Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Disconnecting multicellular networks in brain tumours

Subjects

Abstract

Cancer cells can organize and communicate in functional networks. Similarly to other networks in biology and sociology, these can be highly relevant for growth and resilience. In this Perspective, we demonstrate by the example of glioblastomas and other incurable brain tumours how versatile multicellular tumour networks are formed by two classes of long intercellular membrane protrusions: tumour microtubes and tunnelling nanotubes. The resulting networks drive tumour growth and resistance to standard therapies. This raises the question of how to disconnect brain tumour networks to halt tumour growth and whether this can make established therapies more effective. Emerging principles of tumour networks, their potential relevance for tumour types outside the brain and translational implications, including clinical trials that are already based on these discoveries, are discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterogeneous and cooperative tumour networks in glioma.
Fig. 2: Potential strategies for therapeutic disconnection.

Similar content being viewed by others

References

  1. Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol. 22, iv1–iv96 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wen, P. Y. et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 22, 1073–1113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Bissell, M. J. & Hines, W. C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320–329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Osswald, M. et al. Brain tumour cells interconnect to a functional and resistant network. Nature 528, 93–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Jung, E. et al. Tweety-homolog 1 drives brain colonization of gliomas. J. Neurosci. 37, 6837–6850 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weil, S. et al. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol. 19, 1316–1326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Venkataramani, V. et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573, 532–538 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Xie, R. et al. Tumor cell network integration in glioma represents a stemness feature. Neuro Oncol. 23, 757–769 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Gritsenko, P. G. et al. p120-catenin-dependent collective brain infiltration by glioma cell networks. Nat. Cell Biol. 22, 97–107 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Venkatesh, H. S. et al. Electrical and synaptic integration of glioma into neural circuits. Nature 573, 539–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schneider, M. et al. Meclofenamate causes loss of cellular tethering and decoupling of functional networks in glioblastoma. Neuro Oncol. 23, 1885–1897 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Venkatesh, H. S. et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161, 803–816 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Venkatesh, H. S. et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549, 533–537 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Portela, M. et al. Glioblastoma cells vampirize WNT from neurons and trigger a JNK/MMP signaling loop that enhances glioblastoma progression and neurodegeneration. PLoS Biol. 17, e3000545 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pan, Y. et al. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 594, 277–282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Venkataramani, V. & Winkler, F. Activation of retinal neurons triggers tumour formation in cancer-prone mice. Nature 594, 179–180 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Zuelch, K. J. Brain Tumors: Their Biology and Pathology (English edition based on 2nd German edition; translated by A. B. Rothballer & J. Olszewski). (Springer, 1957).

  20. Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Lou, E. et al. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS ONE 7, e33093 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thayanithy, V., Dickson, E. L., Steer, C., Subramanian, S. & Lou, E. Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes. Transl. Res. 164, 359–365 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Antanaviciute, I. et al. Long-distance communication between laryngeal carcinoma cells. PLoS ONE 9, e99196 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Saenz-de-Santa-Maria, I. et al. Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes. Oncotarget 8, 20939–20960 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Desir, S. et al. Chemotherapy-induced tunneling nanotubes mediate intercellular drug efflux in pancreatic cancer. Sci. Rep. 8 (2018).

  26. Marlein, C. R. et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood 130, 1649–1660 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Marlein, C. R. et al. CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res. 79, 2285–2297 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Linkous, A. et al. Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep. 26, 3203–3211 e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jung, E. et al. Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma. Nat. Commun. 12, 1014 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Joseph, J. V. et al. TGF- promotes microtube formation in glioblastoma through thrombospondin 1. Neuro Oncol. https://doi.org/10.1093/neuonc/noab212 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Skene, J. H. et al. A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science 233, 783–786 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Aigner, L. & Caroni, P. Absence of persistent spreading, branching, and adhesion in GAP-43-depleted growth cones. J. Cell Biol. 128, 647–660 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Akers, R. F. & Routtenberg, A. Protein kinase-C phosphorylates a 47-Mr protein (F1) directly related to synaptic plasticity. Brain Res. 334, 147–151 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. Grignaschi, G., Burbassi, S., Zennaro, E., Bendotti, C. & Cervo, L. A single high dose of cocaine induces behavioural sensitization and modifies mRNA encoding GluR1 and GAP-43 in rats. Eur. J. Neurosci. 20, 2833–2837 (2004).

    Article  PubMed  Google Scholar 

  35. Rekart, J. L., Meiri, K. & Routtenberg, A. Hippocampal-dependent memory is impaired in heterozygous GAP-43 knockout mice. Hippocampus 15, 1–7 (2005).

    Article  PubMed  Google Scholar 

  36. Suzuki, M. The Drosophila tweety family: molecular candidates for large-conductance Ca2+-activated Cl- channels. Exp. Physiol. 91, 141–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Stefaniuk, M., Swiech, L., Dzwonek, J. & Lukasiuk, K. Expression of Ttyh1, a member of the Tweety family in neurons in vitro and in vivo and its potential role in brain pathology. J. Neurochem. 115, 1183–1194 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Elia, L. P., Yamamoto, M., Zang, K. & Reichardt, L. F. p120 catenin regulates dendritic spine and synapse development through Rho-family GTPases and cadherins. Neuron 51, 43–56 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Massague, J. TGF beta signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knoferle, J. et al. TGF-beta 1 enhances neurite outgrowth via regulation of proteasome function and EFABP. Neurobiol. Dis. 38, 395–404 (2010).

    Article  PubMed  CAS  Google Scholar 

  41. Tkach, M. & Thery, C. Communication by extracellular vesicles: where we are and where we need to go. Cell 164, 1226–1232 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Maas, S. L. N., Breakefield, X. O. & Weaver, A. M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 27, 172–188 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Minciacchi, V. R. et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 6, 11327–11341 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Broekman, M. L. et al. Multidimensional communication in the microenvirons of glioblastoma. Nat. Rev. Neurol. 14, 482–495 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pinto, G. et al. Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids. Biochemical J. 478, 21–39 (2021).

    Article  CAS  Google Scholar 

  46. Pinto, G., Brou, C. & Zurzolo, C. Tunneling nanotubes: the fuel of tumor progression? Trends Cancer 6, 874–888 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Winkler, F. & Wick, W. Harmful networks in the brain and beyond. Science 359, 1100–1101 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Ljubojevic, N., Henderson, J. M. & Zurzolo, C. The ways of actin: why tunneling nanotubes are unique cell protrusions. Trends Cell Biol. 31, 130–142 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Ariazi, J. et al. Tunneling nanotubes and gap junctions-their role in long-range intercellular communication during development, health, and disease conditions. Front. Mol. Neurosci. 10, 333 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gerdes, H. H., Rustom, A. & Wang, X. Tunneling nanotubes, an emerging intercellular communication route in development. Mech. Dev. 130, 381–387 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Inaba, M., Buszczak, M. & Yamashita, Y. M. Nanotubes mediate niche-stem-cell signalling in the Drosophila testis. Nature 523, 329–332 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hitomi, M. et al. Differential connexin function enhances self-renewal in glioblastoma. Cell Rep. 11, 1031–1042 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, J. et al. Targeting different domains of gap junction protein to control malignant glioma. Neuro Oncol. 20, 885–896 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Hong, X., Sin, W. C., Harris, A. L. & Naus, C. C. Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget 6, 15566–15577 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Malmersjo, S., Rebellato, P., Smedler, E. & Uhlen, P. Small-world networks of spontaneous Ca2+ activity. Commun. Integr. Biol. 6, e24788 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Malmersjo, S. et al. Neural progenitors organize in small-world networks to promote cell proliferation. Proc. Natl Acad. Sci. USA 110, E1524–E1532 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. van den Bent, M. J. et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC Brain Tumor Group study 26951. J. Clin. Oncol. 31, 344–350 (2013).

    Article  PubMed  CAS  Google Scholar 

  58. Cairncross, G. et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J. Clin. Oncol. 31, 337–343 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Scherer, H. J. The forms of growth in gliomas and their practical significance. Brain 63, 1–35 (1940).

    Article  Google Scholar 

  60. Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Ohtaka-Maruyama, C. et al. Synaptic transmission from subplate neurons controls radial migration of neocortical neurons. Science 360, 313–317 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Zeng, Q. et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature 573, 526–531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kowianski, P. et al. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol. 38, 579–593 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Aabedi, A. A. et al. Functional alterations in cortical processing of speech in glioma-infiltrated cortex. Proc. Natl Acad. Sci. USA 118 (2021).

  65. Guo, X. et al. Midkine activation of CD8+ T cells establishes a neuron-immune-cancer axis responsible for low-grade glioma growth. Nat. Commun. 11, 2177 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Drumm, M. R. et al. Extensive brainstem infiltration, not mass effect, is a common feature of end-stage cerebral glioblastomas. Neuro Oncol. 22, 470–479 (2020).

    Article  PubMed  Google Scholar 

  67. Sahm, F. et al. Addressing diffuse glioma as a systemic brain disease with single-cell analysis. Arch. Neurol. 69, 523–526 (2012).

    Article  PubMed  Google Scholar 

  68. Silbergeld, D. L. & Chicoine, M. R. Isolation and characterization of human malignant glioma cells from histologically normal brain. J. Neurosurg. 86, 525–531 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Giese, A., Bjerkvig, R., Berens, M. E. & Westphal, M. Cost of migration: invasion of malignant gliomas and implications for treatment. J. Clin. Oncol. 21, 1624–1636 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Darmanis, S. et al. Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 21, 1399–1410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Garofano, L. et al. Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat. Cancer 2, 141–156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Monje, M. et al. Roadmap for the emerging field of cancer neuroscience. Cell 181, 219–222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weller, M. et al. Glioma. Nat. Rev. Dis. Prim. 1, 15017 (2015).

    Article  PubMed  Google Scholar 

  74. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Le, H. T. et al. Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress. J. Biol. Chem. 289, 1345–1354 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Tombal, B., Denmeade, S. R., Gillis, J. M. & Isaacs, J. T. A supramicromolar elevation of intracellular free calcium ([Ca2+]i) is consistently required to induce the execution phase of apoptosis. Cell Death Differ. 9, 561–573 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).

    Article  PubMed  Google Scholar 

  79. Murphy, S. F. et al. Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide. Cancer Res. 76, 139–149 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Senft, C. et al. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol. 12, 997–1003 (2011).

    Article  PubMed  Google Scholar 

  81. Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Konishi, Y., Muragaki, Y., Iseki, H., Mitsuhashi, N. & Okada, Y. Patterns of intracranial glioblastoma recurrence after aggressive surgical resection and adjuvant management: retrospective analysis of 43 cases. Neurol. Med. Chir. 52, 577–586 (2012).

    Article  Google Scholar 

  83. Petrecca, K., Guiot, M. C., Panet-Raymond, V. & Souhami, L. Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J. Neurooncol. 111, 19–23 (2013).

    Article  PubMed  Google Scholar 

  84. Richards, L. M. et al. Gradient of developmental and injury response transcriptional states defines functional vulnerabilities underpinning glioblastoma heterogeneity. Nat. Cancer 2, 157–173 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Horne, E. et al. A brain-penetrant microtubule-targeting agent that disrupts hallmarks of glioma tumorigenesis. Neurooncol. Adv. 3, vdaa165 (2020).

    PubMed  PubMed Central  Google Scholar 

  86. Osswald, M., Solecki, G., Wick, W. & Winkler, F. A malignant cellular network in gliomas: potential clinical implications. Neuro Oncol. 18, 479–485 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Westhoff, M. A., Zhou, S., Bachem, M. G., Debatin, K. M. & Fulda, S. Identification of a novel switch in the dominant forms of cell adhesion-mediated drug resistance in glioblastoma cells. Oncogene 27, 5169–5181 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Munoz, J. L. et al. Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis. 5, e1145 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Potthoff, A. L. et al. Inhibition of gap junctions sensitizes primary glioblastoma cells for temozolomide. Cancers 11, 858 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  90. Schneider, M. et al. Inhibition of intercellular cytosolic traffic via gap junctions reinforces lomustine-induced toxicity in glioblastoma independent of MGMT promoter methylation status. Pharmaceuticals 14, 195 (2021).

    Article  CAS  Google Scholar 

  91. Wallenstein, M. C. & Mauss, E. A. Effect of prostaglandin synthetase inhibitors on experimentally induced convulsions in rats. Pharmacology 29, 85–93 (1984).

    Article  CAS  PubMed  Google Scholar 

  92. Zeyen, T. et al. Phase I/II trial of meclofenamate in progressive MGMT-methylated glioblastoma under temozolomide second-line therapy — the MecMeth/NOA-24 trial. Trials 23, 57 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Happold, C. et al. Does valproic acid or levetiracetam improve survival in glioblastoma? A pooled analysis of prospective clinical trials in newly diagnosed glioblastoma. J. Clin. Oncol. 34, 731–739 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Krauze, A. V. et al. The addition of valproic acid to concurrent radiation therapy and temozolomide improves patient outcome: a correlative analysis of RTOG 0525, SEER and a phase II NCI trial. Cancer Stud. Ther. https://doi.org/10.31038/cst.2020511 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Venkataramani, V., Tanev, D. I., Kuner, T., Wick, W. & Winkler, F. Synaptic input to brain tumors: clinical implications. Neuro Oncol. 23, 23–33 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  96. Vecht, C. et al. Seizure response to perampanel in drug-resistant epilepsy with gliomas: early observations. J. Neurooncol. 133, 603–607 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Kickingereder, P. et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 20, 728–740 (2019).

    Article  PubMed  Google Scholar 

  98. Iwamoto, F. M. et al. Phase 2 trial of talampanel, a glutamate receptor inhibitor, for adults with recurrent malignant gliomas. Cancer 116, 1776–1782 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Grossman, S. A. et al. Talampanel with standard radiation and temozolomide in patients with newly diagnosed glioblastoma: a multicenter phase II trial. J. Clin. Oncol. 27, 4155–4161 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rogawski, M. A. & Hanada, T. Preclinical pharmacology of perampanel, a selective non-competitive AMPA receptor antagonist. Acta Neurol. Scand. 127 (Suppl. 197), 19–24 (2013).

    Article  CAS  Google Scholar 

  101. Gidal, B. E., Ferry, J., Majid, O. & Hussein, Z. Concentration-effect relationships with perampanel in patients with pharmacoresistant partial-onset seizures. Epilepsia 54, 1490–1497 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Henley, J. M. & Wilkinson, K. A. Synaptic AMPA receptor composition in development, plasticity and disease. Nat. Rev. Neurosci. 17, 337–350 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Seol, M. & Kuner, T. Ionotropic glutamate receptor GluA4 and T-type calcium channel Cav 3.1 subunits control key aspects of synaptic transmission at the mouse L5B-POm giant synapse. Eur. J. Neurosci. 42, 3033–3044 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Iino, M. et al. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292, 926–929 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Gmiro, V. E., Serdyuk, S. E. & Efremov, O. M. Peripheral and central routes of administration of quaternary ammonium compound IEM-1460 are equally potent in reducing the severity of nicotine-induced seizures in mice. Bull. Exp. Biol. Med. 146, 18–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04295759 (2020).

  107. Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Yu, K. et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature 578, 166–171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Eroglu, C. et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139, 380–392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pine, A. R. et al. Tumor microenvironment is critical for the maintenance of cellular states found in primary glioblastomas. Cancer Discov. 10, 964–979 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Hara, T. et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39, 779–792.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Network, B. I. C. C. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

    Article  CAS  Google Scholar 

  114. Latario, C. J. et al. Tumor microtubes connect pancreatic cancer cells in an Arp2/3 complex-dependent manner. Mol. Biol. Cell 31, 1259–1272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Axelrod, R., Axelrod, D. E. & Pienta, K. J. Evolution of cooperation among tumor cells. Proc. Natl Acad. Sci. Usa. 103, 13474–13479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Archetti, M. & Pienta, K. J. Cooperation among cancer cells: applying game theory to cancer. Nat. Rev. Cancer 19, 110–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Vishwakarma, M. & Piddini, E. Outcompeting cancer. Nat. Rev. Cancer 20, 187–198 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28, 1963–1972 (2010).

    Article  PubMed  Google Scholar 

  119. Schneider, M. et al. Surgery for temporal glioblastoma: lobectomy outranks oncosurgical-based gross-total resection. J. Neurooncol 145, 143–150 (2019).

    Article  PubMed  Google Scholar 

  120. Pasquier, J. et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J. Transl. Med. 11, 94 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Burtey, A. et al. Intercellular transfer of transferrin receptor by a contact-, Rab8-dependent mechanism involving tunneling nanotubes. FASEB J. 29, 4695–4712 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Rimkute, L. et al. The role of neural connexins in HeLa cell mobility and intercellular communication through tunneling tubes. BMC Cell Biol. 17, 3 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Desir, S. et al. Intercellular transfer of oncogenic KRAS via tunneling nanotubes introduces intracellular mutational heterogeneity in colon cancer cells. Cancers 11, 892 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  124. Ady, J. W. et al. Intercellular communication in malignant pleural mesothelioma: properties of tunneling nanotubes. Front. Physiol. 5, 400 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Thayanithy, V. et al. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells. Exp. Cell Res. 323, 178–188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Desir, S. et al. Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells. Oncotarget 7, 43150–43161 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kretschmer, A. et al. Stress-induced tunneling nanotubes support treatment adaptation in prostate cancer. Sci. Rep. 9, 7826 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Lu, J. et al. Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells. Oncotarget 8, 15539–15552 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Polak, R., de Rooij, B., Pieters, R. & den Boer, M. L. B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment. Blood 126, 2404–2414 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, J. et al. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J. Hematol. Oncol. 11, 11 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Wang, X. & Gerdes, H. H. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 22, 1181–1191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bukoreshtliev, N. V. et al. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett. 583, 1481–1488 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, X., Bukoreshtliev, N. V. & Gerdes, H. H. Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes. PLoS ONE 7, e47429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Berendsen, S. et al. Prognostic relevance of epilepsy at presentation in glioblastoma patients. Neuro Oncol. 18, 700–706 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. van Breemen, M. S., Wilms, E. B. & Vecht, C. J. Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol. 6, 421–430 (2007).

    Article  PubMed  Google Scholar 

  136. Mastall, M. et al. Survival of brain tumour patients with epilepsy. Brain 44, 3322–3327 (2021).

    Article  Google Scholar 

  137. Buckingham, S. C. et al. Glutamate release by primary brain tumors induces epileptic activity. Nat. Med. 17, 1269–1274 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. de Groot, J. & Sontheimer, H. Glutamate and the biology of gliomas. Glia 59, 1181–1189 (2011).

    Article  PubMed  Google Scholar 

  139. Hatcher, A. et al. Pathogenesis of peritumoral hyperexcitability in an immunocompetent CRISPR-based glioblastoma model. J. Clin. Invest. 130, 2286–2300 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chung, W. J. et al. Inhibition of cystine uptake disrupts the growth of primary brain tumors. J. Neurosci. 25, 7101–7110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Aabedi, A. A. Functional alterations in cortical processing of speech in glioma-infiltrated cortex. Proc. Natl Acad. Sci. USA 118, e2108959118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Yang and A.-L. Potthoff for figure construction and initial graphical illustrations. F.W. and W.W. were supported by a grant from the German Research Foundation (SFB 1389). V.V. received financial support from the German Research Foundation (VE1373/2-1), Else Kröner-Fresenius-Stiftung (2020-EKEA.135) and the University of Heidelberg (Physician Scientist-Programm and Krebs- und Scharlachstiftung). M.S. was supported by Bonfor and a junior research programme within the Mildred Scheel School of Oncology Cologne-Bonn (project ID 70113307) funded by German Cancer Aid. U.H., M.S. and F.W. received financial support from a grant (01EN2008) from the German Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Contributions

V.V., M.S., U.H. and F.W. researched data for the article. V.V., M.S., T.K., U.H. and F.W. contributed substantially to discussion of the content. V.V., M.S., F.A.G., W.W., U.H. and F.W. wrote the article. V.V., M.S., F.A.G., T.K., W.W., U.H. and F.W. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Varun Venkataramani, Matthias Schneider, Ulrich Herrlinger or Frank Winkler.

Ethics declarations

Competing interests

F.W. and W.W. are named on patent WO2017020982A1 entitled “Agents for use in the treatment of glioma”. F.W. was a co-founder of DC Europa Ltd (a company trading under the name Divide & Conquer), which is developing new medicines for the treatment of glioma. Divide & Conquer also provides research funding to F.W.’s laboratory under a research collaboration agreement. F.A.G. has received research grants and personal fees from Carl Zeiss Meditec AG, personal fees from Roche Pharma AG and Medac, grants and personal fees from Elekta AB, Bristol-Myers Squibb, MSD Sharp and Dohme GmbH, AstraZeneca and Guerbet SA, stocks, grants and personal fees from Noxxon Pharma AG and non-financial support from Oncare GmbH and Opasca GmbH. U.H. has received speaker honoraria from Medac, Bayer and Novartis and advisory board honoraria from Bayer, Janssen, Noxxon and Karyopharm. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks David Gutmann, Harald Sontheimer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors

(AMPARs). Glutamate receptors and ion (sodium and potassium) channels that are activated by α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and mediate synaptic transmission at many postsynaptic membranes, where they produce distinct excitatory postsynaptic potentials.

Contrast-enhancing lesions

Areas on T1-weighted magnetic resonance images that show pathological uptake of a gadolinium-based contrast agent; these may correlate with dense tumour growth and neovascularization.

Dendritic spine

Postsynaptic membranous protrusion of a neuron’s dendrite that receives synaptic input from another neuron.

Glutamatergic synaptic contacts

Synapses that have glutamate as their neurotransmitter binding to α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors or N-methyl-d-aspartate receptors on the postsynaptic membrane.

N-Methyl-d-aspartate receptors

Glutamate receptors and ion (including Ca2+) channels that are activated by N-methyl-d-aspartate and that mediate synaptic transmission at many postsynaptic membranes, where they produce distinct excitatory postsynaptic potentials.

Non-enhancing tumour tissue

Tumour area that is located beyond the contrast-enhancing tumour margin. It is best visualized with clinical imaging on T2-weighted fluid-attenuated inversion recovery (FLAIR) imaging and includes the micro-invading tumour cell front.

Oncosomes

Tumour-derived extracellular vesicles that transfer ongogenic messages and protein complexes across cell borders.

Small-world, scale-free networks

Mathematical network models used to study biological, social and wireless networks.

Status epilepticus

A condition that results either from the failure of mechanisms responsible for seizure termination or from the initiation of mechanisms that lead to abnormally prolonged seizures. In clinical use, status epilepticus is operationally defined as a continuous seizure lasting 5 min or longer or two or more seizures between which there is incomplete recovery of consciousness.

Viral tracing approaches

Methods that use movement of viruses between cells as a label of neuronal projections and potentially trans-synaptic connectivity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkataramani, V., Schneider, M., Giordano, F.A. et al. Disconnecting multicellular networks in brain tumours. Nat Rev Cancer 22, 481–491 (2022). https://doi.org/10.1038/s41568-022-00475-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00475-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer