Skip to main content
Log in

Gradient Coil Design and Optimization for an Ultra-Low-Field MRI System

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Gradient coils are used to generate the spatially varying gradient magnetic fields used to phase- and frequency-modulate the nuclear magnetic resonance (NMR) signal and enable position encoding in magnetic resonance imaging (MRI). The continuous-current–density-based method of gradient coil design has been well developed in mathematical modeling, however, practical design as it relates to the experimental realization of simulated gradient coil designs and their ultimate performance has not been well studied. In this work, we design and build a planar gradient coil system, consisting of X, Y, and Z gradient coils, for use in a 6.5 mT ultra-low-field MRI (ULF MRI) system. Specifically, we designed each gradient coil using the equivalent magnetic dipole method (EMDM), and further studied its realization by analyzing gradient-coil geometric parameters, including size, gap, conductor pattern, and conductor density. The geometric parameters are varied during the design of an optimal gradient coil and then analyzed using finite-element-method (FEM) simulations to reveal the relationship between the geometric parameters and gradient coil performance. Based on EMDM and the geometric parameter analysis, we arrive at an optimal gradient coil system whose performance was evaluated by FEM simulation and magnetic field measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. L.L. Wald, P.C. McDaniel, T. Witzel, J.P. Stockmann, C.Z. Cooley, Low-cost and portable MRI. J. Magn. Reson. Imaging 4(3), 31 (2019)

    Google Scholar 

  2. S. Geethanath, J.T. Vaughan, Accessible magnetic resonance imaging: A review. J. Magn. Reson. Imaging 242, 190 (2019)

    Google Scholar 

  3. J.P. Marques, F.F.J. Simonis, A.G. Webb, Low-field MRI: An MR physics perspective. J. Magn. Reson. Imaging 58, 1182 (2019)

    Google Scholar 

  4. K.N. Sheth et al., Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA Neurol. 78(1), 41–47 (2020). https://doi.org/10.1001/jamaneurol.2020.3263

    Article  MathSciNet  Google Scholar 

  5. M.H. Mazurek et al., Portable, bedside, low-field magnetic resonance imaging for evaluation of intracerebral hemorrhage. Nat. Commun. 12(1), 5119 (2021). https://doi.org/10.1038/s41467-021-25441-6

    Article  ADS  Google Scholar 

  6. D. Ma, V. Gulani, N. Seiberlich, K. Liu, J.L. Sunshine, J.L. Duerk, M.A. Griswold, Magnetic resonance fingerprinting. Nature 495, 187–192 (2013)

    Article  ADS  Google Scholar 

  7. B. Zhu, J.Z. Liu, S.F. Cauley, B.R. Rosen, M.S. Rosen, Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487–492 (2018)

    Article  ADS  Google Scholar 

  8. N. Koonjoo, B. Zhu, G.C. Bagnall, D. Bhutto, M.S. Rosen, Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. Sci. Rep. 11(1), 8248 (2021). https://doi.org/10.1038/s41598-021-87482-7

    Article  Google Scholar 

  9. M. Sarracanie, C.D. LaPierre, N. Salameh, D.E.J. Waddington, T. Witzel, M.S. Rosen, Low-cost high-performance MRI. Sci. Rep. 5(1), 15177 (2015)

    Article  ADS  Google Scholar 

  10. A.J. Mäkinen, K.C.J. Zevenhoven, R.J. Ilmoniemi, Automatic spatial calibration of ultra-low-field MRI for high-accuracy hybrid MEG–MRI. IEEE Trans. Med. Imaging 38(6), 1317–1327 (2019)

    Article  Google Scholar 

  11. C.Z. Cooley, P.C. McDaniel, J.P. Stockmann et al., A portable scanner for magnetic resonance imaging of the brain. Nat. Biomed. Eng. 5, 229–239 (2021)

    Article  Google Scholar 

  12. R. Turner, Gradient coil design: A review of methods. Magn. Reson. Imaging 11(7), 903–920 (1993)

    Article  Google Scholar 

  13. S.S. Hidalgo-Tobon, Theory of gradient coil design methods for magnetic resonance imaging. Concepts Magn. Reason. Part A 36A(4), 223–242 (2010)

    Article  Google Scholar 

  14. F. Roméo, D.I. Hoult, Magnet field profiling: Analysis and correcting coil design. Magn. Reason. Med. 1, 44–65 (1984)

    Article  Google Scholar 

  15. Golay MJE. Magnetic Field Control Apparatus. US Patent 3,515,979 (1957).

  16. E.M. Purcell, Helmholtz coils revisited. Am. J. Phys. 57, 18–22 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  17. T.A. Frenkiel, A. Jasinski, P.G. Morris, Apparatus for generation of magnetic field gradient waveforms for NMR imaging. J. Phys. E Sci. Instrum. 21, 374–377 (1988)

    Article  ADS  Google Scholar 

  18. B.H. Suits, D.E. Wilken, Improving magnetic field gradient coils for NMR imaging. J. Phys. E Sci. Instrum. 22, 565–573 (1989)

    Article  ADS  Google Scholar 

  19. R. Turner, A target field approach to optimal coil design. J. Phys. D-Appl. Phys. 19(8), L147–L151 (1986)

    Article  ADS  Google Scholar 

  20. R. Turner, Minimum inductance coils. J. Phys. E-Sci. Instrum. 21(10), 948–952 (1988)

    Article  ADS  Google Scholar 

  21. J.W. Carlson, K.A. Derby, K.C. Hawryszko, M. Weideman, Design and evaluation of shielded gradient coils. Magn. Reason. Med. 26, 191–206 (1992)

    Article  Google Scholar 

  22. S. Pissanetzky, Minimum energy MRI gradient coils of general geometry. Meas. Sci. Technol. 3(7), 667 (1992)

    Article  ADS  Google Scholar 

  23. M. Poole, R. Bowtell, Novel gradient coils designed using a boundary element method. Concepts Magn. Reason. Part B Magn. Reason. Eng. 31B(3), 162–175 (2007)

    Article  Google Scholar 

  24. D. Tomasi, Stream function optimization for gradient coil design. Magn. Reson. Med. 45(3), 505–512 (2001)

    Article  Google Scholar 

  25. Y. Hu, X. Hu, L. Yan et al., Shim coil set for an open biplanar MRI system using an inverse boundary element method. IEEE Trans. Appl. Supercond. 26(7), 4403905 (2016)

    Google Scholar 

  26. Z. Xu, X. Li, P. Guo et al., Equivalent magnetic dipole method used to design gradient coil for unilateral magnetic resonance imaging. Chin. Phys. B 027(005), 545–550 (2018)

    Google Scholar 

  27. F. Jia, Z. Liu, M. Zaitsev et al., Design multiple-layer gradient coils using least-squares finite element method. Struct. Multidiscip. Optim. 49(3), 523–535 (2014)

    Article  MathSciNet  Google Scholar 

  28. G. Shou, X. Ling, L. Feng et al., MRI coil design using boundary-element method with regularization technique: A numerical calculation study. IEEE Trans. Magn. 46(4), 1052–1059 (2010)

    Article  ADS  Google Scholar 

  29. H.S. Lopez, F. Liu, M. Poole et al., Equivalent magnetization current method applied to the design of gradient coils for magnetic resonance imaging. IEEE Trans. Magn. 45(2), 767–775 (2009)

    Article  ADS  Google Scholar 

  30. D. Calvetti, E. Somersalo, Inverse problems: From regularization to Bayesian inference. Wiley Interdiscip. Rev. Comput. Stat. 10(3), e1427 (2018)

    Article  MathSciNet  Google Scholar 

  31. D. Krawczyk-Stando, M. Rudnicki, Regularization parameter selection in discrete ill-posed problems—The use of U-curve. Int. J. Appl. Math. Comput. Sci. 17, 157–164 (2007)

    Article  MathSciNet  Google Scholar 

  32. A.N. Tikhonov, Solution of incorrectly formulated problem and the regularization method. Soviet Math. Dokl. 4, 1035–1038 (1963)

    MATH  Google Scholar 

  33. A.N. Tikhonov, Regularization of incorrectly posed problems. Soviet Math. Dokl. 4, 1624–1627 (1963)

    MATH  Google Scholar 

  34. Y. Wang, Q. Wang, H. Qu et al., Highly shielded gradient coil design for a superconducting planar MRI system. IEEE Trans. Biomed. Eng. 67(8), 2328–2336 (2020)

    Google Scholar 

  35. W. Liu, Zu. Donglin, X. Tang, H. Guo, An optimized target-field method for MRI transverse biplanar gradient coil design. Meas. Sci. Technol. 22(12), 1863–1868 (2011)

    Google Scholar 

Download references

Acknowledgements

We appreciate the help provided by Wei Zhang, Cai Wan, Qing Zhao, and Yuhang Yang in gradient coil winding and assembling. This work was funded by the National Natural Science Foundation of China (52077023), Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0340), and Shenzhen Science and Technology Innovation Commission (CJGJZD20200617102402006). Data will be made available on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, S., Koonjoo, N., Kong, X. et al. Gradient Coil Design and Optimization for an Ultra-Low-Field MRI System. Appl Magn Reson 53, 895–914 (2022). https://doi.org/10.1007/s00723-022-01470-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01470-2

Navigation