Skip to main content
Log in

Investigating the environmental dependence of ultralight scalar dark matter with atom interferometers

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the environmental dependence of ultralight scalar dark matter (DM) with linear interactions to the standard model particles. The solution to the DM field turns out to be a sum of the cosmic harmonic oscillation term and the local exponential fluctuation term. The amplitude of the first term depends on the local DM density and the mass of the DM field. The second term is induced by the local distribution of matter, such as the Earth. And it depends not only on the mass of the Earth, but also the density of the Earth. Then, we compute the phase shift induced by the DM field in atom interferometers (AIs), through solving the trajectories of atoms. Especially, the AI signal for the violation of weak equivalence principle (WEP) caused by the DM field is calculated. Depending on the values of the DM coupling parameters, contributions to the WEP violation from the first and second terms of the DM field can be either comparable or one larger than the other. Finally, we give some constraints to DM coupling parameters using results from the terrestrial atomic WEP tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. To see this, it is easier to use a different DM coupling parameter notation \(\{\Lambda _{\gamma },\Lambda _{g},\Lambda _{i}\}\). This notation is related to ours by \(d_e=M_P/(4\pi \Lambda _{\gamma })\), \(d_g=M_P/(4\pi \Lambda _{g})\), and \(d_{m_i}=M_P/(4\pi \Lambda _{i})\). These \(\Lambda _{\gamma , g,i}\) parameters have dimensions of energy, which can be regarded as UV cutoffs of some underlying theory. According to the spirit of effective field theory, terms, like \(\sum _{n=2}^{\infty } C^F_{n} (\Phi /\Lambda _{\gamma })^n (F_{\mu \nu })^2\), \(\sum _{n=2}^{\infty } C^g_{n} (\Phi /\Lambda _{g})^n (F_{\mu \nu }^{A})^{2}\), and \(\sum _{n=2}^{\infty } C^i_{n} (\Phi /\Lambda _{i})^n m_i {\bar{\psi }}_i\psi _i\), will be generated. In the end, these terms produce the higher order \(\varphi \)-dependence in the Earth’s mass (16).

  2. Note that the case here is different from the issue of naturalness. There, corrections to the mass of scalar field are generated by one-loop Feynman diagrams, which depend on some (arbitrary) UV cutoff scale. On the other hand, our correction in Eq. (26) comes from the \(\varphi ^2\)-dependence in the Earth’s mass as discussed above. We will omit the issue of naturalness in this paper, and readers can refer to the papers [10, 19] for further discussion.

References

  1. Gorenstein, P., Tucker, W.: Astronomical signatures of dark matter. Adv. High Energy Phys. 2014, 1 (2014). https://doi.org/10.1155/2014/878203

    Article  Google Scholar 

  2. Mondino, C., Taki, A.-M., Van Tilburg, K., Weiner, N.: First results on dark matter substructure from astrometric weak lensing. Phys. Rev. Lett. 125, 111101 (2020). https://doi.org/10.1103/PhysRevLett.125.111101

    Article  ADS  Google Scholar 

  3. Abdullah, M.H., Klypin, A., Wilson, G.: Cosmological constraints on \({\Omega }_{m}\) m and \(\sigma _{8}\) from cluster abundances using the GalWCat19 optical-spectroscopic SDSS catalog. Astrophys. J. 901(2), 90 (2020). https://doi.org/10.3847/1538-4357/aba619

    Article  ADS  Google Scholar 

  4. Refregier, A.: Weak gravitational lensing by large-scale structure. Annu. Rev. Astron. Astrophys. 41(1), 645 (2003). https://doi.org/10.1146/annurev.astro.41.111302.102207

    Article  ADS  Google Scholar 

  5. Allen, S.W., Schmidt, R.W., Fabian, A.C., Ebeling, H.: Cosmological constraints from the local X-ray luminosity function of the most X-ray-luminous galaxy clusters. Mon. Not. R. Astron. Soc. 342(1), 287 (2003). https://doi.org/10.1046/j.1365-8711.2003.06550.x

    Article  ADS  Google Scholar 

  6. Rubin, V.C., Ford, W.K., Jr., Thonnard, N.: Rotational properties of 21-SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc). Astrophys. J. 238(2), 471 (1980). https://doi.org/10.1086/158003

    Article  ADS  Google Scholar 

  7. Akerib, D.S., et al.: Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 118, 021303 (2017). https://doi.org/10.1103/PhysRevLett.118.021303

    Article  ADS  Google Scholar 

  8. Fu, C., et al.: Spin-dependent weakly-interacting-massive-particle-nucleon cross section limits from first data of PandaX-II experiment. Phys. Rev. Lett. 118, 071301 (2017). https://doi.org/10.1103/PhysRevLett.118.071301

    Article  ADS  Google Scholar 

  9. Aprile, E., et al.: First results on the scalar WIMP-pion coupling, using the XENON1T experiment. Phys. Rev. Lett. 122, 071301 (2019). https://doi.org/10.1103/PhysRevLett.122.071301

    Article  ADS  Google Scholar 

  10. Arvanitaki, A., Huang, J., Van Tilburg, K.: Searching for Dilaton dark matter with atomic clocks. Phys. Rev. D 91, 015015 (2015). https://doi.org/10.1103/PhysRevD.91.015015

    Article  ADS  Google Scholar 

  11. Roberts, B.M., et al.: Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat. Commun. 8(1), 1195 (2017). https://doi.org/10.1038/s41467-017-01440-4

    Article  ADS  Google Scholar 

  12. Van Tilburg, K., Leefer, N., Bougas, L., Budker, D.: Search for ultralight scalar dark matter with atomic spectroscopy. Phys. Rev. Lett. 115(1), 011802 (2015). https://doi.org/10.1103/PhysRevLett.115.011802

    Article  ADS  Google Scholar 

  13. Leefer, N., Gerhardus, A., Budker, D., Flambaum, V.V., Stadnik, Y.V.: Search for the effect of massive bodies on atomic spectra and constraints on Yukawa-type interactions of scalar particles. Phys. Rev. Lett. 117(27), 271601 (2016). https://doi.org/10.1103/PhysRevLett.117.271601

    Article  Google Scholar 

  14. Graham, P.W., Kaplan, D.E., Mardon, J., Rajendran, S., Terrano, W.A.: Dark matter direct detection with accelerometers. Phys. Rev. D 93, 075029 (2016). https://doi.org/10.1103/PhysRevD.93.075029

    Article  ADS  Google Scholar 

  15. Obata, I., Fujita, T., Michimura, Y.: Optical ring cavity search for axion dark matter. Phys. Rev. Lett. 121(16), 161301 (2018). https://doi.org/10.1103/PhysRevLett.121.161301

    Article  ADS  Google Scholar 

  16. Geraci, A.A., Bradley, C., Gao, D.F., Weinstein, J., Derevianko, A.: Searching for ultralight dark matter with optical cavities. Phys. Rev. Lett. 123, 031304 (2019). https://doi.org/10.1103/PhysRevLett.123.031304

    Article  ADS  Google Scholar 

  17. Stadnik, Y.V., Flambaum, V.V.: Searching for dark matter and variation of fundamental constants with laser and maser interferometry. Phys. Rev. Lett. 114(16), 161301 (2015). https://doi.org/10.1103/PhysRevLett.114.161301

    Article  ADS  Google Scholar 

  18. Stadnik, Y.V., Flambaum, V.V.: Enhanced effects of variation of the fundamental constants in laser interferometers and application to dark-matter detection. Phys. Rev. A 93(6), 063630 (2016). https://doi.org/10.1103/PhysRevA.93.063630

    Article  ADS  Google Scholar 

  19. Grote, H., Stadnik, Y.V.: Novel signatures of dark matter in laser-interferometric gravitational-wave detectors. Phys. Rev. Res. 1(3), 033187 (2019). https://doi.org/10.1103/PhysRevResearch.1.033187

    Article  Google Scholar 

  20. Cronin, A.D., Schmiedmayer, J., Pritchard, D.E.: Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051 (2009). https://doi.org/10.1103/RevModPhys.81.1051

    Article  ADS  Google Scholar 

  21. Morel, L., Yao, Z., Cladé, P., Guellati-Khélifa, S.: Determination of the fine-structure constant with an accuracy of 81 parts per trillion. Nature 588(7836), 61 (2020). https://doi.org/10.1038/s41586-020-2964-7

    Article  ADS  Google Scholar 

  22. Zhou, L., et al.: Joint mass-and-energy test of the equivalence principle at the \({10}^{-10}\) level using atoms with specified mass and internal energy. Phys. Rev. A 104, 022822 (2021). https://doi.org/10.1103/PhysRevA.104.022822. arXiv:1904.07096

  23. Asenbaum, P., Overstreet, C., Kim, M., Curti, J., Kasevich, M.A.: Atom-interferometric test of the equivalence principle at the \({10}^{-12}\) level. Phys. Rev. Lett. 125, 191101 (2020). https://doi.org/10.1103/PhysRevLett.125.191101

    Article  ADS  Google Scholar 

  24. Geraci, A.A., Derevianko, A.: Sensitivity of atom interferometry to ultralight scalar field dark matter. Phys. Rev. Lett. 117, 261301 (2016). https://doi.org/10.1103/PhysRevLett.117.261301

    Article  ADS  Google Scholar 

  25. Arvanitaki, A., Graham, P.W., Hogan, J.M., Rajendran, S., Van Tilburg, K.: Search for light scalar dark matter with atomic gravitational wave detectors. Phys. Rev. D 97, 075020 (2018). https://doi.org/10.1103/PhysRevD.97.075020

    Article  ADS  Google Scholar 

  26. Damour, T., Donoghue, J.F.: Equivalence principle violations and couplings of a light dilaton. Phys. Rev. D 82, 084033 (2010). https://doi.org/10.1103/PhysRevD.82.084033

    Article  ADS  Google Scholar 

  27. Damour, T., Donoghue, J.F.: Phenomenology of the equivalence principle with light scalars. Class. Quantum Grav. 27(20), 202001 (2010). https://doi.org/10.1088/0264-9381/27/20/202001

    Article  ADS  MATH  Google Scholar 

  28. Damour, T., Esposito-Farèse, G.: Tensor-multi-scalar theories of gravitation. Class. Quantum Grav. 9(9), 2093 (1992). https://doi.org/10.1088/0264-9381/9/9/015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Hees, A., Minazzoli, O., Savalle, E., Stadnik, Y.V., Wolf, P.: Violation of the equivalence principle from light scalar dark matter. Phys. Rev. D 98, 064051 (2018). https://doi.org/10.1103/PhysRevD.98.064051

    Article  ADS  MathSciNet  Google Scholar 

  30. Morgan, J.W., Anders, E.: Chemical-composition of Earth, Venus, and Mercury. Proc. Natl. Acad. Sci. USA 77(12), 6973 (1980). https://doi.org/10.1073/pnas.77.12.6973

    Article  ADS  Google Scholar 

  31. Freese, K., Lisanti, M., Savage, C.: Colloquium: Annual modulation of dark matter. Rev. Mod. Phys. 85(4), 1561 (2013). https://doi.org/10.1103/RevModPhys.85.1561

    Article  ADS  Google Scholar 

  32. Kasevich, M., Chu, S.: Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl. Phys. B 54(5), 321 (1992). https://doi.org/10.1007/BF00325375

    Article  ADS  Google Scholar 

  33. Dimopoulos, S., Graham, P.W., Hogan, J.M., Kasevich, M.A.: General relativistic effects in atom interferometry. Phys. Rev. D 78, 042003 (2008). https://doi.org/10.1103/PhysRevD.78.042003

    Article  ADS  Google Scholar 

  34. Flambaum, V.V., Tedesco, A.F.: Dependence of nuclear magnetic moments on quark masses and limits on temporal variation of fundamental constants from atomic clock experiments. Phys. Rev. C 73, 055501 (2006). https://doi.org/10.1103/PhysRevC.73.055501

    Article  ADS  Google Scholar 

  35. Bergé, J., Brax, P., Métris, G., Pernot-Borràs, M., Touboul, P., Uzan, J.-P.: MICROSCOPE mission: first constraints on the violation of the weak equivalence principle by a light scalar Dilaton. Phys. Rev. Lett. 120, 141101 (2018). https://doi.org/10.1103/PhysRevLett.120.141101

    Article  ADS  Google Scholar 

  36. Touboul, P., et al.: MICROSCOPE mission: first results of a space test of the equivalence principle. Phys. Rev. Lett. 119, 231101 (2017). https://doi.org/10.1103/PhysRevLett.119.231101

    Article  ADS  Google Scholar 

  37. Hsu, H.P.: Schaum’s Outline of Theory and Problems of Probability, Random Variables, and Random Processes. McGraw-Hill, New York (1997)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant No. 2016YFA0302002, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB21010100. We thank the referees for their helpful comments and suggestions that significantly polish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfeng Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Calculation of velocity and position of atoms

Solving Eq. (36) is as follows. We first integrate on both sides to get the velocity,

$$\begin{aligned} {\dot{z}}(t')= & {} {\dot{z}}(t_{i})\!-\!g_{0}(t'\!-\!t_{i})\!-\!\alpha _E I\left( \frac{R_{E}}{\lambda _{\text {eff}}}\right) \frac{GM_{E}}{c^2} \int ^{t'}_{t_i} \Bigg [\alpha _{A}\Bigg (c^2\!+\!\frac{({\dot{z}}^{(0)}(t))^2}{2}\!+\!g_0z^{(0)}(t)\Bigg )\nonumber \\&\cdot \,\Bigg (\frac{1}{(R_E\!+\!z^{(0)}(t))^2}\!+\!\frac{1}{(R_E+z^{(0)}(t))\lambda _{\text {eff}}}\Bigg ) +g_0\alpha _E\Bigg (\frac{z^{(0)}(t)}{(R_E+z^{(0)}(t))^2}\nonumber \\&+\,\frac{1}{R_E+z^{(0)}(t)}\Bigg (1+\frac{z^{(0)}(t)}{\lambda _{\text {eff}}}\Bigg )\Bigg )e^{-\frac{R_E+z^{(0)}(t)}{\lambda _{\text {eff}}}}\Bigg ]dt \nonumber \\&+\,\varphi _{0}\int ^{t'}_{t_i}\Bigg [k\Bigg (\Bigg (c^2-\frac{({\dot{z}}^{(0)}(t))^2}{2}\Bigg )\alpha _{A}+g_0z^{(0)}(t)(\alpha _{A}+\alpha _E)\Bigg )\sin \Bigg (k(R_{E}\nonumber \\&+\,z^{(0)}(t))-\omega t+\delta \Bigg ) -g_0(\alpha _{A}+\alpha _E)\cos \Bigg (k(R_{E}+z^{(0)}(t))-\omega t+\delta \Bigg )\Bigg ]dt \nonumber \\&-\,\alpha _{A}\varphi _{0}\Bigg (\cos \Big (k(R_E+z^{(0)}(t'))-\omega t'+\delta \Big ){\dot{z}}^{(0)}(t') -\cos (k(R_E+z^{(0)}_i)\nonumber \\&-\,\omega t_i+\delta ){\dot{z}}^{(0)}(t_i)\Bigg )\, . \end{aligned}$$
(51)

Here, \(z^{(0)}(t)\) denotes the unperturbed atomic trajectory, which is nothing but the freefall trajectory

$$\begin{aligned} z^{(0)}(t)=z_i^{(0)}+v_i^{(0)}(t-t_i)-\frac{1}{2}g_0(t-t_i)^2 \, \end{aligned}$$
(52)

where \(t_i\) is the initial time, \(z_i^{(0)}\) and \(v_i^{(0)}\) are respectively the initial position and velocity for each segment of the freefall trajectory.

To finish the integration in Eq. (51), we do the following approximation,

$$\begin{aligned} e^{-\frac{R_E+z^{(0)}(t)}{\lambda _{\text {eff}}}}\simeq & {} \left( 1-\frac{z^{(0)}(t)}{R_E}\right) \, e^{-\frac{R_E}{\lambda _{\text {eff}}}} \nonumber \\ \frac{1}{R_E+z^{(0)}(t)}\simeq & {} \frac{1}{R_E}\, \left( 1-\frac{z^{(0)}(t)}{R_E}\right) \nonumber \\ \frac{1}{(R_E+z^{(0)}(t))^2}\simeq & {} \frac{1}{R_E^2} \, \left( 1-\frac{2z^{(0)}(t)}{R_E}\right) \end{aligned}$$
(53)

Then we can get the result

$$\begin{aligned} {\dot{z}}(t)={\dot{z}}(t_i)-g_0(t-t_i)+{\dot{z}}_{\mathrm{exp}}+{\dot{z}}_{\mathrm{bg}}\, , \end{aligned}$$
(54)

where

$$\begin{aligned} {\dot{z}}_{\mathrm{exp}}=&-\alpha _Eg_0I\left( \frac{R_E}{\lambda _\mathrm{eff}}\right) e^{-\frac{R_E}{\lambda _{\mathrm{eff}}}}\frac{1}{R_E\lambda ^2_\mathrm{eff}}\Bigg \{\alpha _A\,(t\!-\!t_i)\Bigg [R_{E}\,{\lambda _{\mathrm{eff}}}^{2}+{R_{E}}^{2}\lambda _{\mathrm{eff}} \nonumber \\&-\,z_{i}^{(0)}\, \Big (\! 2\,{\lambda _{\mathrm{eff}}}^{2}\!+\! \big ( 2\,R_{E}\!-\!2\,z_{i}^{(0)} \big ) \lambda _{\mathrm{eff}}\!+\!R_{E}\, \big (\! R_{E}\!-\!z_{i}^{(0)} \big ) \!\Big ) \!+\!\frac{1}{10}\left( \lambda _{\mathrm{eff}} \!+\!\frac{R_{E}}{2} \right) {g_{0}}^{2}{t_{i}}^{4} \nonumber \\&-\,\frac{2}{5}\left( \! tg_{0}\!-\!\frac{5}{4}v_{i}^{(0)} \right) \left( \!\lambda _{\mathrm{eff}}\!+\! \frac{R_{E}}{2} \!\right) g_{0}{t_{i}}^{3}\!+\!\Bigg ( \!\frac{3}{5} \left( \! \lambda _{\mathrm{eff}}\!+\!\frac{R_{E}}{2} \!\right) {g_{0}}^{2}{t }^{2} \!-\!\frac{3}{2}v_{i}^{(0)} \left( \lambda _{\mathrm{eff}}\!+\!\frac{R_{E}}{2} \right) g_{0}t \nonumber \\&+\,\frac{1}{3}g_{0}{\lambda _{\mathrm{eff}}}^{2}\!+\! \Big (\!\left( \! \frac{R_{E}}{3}\!-\!\frac{2}{3}z_ {i}^{(0)} \!\right) g_{0} \!+\!\frac{2}{3}\,{v_{i}^{(0)}}^{2} \!\Big ) \lambda _{\mathrm{eff}} \!+\!\frac{1}{6} \Big (\!\big ( R_{E}\!-\!2z_{i}^{(0)} \big ) g_{0}\!+\!2{v_{i}^{(0)}}^{2} \!\Big ) R_ {E} \!\Bigg ) {t_{i}}^{2} \nonumber \\&+\,\Bigg (\!-\!\frac{2}{5} \left( \lambda _{\mathrm{eff}}\!+\!\frac{R_{E}}{2} \right) {g_{0}}^{2}{ t}^{3} \!+\!\frac{3}{2}v_{i}^{(0)} \left( \lambda _{\mathrm{eff}}\!+\!\frac{R_{E}}{2} \right) g_{0} {t}^{2}\!+\! \bigg ( \!-\frac{2}{3}\,g_{0}{\lambda _{\mathrm{eff}}}^{2}+ \Big ( \Big ( \frac{4}{3}z_{i}^{(0)} \nonumber \\&-\,\frac{2}{3}R_{E} \Big ) g_{0}-\frac{4}{3}{v_{i}^{(0)}}^{2} \Big ) \lambda _{\mathrm{eff}} -\frac{1}{3} \Big (\!\big ( R_{E}\!-\!2z_{i}^{(0)} \big ) g_{0}\!+\! 2{v_{i}^{(0)}}^{2} \Big ) R_{E} \!\bigg ) t\!+\!v_{i}^{(0)}\Big ( {\lambda _{\mathrm{eff}}}^{2} \nonumber \\&+\, \big ( R_{E}-2z_{i}^{(0)} \big ) \lambda _{\mathrm{eff}} +\frac{1}{2}R_{ E} \big ( R_{E} -2\,z_{i}^{(0)} \big ) \Big ) \Bigg ) t_{i}+\frac{1}{10}\, \Big ( \lambda _{\mathrm{eff}}+\frac{R_{E}}{2} \Big ) {g_{0}}^{2}{t}^{4} \nonumber \\&-\,\frac{1}{2}\,v_{i}^{(0)}\, \Big ( \lambda _{\mathrm{eff}}\!+\!\frac{R_{E}}{2} \Big ) g_{0}\,{t}^{3}\!+\! \bigg ( \frac{1}{3}\,g_{0}\,{\lambda _{\mathrm{eff}}}^{2} \!+\! \left( \left( \frac{R_{E}}{3}- \frac{2}{3}\,z_{i}^{(0)} \right) g_{0}\!+\!\frac{2}{3}\,{v_{i}^{(0)}}^{2} \right) \lambda _{\mathrm{eff}} \nonumber \\&+\,\frac{1}{6}\, \Big ( \big ( R_{E}-2\,z_{i}^{(0)} \big ) g_{0}\!+\!2\,{v_{i}^{(0)}}^{2} \Big ) R_{E} \bigg ) {t}^{2} -v_{i}^{(0)}\, \bigg ( {\lambda _{\mathrm{eff}}}^{2 }+ \big ( R_{E}-2\,z_{i}^{(0)} \big ) \lambda _{\mathrm{eff}} \nonumber \\&+\,\frac{1}{2}\,R_{E}\, \big ( R_{E}-2\,z_{i}^{(0)} \big ) \bigg ) t \Bigg ] \end{aligned}$$
$$\begin{aligned}&+\,\frac{\alpha _A\big (t-t_i\big )}{12c^2}\,\big (2\,g_{0}\,z_{i}^{(0)}+{v_{i}^{(0)}}^{2}\big )\Bigg [ 6\,{R_{E}}^{2}\lambda _{\mathrm{eff}}+6\,R_{E}\,{\lambda _{\mathrm{eff}}}^{2}-6\,z_{i}^{(0)}\, \Big ( 2\,{\lambda _{\mathrm{eff}}}^{2} \nonumber \\&+\, \big ( 2\,R_{E}-2\,z_ {i} ^{(0)}\big ) \lambda _{\mathrm{eff}}+R_{E}\, \big ( R_{E}-z_{i}^{(0)} \big ) \Big ) +\frac{3}{10}\, \left( t-t_{i} \right) ^{4} \big ( 2\,\lambda _{\mathrm{eff}} +R_{E} \big ) {g_{0}}^{2} \nonumber \\&+\, \left( t\!-\!t_{i} \right) ^{2} \bigg ( \frac{3}{2}\,v_{i}^{(0)}\, \left( 2\,\lambda _{\mathrm{eff}}\!+\!R_{E} \right) t_{i}\!-\!\frac{3}{2}\,v_{i}^{(0)}\, \left( 2\,\lambda _{\mathrm{eff}}\!+\!R_{E} \right) t\!-\! \big ( 2\,R_{E} \!+\!4\, \lambda _{\mathrm{eff}} \big ) z_{i}^{(0)} \nonumber \\&+\,{R_{E}}^{2}\!+\!2\,R_{E}\,\lambda _{\mathrm{eff}}\!+\!2\,{\lambda _{\mathrm{eff}}}^{2} \!\bigg ) g_{0}\!+\!2\,{v_{i}^{(0)}}^{2} \left( 2\,\lambda _{\mathrm{eff}}\!+\!R_{E} \!\right) {t_{i}}^{2} \!+\!3\,v_{i}^{(0)}\, \bigg (\!\! \!-\!\frac{4}{3}\,v_{i}^{(0)}\, \big (\! 2\,\lambda _{\mathrm{eff}} \end{aligned}$$
$$\begin{aligned}&+\,R_{E} \big ) t\!+\! \left( \! -\!2\,R_{E}-4\,\lambda _{\mathrm{eff}} \right) z_{i}^{(0)}\!+\!{R_{ E}}^{2}\!+\!2\,R_{E}\,\lambda _{\mathrm{eff}}+2\,{\lambda _{\mathrm{eff}}}^{2} \bigg ) t_{i}+2\,{v_{i}^{(0)}}^{2} \big ( 2\,\lambda _{\mathrm{eff}}\nonumber \\&+\,R_{E} \big ) {t}^{2}-3\,v_{i}^{(0)}\, \bigg ( \left( -2\,R_{E}-4\,\lambda _{\mathrm{eff}} \right) z_{i}^{(0)}+{R_{E}}^{2}+2\,R_{E}\,\lambda _{\mathrm{eff}}+2\,{ \lambda _{\mathrm{eff}}}^{2} \bigg ) t \Bigg ] \nonumber \\&-\,\frac{\alpha _Eg_0\,\big (t-t_i\big )}{20c^2}\Bigg [20\,{R_{E}}^{2}{\lambda _{{ \mathrm eff}}}^{2}\!-\!40R_{E}z_{i}^{(0)}{\lambda _{\mathrm{eff}}}^{2}\!-\!40\,{R_{E}}^{2}z_{i}^{(0)}\lambda _{\mathrm{eff}}+20{R_{E}}^{2}{z_{i}^{(0)}}^{2} \nonumber \\&-\, 20R_{E}{z_{i}^{(0)}}^{3}\!+\!60R_{E}{z_{i}^{(0)}}^{ 2}\lambda _{\mathrm{eff}}\!-\!40{z_{i}^{(0)}}^{3}\lambda _{\mathrm{eff}}\!+\!40{z_{i}^{(0)}}^{ 2}{\lambda _{\mathrm{eff}}}^{2} \!+\!\frac{5}{14}\left( t-t_{i} \right) ^{6} \big ( 2\lambda _{\mathrm{eff}}\nonumber \\&+\,R_{E} \big ) {g_{0}}^{3} \!+\!\left( t\!-\!t_{i} \right) ^{4} \left( \!-\!\frac{5}{2}v_{i}^{(0)}t\!+\!\frac{5}{2}v_{i}^{(0)}\,t_{i}+R _{E}\!-\!3\,z_{i}^{(0)}\!+\!\lambda _{\mathrm{eff}} \right) \left( 2\,\lambda _{\mathrm{eff }}\!+\!R_{E} \right) {g_{0}}^{2} \nonumber \\&-\,5\,g_{0}\left( t\!-\!t_{i} \right) ^{2} \left( \!-\!\frac{6}{5}{v_{i}^{(0)}}^{2} \left( 2\,\lambda _{\mathrm{eff}}+R_{E} \right) {t_{i}}^{2}\!-\!v_{i}^{(0)}\big ( 2\,\lambda _{\mathrm{eff}}\!+\!R_{E} \big ) \left( \! -\!{\frac{12\,v_{i}^{(0)}t}{5}}\!+\!R_{E}\right. \right. \nonumber \\&\left. -\,3z_{i}^{(0)}\!+\!\lambda _{{ \mathrm eff}} \!\right) t_{i}\!-\!\frac{6}{5}\,{v_{i}^{(0)}}^{2} \left( 2\lambda _{\mathrm{eff}} +R_{E} \!\right) {t}^{2}\!+\!v_{i}^{(0)}\left( 2\lambda _{\mathrm{eff}}\!+\!R_{E} \! \right) \!\left( \! R_{E}\!-\!3z_{i}^{(0)}\!+\!\lambda _{\mathrm{eff}} \!\right) t \nonumber \\&+\, \left( \!-\!\frac{4}{3}\,R_{E}\!+\!\frac{8}{3}\,z_{i}^{(0)} \right) {\lambda _{\mathrm{eff}}}^{2}+ \left( -\frac{4}{3} \,{R_{E}}^{2}+4\,R_{E}\,z_{i}^{(0)}-4\,{z_{i}^{(0)}}^{2} \right) \lambda _{\mathrm{eff }}+\frac{4}{3}\,{R_{E}}^{2}z_{i}^{(0)} \nonumber \\&-\,2\,R_{E}\,{z_{i}^{(0)}}^{2} \bigg )+5\,{v_{i}^{(0)}}^{3} \left( 2\,\lambda _{\mathrm{eff}}+R_{E} \right) {t_{i}}^{3}+\frac{20}{3}{v_{i}^{(0)}}^{2} \left( -\frac{9}{4}\,v_{i}^{(0)}\,t+R_{E}-3\,z_{i}^{(0)}\right. \nonumber \\&\left. +\,\lambda _{\mathrm{eff}} \right) \big ( 2\,\lambda _{\mathrm{eff}}+R_{E} \big ) {t_{i}}^{2}-\frac{40}{3}v_{i}^{(0)}\, \left( -\frac{9}{8}{v_{i}^{(0)}}^{2} \big ( 2\,\lambda _{\mathrm{eff}}+R _{E} \big ) {t}^{2}+v_{i}^{(0)}\, \big ( 2\,\lambda _{\mathrm{eff}}\right. \nonumber \\&\left. +\,R_{E} \right) \big ( R_{E}\!-\!3\,z_{i}^{(0)}\!+\!\lambda _{\mathrm{eff}} \big ) t+ \left( \!-\!\frac{3}{2}\,R_{E}\!+\!3\,z_{i}^{(0)} \right) {\lambda _{\mathrm{eff}}}^{2}\!+\! \left( -\frac{3}{2}\,{ R_{E}}^{2}\!+\!\frac{9}{2}\,R_{E}\,z_{i}^{(0)}\right. \nonumber \\&\left. -\,\frac{9}{2}\,{z_{i}^{(0)}}^{2} \right) \lambda _{\mathrm{eff}} +\frac{3}{2}\,R_{E}\,z_{i}^{(0)}\, \left( R_{E}-\frac{3}{2}\,z_{i}^{(0)} \right) \bigg ) t_{ i}-5\,{v_{i}^{(0)}}^{3} \left( 2\,\lambda _{\mathrm{eff}}+R_{E} \right) {t}^{3} \nonumber \\&+\,\frac{20}{3}{v_{i}^{(0)}}^{2} \big ( 2\,\lambda _{\mathrm{eff}}\!+\!R_{E} \big ) \big ( R_{E} -3\,z_{i}^{(0)}\!+\!\lambda _{\mathrm{eff}} \big ) {t}^{2}\!+\!20\,v_{i}^{(0)}\, \bigg ( \left( \!-\!R_{E}\!+\!2\,z_{i}^{(0)} \right) {\lambda _{\mathrm{eff} }}^{2} \nonumber \\&+\, \left( -{R_{E}}^{2}+3\,R_{E}\,z_{i}^{(0)}-3\,{z_{i}^{(0)}}^{2} \right) \lambda _{\mathrm{eff}} +R_{E}\,z_{i}^{(0)}\, \left( R_{E}-\frac{3}{2}\,z_{i}^{(0)} \right) \bigg ) t \Bigg ]\Bigg \} \end{aligned}$$
(55)

and

$$\begin{aligned} {\dot{z}}_{\mathrm{bg}}=&\frac{k\varphi _{0}\,\alpha _{A}\,{c}^{2}}{{\omega }^{3}}\Bigg [\frac{1}{2}\, \bigg ( \Big ( g_{0}\, \left( t-t_{i} \right) ^{2}+ \left( -2\,t +2\,t_{i} \right) v_{i}^{(0)}-2\,z_{i}^{(0)} \Big ) {\omega }^{2}-2\,g_{0} \bigg ) k \nonumber \\&\cdot \, \sin \left( R_{E}\,k-\omega \,t+\delta \right) +\bigg ( \omega -k \Big ( g_{0}\, \left( t-t_{i} \right) -v_{i}^{(0)} \Big ) \bigg ) \omega \,\cos \left( R_{E}\,k-\omega \,t+\delta \right) \nonumber \\&-\, \left( k\omega v_{i}^{(0)}\!+\!{\omega }^{2} \right) \cos \left( R_{E}k\!-\! \omega t_{i}+\delta \right) \!+\!k \left( {\omega }^{2 }z_{i}^{(0)}+g_{0} \right) \sin \left( R_{E}k-\omega \,t_{i}+\delta \right) \Bigg ] \nonumber \\&-\,\frac{3\alpha _A\varphi _0}{2\omega ^5}\Bigg [\Bigg (\bigg ( \frac{1}{3}\, \Big ( \left( t-t_{i} \right) ^{2}{g_{0}}^{2}+ \big ( \left( -2\,t+2\,t_{i} \right) v_{i}^{(0)}-z_{i}^{(0)} \big ) g_{0}+\frac{1}{2}\,{v_{i}^{(0)}}^ {2} \Big ) \nonumber \\&\cdot \left( g_{0}\left( t-t_{i} \right) ^{2}+ \left( -2t+ 2t_{i} \right) v_{i}^{(0)}-2z_{i}^{(0)} \right) {k}^{2}-\frac{2}{3}g_{0} \bigg ) { \omega }^{4}+2g_{0} \Big ( g_{0} \big ( t-t_{i} \big ) \nonumber \\&-\,v_{i}^{(0)} \Big ) k{ \omega }^{3}\!-\!4g_{0}\,{k}^{2} \bigg ( \left( t\!-\!t_{i} \right) ^{2}{g_{0 }}^{2}\!+\! \Big ( \left( \!-\!2t\!+\!2\,t_{i} \right) v_{i}^{(0)}\!-\!\frac{z_{i}^{(0)}}{2} \Big ) g_ {0}+\frac{3}{4}{v_{i}^{(0)}}^{2} \bigg ) {\omega }^{2} \nonumber \\&+\,8{g_{0}}^{3}{k}^{2} \Bigg )\sin \left( R_Ek\!-\!\omega \,t\!+\!\delta \right) \!+\!\Bigg (\bigg ( \left( t\!-\!t_{i} \right) ^{2}{g_{0}}^{2}\!+\! \Big ( \left( \!-\!2t\!+\! 2t_{i} \right) v_{i}^{(0)}\!-\!\frac{4}{3}z_{i}^{(0)} \Big ) g_{0} \nonumber \\&+\,\frac{1}{3}{v_{i}^{(0)}}^{2} \bigg ) {\omega }^{3}\!-\!\frac{4}{3}\Big ( \!g_{0} \left( t\!-\!t_{i} \right) \!-\!v_{i}^{(0)} \Big )\bigg (\! \left( \! t\!-\!t_{i} \!\right) ^{2}{g_{0}}^{2}\!+\! \Big (\! \left( -2t\!+\!2t_{i} \right) v_{i}^{(0)}\!-\!\frac{3}{2}z_{i}^{(0)} \Big ) g_{0} \nonumber \\&+\,\frac{1}{4}{v_{i}^{(0)}}^{2} \bigg ) k{ \omega }^{2}\!-\!2{g_{0}}^{2}\omega +8{g_{0}}^{2} \Big ( g_{0} \left( t\!-\!t_{i} \right) \! -\!v_{i}^{(0)} \Big ) k \Bigg )k\omega \cos \left( R_{E}k-\omega \,t+\delta \right) \nonumber \\&+\,\Bigg ( \bigg ( \frac{1}{3}z_{i}^{(0)} \left( -2g_{0}z_{i}^{(0)}+{v_{i}^{(0)}}^{2} \right) {k}^{2}+\frac{2}{3}g_{0} \bigg ) {\omega }^{4}+2v_{i}^{(0)}g_{0}\,k{ \omega }^{3}+ \big ( -2{g_{0}}^{2}z_{i}^{(0)} \nonumber \\&+\,3g_{0}{v_{i}^{(0)}}^{2} \big ) {k}^{2}{\omega }^{2}\!-\!8{g_{0}}^{3}{k}^{2} \Bigg ) \sin \left( R_{E}k\!-\!\omega \,t_{i}\!+\!\delta \right) \!-\!\frac{1}{3} \Bigg ( \left( \!-\!4g_{0}z_{i}^{(0)}+{v_{i}^{(0)}}^{2} \right) {\omega }^{3 } \nonumber \\&+\,kv_{i}^{(0)}\left( \!-\!6g_{0}z_{i}^{(0)}\!+\!{v_{i}^{(0)}}^{2} \right) {\omega }^{2}\!-\!6 {g_{0}}^{2}\omega \!-\!24v_{i}^{(0)}{g_{0}}^{2}k \Bigg ) k\omega \cos \left( R_{E}k\!-\!\omega \,t_{i}\!+\!\delta \right) \Bigg ] \end{aligned}$$
$$\begin{aligned}&+\,\frac{\alpha _E\varphi _0g_0}{\omega ^5}\Bigg [\Bigg ( -\frac{1}{4}\bigg ( 2+ \Big ( g_{0}\left( t-t_{i} \right) ^{2}-2 tv_{i}^{(0)}+2v_{i}^{(0)}t_{i}-2z_{i}^{(0)} \Big ) k \bigg ) \bigg ( -2 \nonumber \\&+\,\left( g_{0} \left( t\!-\!t_{i} \right) ^{2}\!-\!2tv_{i}^{(0)}+2v_{i}^{(0)}t_{i}\!-\! 2z_{i}^{(0)}\right) k \bigg ) {\omega }^{4}-2 \Big ( g_{0} \left( t-t_ {i} \right) -v_{i}^{(0)} \Big ) k{\omega }^{3} \nonumber \\&+\,3\left( \left( t\!-\!t_{i} \right) ^{2}{g_{0}}^{2}\!+\! \left( \!-\!2tv_{i}^{(0)}\!+\!2v_{i}^{(0)}t_{i}\!-\!\frac{2}{3}z_{i}^{(0)} \right) g_{0}\!+\!\frac{2}{3}{v_{i}^{(0)}}^{2} \right) {k}^{2}{\omega }^{2}\!-\!6{g_{0}} ^{2}{k}^{2} \Bigg ) \nonumber \\&\cdot \,\sin \left( R_{E}\,k-\omega \,t+\delta \right) + \Bigg ( \Big ( -g_{0}\, \left( t-t_{i} \right) ^{2}+2\,tv_{i}^{(0)} -2\,v_{i}^{(0)}\,t_{i}+2\,z_{i}^{(0)} \Big ) {\omega }^{3} \nonumber \\&+\, \Big ( g_{0}\, \left( t-t_{i} \right) -v_{i}^{(0)} \Big ) \left( g_{0}\, \left( t-t_{i} \right) ^{2}-2\,tv_{i}^{(0)}+2\,v_{i}^{(0)}\,t_{i}-2\,z_{i}^{(0)} \right) k{\omega }^{2}+2\,g_{0} \,\omega \nonumber \\&-\,6g_{0} \Big ( g_{0} \left( t\!-\!t_{i} \right) \! -\!v_{i}^{(0)} \Big ) k \!\Bigg ) \!k\omega \cos \left( R_{E}k\!-\!\omega \,t+\delta \right) \!+\!\Bigg (\!\!\! \left( {k}^{2}{z_{i}^{(0)}}^{2}\!-\!1 \right) {\omega }^{4}\!-\!2v_{i}^{(0)}k{ \omega }^{3} \nonumber \\&-\,2{k}^{2} \left( -g_{0}z_{i}^{(0)}+{v_{i}^{(0)}}^{2} \right) { \omega }^{2}+6{g_{0}}^{2}{k}^{2} \Bigg ) \sin \left( R_{E}\,k-\omega t_{i}+\delta \right) - \Bigg ( 2v_{i}^{(0)}k{\omega }^{2}z_{i}^{(0)} \nonumber \\&+\,2\,{\omega }^ {3}z_{i}^{(0)} +6v_{i}^{(0)}\,g_{0}\,k+2\,g_{0}\,\omega \Bigg ) k\omega \cos \left( R_{E}\,k-\omega \,t_{i}+\delta \right) \Bigg ] \nonumber \\&-\,\alpha _{A}\,\varphi _{0}\, \Bigg ( \cos \left( R_{E}\,k-\omega \,t+ \delta \right) -\sin \left( R_{E}\,k-\omega \,t+\delta \right) k \Big ( z_{i}^{(0)}+v_{i}^{(0)}\, \left( t-t_{i} \right) \nonumber \\&-\,\frac{1}{2}\,g_{0}\, \left( t-t_ {i} \right) ^{2} \Big ) \Bigg ) \Big ( v_{i}^{(0)}-g_{0}\, \left( t-t_{i} \right) \Big ) +\alpha _{A}\,\varphi _{0}\, \Bigg ( \cos \left( R_{E} \,k-\omega \,t_{i}+\delta \right) \nonumber \\&-\,\sin \left( R_{E}\,k-\omega \,t_{i}+ \delta \right) kz_{i}^{(0)} \Bigg ) v_{i}^{(0)}\, . \end{aligned}$$
(56)

It is clear that \({\dot{z}}_{\mathrm{exp}}\) and \({\dot{z}}_{\mathrm{bg}}\) denote effects from the exponential term and the oscillation background term of the DM field, respectively.

For later use, we give the following velocities. At the time of applying the \(\pi \)-pulse, the velocity for atoms in the lower arm is \({\dot{z}}_{1l}\equiv {\dot{z}}(t)\vert _{t=T}\) with \(t_i=0\) and \({\dot{z}}(t_{i})=v_L\), while the velocity for atoms in the upper arm is \({\dot{z}}_{1u}\equiv {\dot{z}}(t)\vert _{t=T}\) with \(t_i=0\) and \({\dot{z}}(t_{i})=v_L+v_R(\varphi )\). At the time of applying the second \(\frac{\pi }{2}\)-pulse, \({\dot{z}}_{2l}\equiv {\dot{z}}(t)\vert _{t=2T}\) with \(t_i=T\) and \({\dot{z}}(t_{i})={\dot{z}}_{1l}+v_R(\varphi )\), while \({\dot{z}}_{2u}\equiv {\dot{z}}(t)\vert _{t=2T}\) with \(t_i=T\) and \({\dot{z}}(t_{i})={\dot{z}}_{1u}-v_R(\varphi )\).

Next, we do the time integration on Eq. (54) to get the solution for the trajectory

$$\begin{aligned} z(t)= z(t_{i})+\int ^{t}_{t_i}{\dot{z}}(t') dt' \, . \end{aligned}$$
(57)

For later use, we give the following positions. At the time of applying the \(\pi \)-pulse, the position for atoms in the lower arm is \(z_{1l}\equiv z(t)\vert _{t=T}\) with \(t_{i}=0\), \(z(t_{i})=0\) and \({\dot{z}}(t_{i})=v_L\), while the position for atoms in the upper arm is \(z_{1u}\equiv z(t)\vert _{t=T}\) with \(t_{i}=0\), \(z(t_{i})=0\) and \({\dot{z}}(t_{i})=v_L+v_R(\varphi )\). At the time of applying the second \(\frac{\pi }{2}\)-pulse, \(z_{2l}\equiv z(t)\vert _{t=2T}\) with \(t_{i}=T\), \(z(t_{i})=z_{1l}\) and \({\dot{z}}(t_{i})={\dot{z}}_{1l}+v_R(\varphi )\), while \(z_{2u}\equiv z(t)\vert _{t=2T}\) with \(t_{i}=T\), \(z(t_{i})=z_{1u}\) and \({\dot{z}}(t_{i})={\dot{z}}_{1u}-v_R(\varphi )\).

Calculation of the DM-induced phase shift in AI experiments

The total phase shift can be written as a sum of three components [33], the propagation phase shift, the laser phase shift, and the separation phase shift,

$$\begin{aligned} \Delta \phi =\Delta \phi _{prop}+\Delta \phi _{laser}+\Delta \phi _{sep} \, . \end{aligned}$$
(58)

For each segment of the atomic trajectory, the atom accumulates a propagation phase

$$\begin{aligned} \phi _{prop}=\int ^{t_f}_{t_i}L\, dt \, , \end{aligned}$$
(59)

where \(t_f\) is the final time for each segment, and L is the Lagrangian (31). The propagation phase shift \(\Delta \phi _{prop}\) is the difference in the propagation phase between the two arms,

$$\begin{aligned} \Delta \phi _{prop}=\sum _{\mathrm{upper}}\phi _{prop}-\sum _{\mathrm{lower}}\phi _{prop} \, . \end{aligned}$$
(60)

The laser phase shift comes from the interaction of laser pulses with atoms. At each interaction point, the laser field transfers its phase to the atom. Then, \(\Delta \phi _{laser}\) is the difference in the accumulated laser phase between the upper and lower arms

$$\begin{aligned} \Delta \phi _{laser}&=\sum _{\mathrm{upper}}\phi _{laser} - \sum _{\mathrm{lower}}\phi _{laser} \nonumber \\&=c\int _{0}^{\frac{z_{i}}{c}}k_{eff}(t)dt-c\int _{T}^{T+\frac{z_{1u}}{c}}k_{eff}(t)dt \nonumber \\&\quad -c\int _{T}^{T+\frac{z_{1l}}{c}}k_{eff}(t)dt+c\int _{2T}^{2T+\frac{z_{2l}}{c}}k_{eff}(t)dt\, , \end{aligned}$$
(61)

where \(z_i\) is the initial position of atoms at the time of applying the first \(\frac{\pi }{2}\)-pulse.

Since the two arms do not exactly intersect at the final laser pulse, then the separation phase shift \(\Delta \phi _{sep}\) appears.

$$\begin{aligned} \Delta \phi _{sep}=\frac{m_{A}}{2\hbar }({\dot{z}}_{2u}-v_R+{\dot{z}}_{2l})(z_{2l}-z_{2u}) \, . \end{aligned}$$
(62)

With Eqs. (54) and (57), we can calculate \(\phi _{prop}\) along each segment of the lower and upper arms, and thus compute \(\Delta \phi _{prop}\). Similarly, \(\Delta \phi _{laser}\) and \(\Delta \phi _{sep}\) can also be computed. Summing them together, one can get the final result for the DM-induced phase shift. We find that \(\Delta \phi \) consists of a static component \(\Delta \phi _{\delta \varphi }\), an oscillatory component \(\Delta \phi _{bg}\), and the well-known term \(-g_{0}T^2k_{\text {eff}}\),

$$\begin{aligned} \Delta \phi =-g_{0}T^2k_{\text {eff}}+\Delta \phi _{\delta \varphi }+\Delta \phi _{bg} \, . \end{aligned}$$
(63)

The first term is the known phase shift for atoms in freefall, where \({\mathbf{k }}_{\mathrm{eff}}\) has been taken to be parallel to \({\mathbf{g }}_0\). The \(\delta \varphi \)-contribution to \(\Delta \phi \) is given by

$$\begin{aligned} \Delta \phi _{\delta \varphi }&=\!-\!g_{0}T^2k_{\text {eff}}\Bigg [\Bigg (\frac{\frac{7}{6}g_{0}T^2-(2v_{L}+v_{R})T}{\lambda _{\text {eff}}}\!+\!\left( 1+\frac{R_{E}}{\lambda _{\text {eff}}}\right) \!+\!\frac{ v_{L}(v_{R}+v_{L})}{2c^2}\Bigg )\alpha _{A} \nonumber \\&\quad +\,\Bigg (\frac{g_{0}(2\,v_{L}\!+\!v_{R})T\!-\!g_{0}R_{E}}{c^2}\!-\!\frac{7\,g^2_{0}\,{T}^{2}}{6c^2}\Bigg )\alpha _{E} \!+\!\frac{1}{\lambda _{\text {eff}}c^2}\Bigg (\Bigg (\Bigg (\frac{7}{12}v_{L}(v_{L}\!+\!v_{R})\nonumber \\&\quad -\,\frac{1}{12}v_{R}^2\Bigg )g_{0}T^2\!-\!v_{L}(v_{L}\!+\!v_{R})\Bigg ((v_{L}\!+\!\frac{1}{2}v_{R})T -\frac{1}{2}R_{E}\Bigg )\Bigg )\alpha _{A} +\Big (-{\frac{31}{20}}{T}^{3}{g_{0}}^{2}\nonumber \\&\quad +\frac{9}{2}\, \Bigg ( v_{L}+\frac{v_{R}}{2} \Bigg ) g_{0}\,{T}^{2}-\Bigg (\, \frac{7}{6}\,g_{0}\,R_{E}+\frac{7}{2}\,{v_{L}}(v_{L}+\,v_{R})+{v_{R}}^{2} \Bigg ) T+R_{E}\big (2v_{L}\nonumber \\&\quad +\,v_{R}\big ) \Bigg ) g_{0}T\alpha _{E}\Bigg )\Bigg ]I\left( \frac{R_{E}}{\lambda _{\text {eff}}}\right) \alpha _{E}e^{-\frac{R_{E}}{\lambda _{\text {eff}}}} \nonumber \\&\quad +\,g_{0}k_{\text {eff}}T^2\Bigg [\frac{1}{c^2}\Bigg (\frac{17}{2}\,{g_{0}}^{2}{T}^{2}+\frac{1}{2}\, \left( -26\,v_{L}\,T-15\,Tv_{R}+2\,R_{E} \right) g_{0}+ \big (4 v_{L}\nonumber \\&\quad +\,v_{R} \big ) \left( v_{R}+v_{L} \right) \Bigg )+\frac{1}{\lambda _{\text {eff}}c^2} \Bigg ({\frac{161}{4}\,{g_{0}}^{3}{T}^{4}} -93\, \left( v_{L}+{\frac{37\,}{62}v_{ R}} \right) {g_{0}}^{2}{T}^{3}\nonumber \\&\quad +\,\frac{1}{2}\,g_{0}\, \left( 17\,g_{0}\,R_{E}+138\,{v_{L}}^{2}+168\,v_{R}\,v_{L}+49 \,{v_{R}}^{2} \right) {T}^{2}-\frac{1}{2}\, \big ( 26\,g_{0}\,R_{E}v_{L}\nonumber \\&\quad +15\,g_{0}\,R_{E}v_{R}+32\,{v_{L}}^{3}+60\, v_{R}\,{v_{L}}^{2}+34\,{v_{R}}^{2}v_{L}+6\,{v_{R}}^{3} \big ) T +\big ( 4\,v_{L}\nonumber \\&\quad +\,v_{R} \big ) R_{E} \left( v_{R}+v_{L} \right) \Bigg ) \Bigg ]I\left( \frac{R_{E}}{\lambda _{\text {eff}}}\right) {\tilde{d}}\alpha _{E}e^{-\frac{R_{E}}{\lambda _{\text {eff}}}} \end{aligned}$$
(64)

The \(\varphi _{bg}\)-contribution to \(\Delta \phi \) is given by

$$\begin{aligned} \Delta \phi _{bg}&=-k_{\text {eff}}\frac{c^2k\alpha _{A}\varphi _{0}}{\omega ^2}\Bigg (\sin (kR_{E}-2\omega T+\delta )-2\sin (kR_{E}-\omega T+\delta ) \nonumber \\&\quad +\,\sin (kR_{E}+\delta )\Bigg ) +\alpha _{A}\frac{2g_{0}k_{\text {eff}}T}{\omega }\varphi _{0}\Bigg (\sin (kR_{E}-\omega T+\delta )-\sin \big (kR_{E} \nonumber \\&\quad -\,2\omega T+\delta \big )\Bigg ) +\left( \alpha _{E}+2\alpha _{A}\right) \frac{g_{0}k_{\text {eff}}}{\omega ^{2}}\varphi _{0}\Bigg (\cos (kR_{E}+\delta )-2\cos \big (kR_{E} \nonumber \\&\quad -\,\omega T+\delta \big )\!+\!\cos (kR_{E}-2\omega T+\delta )\Bigg ) \!-\!\alpha _{A}\left( \frac{k_{\text {eff}}(v_{L}+\frac{v_{R}}{2})}{\omega }\right) \varphi _{0}\Bigg (\sin \big (kR_{E} \nonumber \\&\quad +\,\delta \big )+2\sin (kR_{E}-\omega T+\delta )-\sin (kR_{E}-2\omega T+\delta )\Bigg ) \nonumber \\&\quad -k_{\text {eff}}\frac{k\varphi _{0}}{\omega ^3}\Bigg [ \big ( 4g_{0}T-2v_{L}-v_{R} \big ) \bigg ( \big ( g_{0}T^2-v_{L}T-\frac{v_{R}}{2}T \big ) {\omega }^{2}\alpha _{A}-\frac{9}{2}\,g_{0} \alpha _{A} \nonumber \\&\quad -2\,g_{0}\,\alpha _{E} \bigg )\cos (kR_{E}-2\omega T+\delta ) -\big ( g_{0}T-v_{L}-\frac{1}{2}v_{R} \big ) \bigg ( \big ( g_{0}T^2-2v_{L}T \nonumber \\&\quad -\,v_{R}T \big ) {\omega }^{2}\alpha _{A}-18\,g_{0} \alpha _{A}-8\,g_{0}\,\alpha _{E} \bigg )\cos (kR_{E}-\omega T+\delta ) +g_{0}\big (2\alpha _{E} \nonumber \\&\quad +\,\frac{9}{2}\alpha _{A}\big ) (2v_{L}+v_{R})\cos (kR_{E}+\delta )\Bigg ] +k_{\text {eff}}\frac{k\varphi _{0}}{\omega ^4}\Bigg [\Bigg (\bigg ( 2g_{0}\,T \big ( 2\,g_{0}T-2\, v_{L} \nonumber \\&\quad -\,v_{R} \big )\left( \alpha _{E}+3\,\alpha _{A} \right) + \frac{3}{2}\,v_{L}\, \left( v_{L}+v_{R} \right) \alpha _{A} +\dfrac{1}{2}\,{v_{R}}^{2} \alpha _{A} \bigg ) {\omega }^{2}-12\,{g_ {0}}^{2} \Bigg ( \alpha _{A} \nonumber \\&\quad \!+\!\frac{\alpha _{E}}{2} \Bigg ) \Bigg ) \sin (kR_{E}-2\omega T+\delta )\!+\!\Bigg (\bigg ( 2g_{0}\,T \left( 2\, v_{L}\!+\!v_{R}\!-\!g_{0}T \right) \left( \alpha _{E}+3\,\alpha _{A} \right) \nonumber \\&\quad -\, 3\,v_{L}\, \left( v_{L}\!+\!v_{R} \right) \alpha _{A}\! -\!{v_{R}}^{2} \alpha _{A} \bigg ) {\omega }^{2}+24\,{g_ {0}}^{2} \Bigg ( \alpha _{A}+\frac{\alpha _{E}}{2} \Bigg ) \Bigg ) \sin \big (kR_{E}-\omega T \nonumber \\&\quad +\,\delta \big )\!+\!\Bigg (\big (\frac{3}{2}v_{L}(v_{L}\!+\!v_{R})\!+\!\frac{1}{2}v_R^2\big )\omega ^2\alpha _{A} -12g_{0}^2(\alpha _{A}\!+\!\frac{\alpha _{E}}{2})\Bigg )\sin (kR_{E}+\delta )\Bigg ] \nonumber \\&\quad -\,\frac{k_{\text {eff}}T^2k{\tilde{d}}\varphi _{0}}{ c^2}\Bigg [ \left( 4\,{T}^{2}{g_{0}}^{2}-\left( 8c+4v_{L}+2v_{R} \right) g_{ 0}\,T+4c \left( c+v_{L}+v_{R} \right) \right) \nonumber \\&\quad \cdot \left( Tg_{0} \!-\!v_{L}\!-\!\frac{1}{2}v_{R}\right) ^{2}\sin \left( kR_{E}\!-\!2\,T\omega +\delta \right) +\Bigg ( -\frac{1}{8}\,{g_{0}}^{3}{T}^{3}+\frac{1}{4}\, \big ( c+3\,v_{L}\nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad +\frac{3}{2}\,v_{R} \big ) {g_{0}}^{2}{T}^{2}-g_{0}\,T \bigg ( \frac{3}{2}\,{v_{L}}^{2}+ \Bigg ( c +\frac{3}{2}\,v_{R} \Bigg ) \Bigg ( v_{L}+\frac{v_{R}}{2} \Bigg ) \bigg ) + \bigg ( {v _{L}}^{2}+v_{L}\,v_{R} \nonumber \\&\quad +\,\frac{1}{2}\,{v_{R}}^{2} \bigg ) c+\frac{1}{2}\,{v_{L}}^{3}+\frac{1}{2} \, \left( v_{L}+v_{R} \right) ^{3}\Bigg ) \left( g_{0}\,T-2\,c \right) \sin (kR_{E}-\omega T+\delta ) \Bigg ] \nonumber \\&\quad -\frac{k_{\text {eff}}T{\tilde{d}}\varphi _{0}}{ \omega c}\Bigg [ \left( k{g_{0}}^{2}{T}^{2}- \left( v_{L}+\frac{v_{R}}{2} \right) g_{0}\,kT+c\, \omega \right) \left( 2\,Tg_{0}-2\,v_{L}-v_{R} \right) \nonumber \\&\quad \cdot \cos \left( kR_{E} -2\omega \,T+\delta \right) +\Bigg ( -\frac{1}{4}\,k{g_{0}}^{3}{T}^{3}+\left( v_{L}+\frac{v_{R}}{2} \right) { g_{0}}^{2}k{T}^{2}- \bigg ( \Bigg ( {v_{L}}^{2}\nonumber \\&\quad +v_{L}\,v_{R}+\frac{1}{2}\,{v_{R }}^{2} \Bigg ) k+c\,\omega \bigg ) g_{0}\,T- \left( 2 v_{L}+v_{R} \right) c\,\omega \Bigg ) \cos \left( kR_{E}-T\omega +\delta \right) \Bigg ] \end{aligned}$$
(65)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Gao, D., Wang, J. et al. Investigating the environmental dependence of ultralight scalar dark matter with atom interferometers. Gen Relativ Gravit 54, 41 (2022). https://doi.org/10.1007/s10714-022-02925-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02925-4

Keywords

Navigation