; − 1.35 to 0.02; n = 55) values were similar between aquatic and land protocols.

Conclusions

Our study reinforces the specificity of the environment during incremental tests for prescribing exercises based on physiological parameters as VO2 and HR parameters presented lower values in aquatic protocols than land protocols. Conversely, RPE seems an interchangeable measure of exercise intensity, with similar values during the protocols in both environments. Substantial levels of heterogeneity were present for the VO2max and HRmax meta-analyses, and as such, results should be interpreted with attention.

Protocol Registration

This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO; CRD42020212508).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults. Med Sci Sport Exerc. 2011;43:1334–59. https://doi.org/10.1249/MSS.0b013e318213fefb.

    Article  Google Scholar 

  2. Mann T, Lamberts RP, Lambert MI. Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med. 2013;43:613–25. https://doi.org/10.1007/s40279-013-0045-x.

    Article  PubMed  Google Scholar 

  3. Katch V, Weltman A, Sady S, Freedson P. Validity of the relative percent concept for equating training intensity. Eur J Appl Physiol Occup Physiol. 1978;39:219–27. https://doi.org/10.1007/BF00421445.

    Article  CAS  PubMed  Google Scholar 

  4. Franklin BA, Hodgson J, Buskirk ER. Relationship between percent maximal O2 uptake and percent maximal heart rate in women. Res Q Exerc Sport. 1980;51:616–24. https://doi.org/10.1080/02701367.1980.10609322.

    Article  CAS  PubMed  Google Scholar 

  5. Swain DP, Abernathy KS, Smith CS, Lee SJ, Bunn SA. Target heart rates for the development of cardiorespiratory fitness. Med Sci Sports Exerc. 1994;26:112–6. https://doi.org/10.1249/00005768-199401000-00019.

    Article  CAS  PubMed  Google Scholar 

  6. Wasserman K, Whipp BJ, Koyl SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35:236–43. https://doi.org/10.1152/jappl.1973.35.2.236.

    Article  CAS  PubMed  Google Scholar 

  7. Dunbar CC, Robertson RJ, Baun R, Blandin MF, Metz K, Burdett R, et al. The validity of regulating exercise intensity by ratings of perceived exertion. Med Sci Sports Exerc. 1992;24:94–9. https://doi.org/10.1249/00005768-199201000-00016.

    Article  CAS  PubMed  Google Scholar 

  8. Robertson RJ, Moyna NM, Sward KL, Millich NB, Goss FL, Thompson PD. Gender comparison of RPE at absolute and relative physiological criteria. Med Sci Sports Exerc. 2000;32:2120–9. https://doi.org/10.1097/00005768-200012000-00024.

    Article  CAS  PubMed  Google Scholar 

  9. Chen MJ, Fan X, Moe ST. Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: a meta-analysis. J Sports Sci. 2002;20:873–99. https://doi.org/10.1080/026404102320761787.

    Article  PubMed  Google Scholar 

  10. Andrade LS, Kanitz AC, Häfele MS, Schaun GZ, Pinto SS, Alberton CL. Relationship between oxygen uptake, heart rate, and perceived effort in an aquatic incremental test in older women. Int J Environ Res Public Health. 2020;17:8324. https://doi.org/10.3390/ijerph17228324.

    Article  PubMed Central  Google Scholar 

  11. Hetzler RK, Seip RL, Boutcher SH, Pierce E, Snead D, Weltman A. Effect of exercise modality on ratings of perceived exertion at various lactate concentrations. Med Sci Sport Exerc. 1991;23:88–92. https://doi.org/10.1249/00005768-199101000-00014.

    Article  CAS  Google Scholar 

  12. Scherr J, Wolfarth B, Christle JW, Pressler A, Wagenpfeil S, Halle M. Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur J Appl Physiol. 2013;113:147–55. https://doi.org/10.1007/s00421-012-2421-x.

    Article  PubMed  Google Scholar 

  13. Alberton CL, Pinto SS, Gorski T, Antunes AH, Finatto P, Cadore EL, et al. Rating of perceived exertion in maximal incremental tests during head-out water-based aerobic exercises. J Sports Sci. 2016;34:1691–8. https://doi.org/10.1080/02640414.2015.1134804.

    Article  PubMed  Google Scholar 

  14. Pendergast DR, Moon RE, Krasney JJ, Held HE, Zamparo P. Human physiology in an aquatic environment. Compr Physiol. 2015;5:1705–50. https://doi.org/10.1002/cphy.c140018.

    Article  PubMed  Google Scholar 

  15. Pendergast DR, Lundgren CEG. The underwater environment: cardiopulmonary, thermal, and energetic demands. J Appl Physiol. 2009;106:276–83. https://doi.org/10.1152/japplphysiol.90984.2008.

    Article  CAS  PubMed  Google Scholar 

  16. Kanitz AC, Delevatti RS, Reichert T, Liedtke GV, Ferrari R, Almada BP, et al. Effects of two deep water training programs on cardiorespiratory and muscular strength responses in older adults. Exp Gerontol. 2015;64:55–61. https://doi.org/10.1016/j.exger.2015.02.013.

    Article  PubMed  Google Scholar 

  17. Pinto SS, Alberton CL, Cadore EL, Zaffari P, Baroni BM, Lanferdini FJ, et al. Water-based concurrent training improves peak oxygen uptake, rate of force development, jump height, and neuromuscular economy in young women. J Strength Cond Res. 2015;29:1846–54. https://doi.org/10.1519/JSC.0000000000000820.

    Article  PubMed  Google Scholar 

  18. Silva MR, Alberton CL, Portella EG, Nunes GN, Martin DG, Pinto SS. Water-based aerobic and combined training in elderly women: effects on functional capacity and quality of life. Exp Gerontol. 2018;106:54–60. https://doi.org/10.1016/j.exger.2018.02.018.

    Article  PubMed  Google Scholar 

  19. Tsourlou T, Benik A, Dipla K, Zafeiridis A, Kellis S. The effects of a twenty-four-week aquatic training program on muscular strength performance in healthy elderly women. J Strength Cond Res. 2006;20:811–8. https://doi.org/10.1519/R-18455.1.

    Article  PubMed  Google Scholar 

  20. Meredith-Jones K, Legge M, Jones LM. Circuit based deep water running improves cardiovascular fitness, strength and abdominal obesity in older, overweight women aquatic exercise intervention in older adults. Med Sport. 2009;13:5–12. https://doi.org/10.2478/v10036-009-0002-9.

    Article  Google Scholar 

  21. Andrade LS, Pinto SS, Silva MR, Schaun GZ, Portella EG, Nunes GN, et al. Water-based continuous and interval training in older women: cardiorespiratory and neuromuscular outcomes (WATER study). Exp Gerontol. 2020;134: 110914. https://doi.org/10.1016/j.exger.2020.110914.

    Article  PubMed  Google Scholar 

  22. Reichert T, Kanitz AC, Delevatti RS, Bagatini NC, Barroso BM, Kruel LFM. Continuous and interval training programs using deep water running improves functional fitness and blood pressure in the older adults. Age (Omaha). 2016;38:1–9. https://doi.org/10.1007/s11357-016-9882-5.

    Article  Google Scholar 

  23. Butts N, Tucker M, Greening C. Physiologic resposnes to maximal treadmill and deep water rubbubg in men and women. Am J Sport Med. 1991;19:612–4. https://doi.org/10.1177/036354659101900610.

    Article  CAS  Google Scholar 

  24. Frangolias DD, Rhodes EC. Maximal and ventilatory threshold responses to treadmill and water immersion running. Med Sci Sports Exerc. 1995;27:1007–13. https://doi.org/10.1249/00005768-199507000-00009.

    Article  CAS  PubMed  Google Scholar 

  25. Schaal CM, Collins L, Ashley C. Cardiorespiratory responses to underwater treadmill running versus land-based treadmill running. Int J Aquat Res Educ. 2012;6:35–45. https://doi.org/10.25035/ijare.06.01.06.

    Article  Google Scholar 

  26. Yazigi F, Pinto S, Colado J, Escalante Y, Armada-da-Silva PAS, Brasil R, et al. The cadence and water temperature effect on physiological responses during water cycling. Eur J Sport Sci. 2013;13:659–65. https://doi.org/10.1080/17461391.2013.770924.

    Article  PubMed  Google Scholar 

  27. Alberton CL, Antunes AH, Beilke DD, Pinto SS, Kanitz AC, Tartaruga MP, et al. Maximal and ventilatory thresholds of oxygen uptake and rating of perceived exertion responses to water aerobic exercises. J Strength Cond Res. 2013;27:1897–903. https://doi.org/10.1519/JSC.0b013e3182736e47.

    Article  PubMed  Google Scholar 

  28. Alberton CL, Pinto SS, Antunes AH, Cadore EL, Finatto P, Tartaruga MP, et al. Maximal and ventilatory thresholds cardiorespiratory responses to three water aerobic exercises compared with treadmill on land. J Strength Cond Res. 2014;28:1679–87. https://doi.org/10.1519/JSC.0000000000000304.

    Article  PubMed  Google Scholar 

  29. Nagle EF, Sanders ME, Gibbs BB, Franklin BA, Nagle JA, Prins PJ, et al. Reliability and accuracy of a standardized shallow water running test to determine cardiorespiratory fitness. J Strength Cond Res. 2017;31:1669–77. https://doi.org/10.1519/JSC.0000000000001638.

    Article  PubMed  Google Scholar 

  30. Ogonowska-Slodownik A, Richley Geigle P, Morgulec-Adamowicz N. Head-out water-based protocols to assess cardiorespiratory fitness: systematic review. Int J Environ Res Public Health. 2020;17:1–25. https://doi.org/10.3390/ijerph17197215.

    Article  Google Scholar 

  31. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane handbook for systematic reviews of interventions version 6.2 (updated February 2021). Cochrane, 2021. www.training.cochrane.org/handbook. Accessed 20 Apr 2022.

  32. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:71. https://doi.org/10.1136/bmj.n71.

    Article  Google Scholar 

  33. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;6: e1000097. https://doi.org/10.1371/journal.pmed.1000097.

    Article  Google Scholar 

  34. Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, et al. Chapter 7: systematic reviews of etiology and risk. In: Aromataris E, Munn Z, editors. Joanna Briggs Institute reviewer’s manual. The Joanna Briggs Institute; 2017. https://reviewersmanual.joannabriggs.org/. Accessed 20 Apr 2022.

  35. Gayda M, Juneau M, Guiraud T, Lambert J, Nigam A. Optimization and reliability of a deep water running test in healthy adults older than 45 years. Am J Phys Med Rehabil. 2010;89:722–30. https://doi.org/10.1097/PHM.0b013e3181e7229a.

    Article  PubMed  Google Scholar 

  36. Michaud TJ, Rodriguez-Zayas J, Andres FF, Flynn MG, Lambert CP. Comparative exercise responses of deep-water and treadmill running. J Strength Cond Res. 1995;9:104–9.

    Google Scholar 

  37. Brown SP, Chitwood LF, Beason KR, McLemore DR. Perceptual responses to deep water running and treadmill exercise. Percept Mot Skills. 1996;83:131–9. https://doi.org/10.2466/pms.1996.83.1.131.

    Article  CAS  PubMed  Google Scholar 

  38. Conti A, Rosponi A, Dapretto L, Magini V, Felici F. Cardiac and metabolic demands of in place shallow water running in trained and untrained men. J Sports Med Phys Fit. 2008;48:183–9.

    CAS  Google Scholar 

  39. Frangolias DD, Rhodes EC, Taunton JE. The effect of familiarity with deep water running on maximal oxygen consumption. J Strength Cond Res. 1996;10:215–9.

    Google Scholar 

  40. Azevedo LB, Lambert MI, Zogaib PS, Barros Neto TL. Maximal and submaximal physiological responses to adaptation to deep water running. J Sports Sci. 2010;28:407–14. https://doi.org/10.1080/02640410903527813.

    Article  PubMed  Google Scholar 

  41. Chu KS, Rhodes EC, Taunton JE, Martin AD. Maximal physiological responses to deep-water and treadmill running in young and older women. J Aging Phys Act. 2002;10:306–13. https://doi.org/10.1123/japa.10.3.306.

    Article  Google Scholar 

  42. Nakanishi Y, Kimura T, Yokoo Y. Physiological responses to maximal treadmill and deep water running in the young and the middle aged males. J Physiol Anthropol Appl Human Sci. 1999;18:81–6. https://doi.org/10.2114/jpa.18.81.

    Article  CAS  Google Scholar 

  43. Dowzer CN, Reilly T, Cable NT, Nevill A. Maximal physiological responses to deep and shallow water running. Ergonomics. 1999;42:275–81. https://doi.org/10.1080/001401399185649.

    Article  CAS  PubMed  Google Scholar 

  44. Giacomini F, Ditroilo M, Lucertini F, De Vito G, Gatta G, Benelli P. The cardiovascular response to underwater pedaling at different intensities: a comparison of 4 different water stationary bikes. J Sports Med Phys Fitness. 2009;49:432–9.

    CAS  PubMed  Google Scholar 

  45. Tiggemann CL, Alberton CL, Posser MS, Bridi J, Kruel L. Comparison of maximal cardiorespiratory variables between deep water running and treadmill running. Mot J Phys Educ UNESP. 2007;13:266–72.

    Google Scholar 

  46. Garzon M, Gayda M, Nigam A, Comtois AS, Juneau M. Immersible ergocycle prescription as a function of relative exercise intensity. J Sport Health Sci. 2017;6:219–24. https://doi.org/10.1016/j.jshs.2015.12.004.

    Article  PubMed  Google Scholar 

  47. Brown SP, Chitwood LF, Beason KR, McLemore DR. Deep water running physiologic responses gender differences at treadmill-matched walking/running cadences. J Strength Cond Res. 1997;11:107–14.

    Google Scholar 

  48. Greene NP, Greene ES, Carbuhn AF, Green JS, Crouse SF. Vo2 prediction and cardiorespiratory responses during underwater treadmill exercise. Res Q Exerc Sport. 2011;82:264–73. https://doi.org/10.1080/02701367.2011.10599754.

    Article  PubMed  Google Scholar 

  49. Mercer JA, Jensen RL. Heart rates at equivalent submaximal levels of VO2 do not differ between deep water running and treadmill running. J Strength Cond Res. 1998;12:161–5. https://doi.org/10.1519/00124278-199808000-00007.

    Article  Google Scholar 

  50. Silvers WM, Rutledge ER, Dolny DG. Peak cardiorespiratory responses during aquatic and land treadmill exercise. Med Sci Sports Exerc. 2007;39:969–75. https://doi.org/10.1097/mss.0b013e31803bb4ea.

    Article  PubMed  Google Scholar 

  51. Kanitz AC, Reichert T, Liedtke GV, Pinto SS, Alberton CL, Antunes AH, et al. Maximal and anaerobic threshold cardiorespiratory responses during deep-water running. Rev Bras Cineantropometria e Desempenho Hum. 2014;17:41–50. https://doi.org/10.5007/1980-0037.2015v17n1p41.

    Article  Google Scholar 

  52. Kruel LFM, Beilke DD, Kanitz AC, Alberton CL, Antunes AH, Pantoja PD, et al. Cardiorespiratory responses to stationary running in water and on land. J Sport Sci Med. 2013;12:594–600.

    Google Scholar 

  53. Nakanishi Y, Kimura T, Yokoo Y. Maximal physiological responses to deep water running at thermoneutral temperature. J Physiol Anthropol Appl Human Sci. 1999;18:31–5. https://doi.org/10.2114/jpa.18.31.

    Article  CAS  Google Scholar 

  54. Masumoto K, Mefferd KC, Iyo R, Mercer JA. Muscle activity and physiological responses during running in water and on dry land at submaximal and maximal efforts. J Strength Cond Res. 2018;32:1960–7. https://doi.org/10.1519/JSC.0000000000002107.

    Article  PubMed  Google Scholar 

  55. Phillips VK, Legge M, Jones LM. Maximal physiological responses between aquatic and land exercise in overweight women. Med Sci Sports Exerc. 2008;40:959–64. https://doi.org/10.1249/MSS.0b013e318164d0e0.

    Article  PubMed  Google Scholar 

  56. Cuesta-Vargas A, Garcia-Romero JC, Kuisma R. Maximum and resting heart rate in treadmill and deep-water running in male international volleyball players. Int J Aquat Res Educ. 2009;3:7. https://doi.org/10.25035/ijare.03.04.07.

    Article  Google Scholar 

  57. Arborelius M, Ballidin UI, Lilja B, Lundgren CE. Hemodynamic changes in man during immersion with the head above water. Aerosp Med. 1972;43:592–8.

    PubMed  Google Scholar 

  58. Watenpaugh DE, Pump B, Bie P, Norsk P. Does gender influence human cardiovascular and renal responses to water immersion? J Appl Physiol. 2000;89:621–8. https://doi.org/10.1152/jappl.2000.89.2.621.

    Article  CAS  PubMed  Google Scholar 

  59. McArdle WD, Magel JR, Lesmes GR, Pechar GS. Metabolic and cardiovascular adjustment to work in air and water at 18, 25, and 33°C. J Appl Physiol. 1976;40:85–90. https://doi.org/10.1152/jappl.1976.40.1.85.

    Article  CAS  PubMed  Google Scholar 

  60. Šrámek P, Šimečková M, Janský L, Šavlíková J, Vybíral S. Human physiological responses to immersion into water of different temperatures. Eur J Appl Physiol. 2000;81:436–42. https://doi.org/10.1007/s004210050065.

    Article  PubMed  Google Scholar 

  61. Park KS, Kyu Choi J, Saeng PY. Cardiovascular regulation during water immersion. Appl Hum Sci J Physiol Anthropol. 1999;18:233–41. https://doi.org/10.2114/jpa.18.233.

    Article  CAS  Google Scholar 

  62. Mekjavic IB, Bligh J. The increased oxygen uptake upon immersion. Eur J Appl Physiol. 1989;58:556–62. https://doi.org/10.1007/BF02330712.

    Article  CAS  Google Scholar 

  63. Robertson RJ, Noble BJ. Perception of physical exertion: methods, mediators, and applications. Exerc Sport Sci Rev. 1997;25:407–52.

    Article  CAS  Google Scholar 

  64. David GB, Andrade LS, Schaun GZ, Alberton CL. HR, VO2, and RPE relationships in an aquatic incremental maximum test performed by young women. J Strength Cond Res. 2017;31:2852–8. https://doi.org/10.1519/JSC.0000000000001719.

    Article  PubMed  Google Scholar 

  65. Martinelli B, Barrile SR, Arca EA, Franco RJS, Martin LC. Effect of aerobic exercise on plasma renin in overweight patients with hypertension. Arq Bras Cardiol. 2010;95:91–8.

    Article  Google Scholar 

  66. Gabrielsen A, Pump B, Bie P, Christensen NJ, Warberg J, Nor SKP. Atrial distension, haemodilution, and acute control of renin release during water immersion in humans. Acta Physiol Scand. 2002;174:91–9.

    Article  CAS  Google Scholar 

  67. Kalupahana NS, Moustaid-Moussa N. The renin-angiotensin system: a link between obesity, inflammation and insulin resistance. Obes Rev. 2012;13:136–49.

    Article  CAS  Google Scholar 

  68. Alberton CL, Finatto P, Pinto SS, Antunes AH, Cadore EL, Tartaruga MP, Kruel LF. Vertical ground reaction force responses to different head-out aquatic exercises performed in water and on dry land. J Sports Sci. 2015;33(8):795–805. https://doi.org/10.1080/02640414.2014.964748.

    Article  PubMed  Google Scholar 

  69. Miyoshi T, Shirota T, Yamamoto S, Nakazawa K, Akai M. Effect of the walking speed to the lower limb joint angular displacements, joint moments and ground reaction forces during walking in water. Disabil Rehabil. 2004;26(12):724–32. https://doi.org/10.1080/09638280410001704313.

    Article  PubMed  Google Scholar 

  70. Wiesner S, Birkenfeld AL, Engeli S, Haufe S, Brechtel L, Wein J, et al. Neurohumoral and metabolic response to exercise in water. Horm Metab Res. 2010;42:334–9. https://doi.org/10.1055/s-0030-1248250.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luana S. Andrade.

Ethics declarations

Funding

Luana Siqueira Andrade is financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES, Finance Code 001) and Cristine Lima Alberton is supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil (CNPq), number 431288/2018-6.

Conflict of interest

The authors declare no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Data from the present study will be made available upon request to the corresponding author.

Code availability

Not applicable.

Author contributions

All authors contributed to the conception and design of the review. LSA and CEB were responsible for the meta-analysis. LSA, CEB, and CLA drafted the manuscript. All authors edited and revised the manuscript and approved the final version of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 294 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, L.S., Botton, C.E., David, G.B. et al. Cardiorespiratory Parameters Comparison Between Incremental Protocols Performed in Aquatic and Land Environments by Healthy Individuals: A Systematic Review and Meta-Analysis. Sports Med 52, 2247–2270 (2022). https://doi.org/10.1007/s40279-022-01687-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01687-y

Navigation