Skip to main content

Advertisement

Log in

Elevated α-synuclein and NfL levels in tear fluids and decreased retinal microvascular densities in patients with Parkinson’s disease

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

The pathognomonic hallmark of Parkinson’s disease (PD), α-synuclein, has been observed in the retina of PD patients. We investigated whether biomarkers in the tears and retinal microvascular changes associate with PD risk and progression. This prospective study enrolled 49 PD patients and 45 age-matched healthy controls. The α-synuclein and neurofilament light chain (NfL) levels were measured using an electrochemiluminescence immunoassay. Retinal vessel density was assessed using optical coherence tomography angiography (OCT-A). The Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) and Mini-Mental State Examination score were used to assess motor and cognitive progression. The α-synuclein and NfL levels in the tears were higher in PD patients than in controls (α-synuclein: 55.49 ± 8.12 pg/mL vs. 31.71 ± 3.25 pg/mL, P = 0.009; NfL: 2.89 ± 0.52 pg/mL vs. 1.47 ± 0.23 pg/mL, P = 0.02). The vessel densities in the deep plexus of central macula and the radial peripapillary capillary layer of disc region were lower in PD patients with moderate-stage compared with early-stage PD (P < 0.05). The accuracy of predicting PD occurrence using age and sex alone (area under the curve [AUC] 0.612) was significantly improved by adding α-synuclein and NfL levels and retinal vascular densities (AUC 0.752, P = 0.001). After a mean follow-up of 1.5 ± 0.3 years, the accuracy of predicting motor or cognitive progression using age, sex, and baseline motor severity as a basic model was increased by incorporating retinal microvascular and biofluid markers as a full model (P = 0.001). Our results showed that retinal microvascular densities combined with α-synuclein and NfL levels in tears are associated with risk and progression of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Collaborators GBDPsD. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:939–53.

    Google Scholar 

  2. Macleod AD, Taylor KS, Counsell CE. Mortality in Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29:1615–22.

    PubMed  Google Scholar 

  3. Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23:837–44.

    PubMed  Google Scholar 

  4. Armstrong RA. Oculo-visual dysfunction in Parkinson’s disease. J Parkinsons Dis. 2015;5:715–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Frederick JM, Rayborn ME, Laties AM, Lam DM, Hollyfield JG. Dopaminergic neurons in the human retina. J Comp Neurol. 1982;210:65–79.

    CAS  PubMed  Google Scholar 

  6. Harnois C, Di Paolo T. Decreased dopamine in the retinas of patients with Parkinson’s disease. Invest Ophthalmol Vis Sci. 1990;31:2473–5.

    CAS  PubMed  Google Scholar 

  7. Ortuno-Lizaran I, Beach TG, Serrano GE, Walker DG, Adler CH, Cuenca N. Phosphorylated alpha-synuclein in the retina is a biomarker of Parkinson’s disease pathology severity. Mov Disord. 2018;33:1315–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee JY, Ahn J, Oh S, Shin JY, Kim YK, Nam H, Jeon B. Retina thickness as a marker of neurodegeneration in prodromal lewy body disease. Mov Disord. 2020;35:349–54.

    PubMed  Google Scholar 

  9. Archibald NK, Clarke MP, Mosimann UP, Burn DJ. The retina in Parkinson’s disease. Brain. 2009;132:1128–45.

    PubMed  Google Scholar 

  10. Moschos MM, Gonidakis F, Varsou E, Markopoulos I, Rouvas A, Ladas I, Papadimitriou GN. Anatomical and functional impairment of the retina and optic nerve in patients with anorexia nervosa without vision loss. Br J Ophthalmol. 2011;95:1128–33.

    PubMed  Google Scholar 

  11. Garcia-Martin E, Satue M, Fuertes I, Otin S, Alarcia R, Herrero R, Bambo MP, Fernandez J, Pablo LE. Ability and reproducibility of Fourier-domain optical coherence tomography to detect retinal nerve fiber layer atrophy in Parkinson’s disease. Ophthalmology. 2012;119:2161–7.

    PubMed  Google Scholar 

  12. Satue M, Garcia-Martin E, Fuertes I, Otin S, Alarcia R, Herrero R, Bambo MP, Pablo LE, Fernandez FJ. Use of Fourier-domain OCT to detect retinal nerve fiber layer degeneration in Parkinson’s disease patients. Eye (Lond). 2013;27:507–14.

    CAS  Google Scholar 

  13. Huang L, Wang Y, Zhang R. Intravenous thrombolysis in patients with central retinal artery occlusion: a systematic review and meta-analysis. J Neurol. 2021. https://doi.org/10.1007/s00415-021-10838-6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. MacCormick IJ, Czanner G, Faragher B. Developing retinal biomarkers of neurological disease: an analytical perspective. Biomark Med. 2015;9:691–701.

    CAS  PubMed  Google Scholar 

  15. Hase Y, Ding R, Harrison G, Hawthorne E, King A, Gettings S, Platten C, Stevenson W, Craggs LJL, Kalaria RN. White matter capillaries in vascular and neurodegenerative dementias. Acta Neuropathol Commun. 2019;7:16. https://doi.org/10.1186/s40478-019-0666-x.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Elahi FM, Ashimatey SB, Bennett DJ, Walters SM, La Joie R, Jiang X, Wolf A, Cobigo Y, Staffaroni AM, Rosen HJ, Miller BL, Rabinovici GD, Kramer JH, Green AJ, Kashani AH. Retinal imaging demonstrates reduced capillary density in clinically unimpaired APOE ε4 gene carriers. Alzheimers Dement (Amst). 2021;13(1):e12181. https://doi.org/10.1002/dad2.12181.

    Article  Google Scholar 

  17. Guan J, Pavlovic D, Dalkie N, Waldvogel HJ, O’Carroll SJ, Green CR, Nicholson LF. Vascular degeneration in Parkinson’s disease. Brain Pathol. 2013;23:154–64.

    CAS  PubMed  Google Scholar 

  18. Shi C, Chen Y, Kwapong WR, Tong Q, Wu S, Zhou Y, Miao H, Shen M, Ye H. Characterization by fractal dimension analysis of the retinal capillary network in Parkinson disease. Retina. 2020;40:1483–91.

    CAS  PubMed  Google Scholar 

  19. Robbins CB, Thompson AC, Bhullar PK, Koo HY, Agrawal R, Soundararajan S, Yoon SP, Polascik BW, Scott BL, Grewal DS, Fekrat S. Characterization of retinal microvascular and choroidal structural changes in Parkinson disease. JAMA Ophthalmol. 2021;139:182–8.

    PubMed  Google Scholar 

  20. Dartt DA. Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog Retin Eye Res. 2009;28:155–77.

    PubMed  PubMed Central  Google Scholar 

  21. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129–70.

    PubMed  Google Scholar 

  23. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology. 1967;17:427–42.

    CAS  PubMed  Google Scholar 

  24. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state” A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    CAS  PubMed  Google Scholar 

  25. Poewe W. Clinical measures of progression in Parkinson’s disease. Mov Disord. 2009;24(Suppl 2):S671-676.

    PubMed  Google Scholar 

  26. Lin CH, Li CH, Yang KC, Lin FJ, Wu CC, Chieh JJ, Chiu MJ. Blood NfL: A biomarker for disease severity and progression in Parkinson disease. Neurology. 2019;93:e1104–11.

    CAS  PubMed  Google Scholar 

  27. Maass F, Rikker S, Dambeck V, Warth C, Tatenhorst L, Csoti I, Schmitz M, Zerr I, Leha A, Bahr M, Lingor P. Increased alpha-synuclein tear fluid levels in patients with Parkinson’s disease. Sci Rep. 2020;10:8507.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hamm-Alvarez SF, Janga SR, Edman MC, Feigenbaum D, Freire D, Mack WJ, Okamoto CT, Lew MF. Levels of oligomeric alpha-Synuclein in reflex tears distinguish Parkinson’s disease patients from healthy controls. Biomark Med. 2019;13:1447–57.

    CAS  PubMed  Google Scholar 

  29. Hamm-Alvarez SF, Okamoto CT, Janga SR, Feigenbaum D, Edman MC, Freire D, Shah M, Ghanshani R, Mack WJ, Lew MF. Oligomeric alpha-synuclein is increased in basal tears of Parkinson’s patients. Biomark Med. 2019;13:941–52.

    CAS  PubMed  Google Scholar 

  30. Atik A, Stewart T, Zhang J. Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol. 2016;26:410–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Costa OR, Verhaeghen K, Roels S, Stange G, Ling Z, Pipeleers D, Gorus FK, Martens GA. An analytical comparison of three immunoassay platforms for subpicomolar detection of protein biomarker GAD65. PLoS ONE. 2018;13:e0193670.

    PubMed  PubMed Central  Google Scholar 

  32. Lee SJ, Desplats P, Lee HJ, Spencer B, Masliah E. Cell-to-cell transmission of alpha-synuclein aggregates. Methods Mol Biol. 2012;849:347–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    PubMed  Google Scholar 

  34. Fyfe I. Ultrasensitive assay raises hope of plasma PD marker. Nat Rev Neurol. 2019;15:186–7.

    PubMed  Google Scholar 

  35. Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci. 2005;233:183–98.

    CAS  PubMed  Google Scholar 

  36. Bacioglu M, Maia LF, Preische O, Schelle J, Apel A, Kaeser SA, Schweighauser M, Eninger T, Lambert M, Pilotto A, Shimshek DR, Neumann U, Kahle PJ, et al. Neurofilament light chain in blood and CSF as marker of disease progression in mouse models and in neurodegenerative diseases. Neuron. 2016;91:56–66.

    CAS  PubMed  Google Scholar 

  37. Bridel C, van Wieringen WN, Zetterberg H, Tijms BM, Teunissen CE, and the NFLG, Alvarez-Cermeno JC, Andreasson U, Axelsson M, Backstrom DC, Bartos A, Bjerke M, Blennow K, et al. Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology: a systematic review and meta-analysis. JAMA Neurol. 2019;76:1035–48.

    PubMed  PubMed Central  Google Scholar 

  38. Mollenhauer B, Dakna M, Kruse N, Galasko D, Foroud T, Zetterberg H, Schade S, Gera RG, Wang W, Gao F, Frasier M, Chahine LM, Coffey CS, et al. Validation of serum neurofilament light chain as a biomarker of Parkinson’s disease Progression. Mov Disord. 2020;35:1999–2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Backstrom D, Linder J, Jakobson Mo S, Riklund K, Zetterberg H, Blennow K, Forsgren L, Lenfeldt N. NfL as a biomarker for neurodegeneration and survival in Parkinson disease. Neurology. 2020;95:e827–38.

    PubMed  PubMed Central  Google Scholar 

  40. Gijs M, Ramakers I, Visser PJ, Verhey FRJ, van de Waarenburg MPH, Schalkwijk CG, Nuijts R, Webers CAB. Association of tear fluid amyloid and tau levels with disease severity and neurodegeneration. Sci Rep. 2021;11:22675.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Comoglu SS, Guven H, Acar M, Ozturk G, Kocer B. Tear levels of tumor necrosis factor-alpha in patients with Parkinson’s disease. Neurosci Lett. 2013;553:63–7.

    CAS  PubMed  Google Scholar 

  42. Salvisberg C, Tajouri N, Hainard A, Burkhard PR, Lalive PH, Turck N. Exploring the human tear fluid: discovery of new biomarkers in multiple sclerosis. Proteomics Clin Appl. 2014;8:185–94.

    CAS  PubMed  Google Scholar 

  43. Kwapong WR, Ye H, Peng C, Zhuang X, Wang J, Shen M, Lu F. Retinal microvascular impairment in the early stages of Parkinson’s disease. Invest Ophthalmol Vis Sci. 2018;59:4115–22.

    CAS  PubMed  Google Scholar 

  44. Zhang Y, Shi C, Chen Y, Wang W, Huang S, Han Z, Lin X, Lu F, Shen M. Retinal Structural and microvascular alterations in different acute ischemic stroke subtypes. J Ophthalmol. 2020;5:2422. https://doi.org/10.1155/2020/8850309.

    Article  Google Scholar 

  45. Bhanushali D, Anegondi N, Gadde SG, Srinivasan P, Chidambara L, Yadav NK, Sinha RA. Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:519–25.

    Google Scholar 

  46. Turski CA, Turski GN, Faber J, Teipel SJ, Holz FG, Klockgether T, Finger RP. Microvascular breakdown due to retinal neurodegeneration in ataxias. Mov Disord. 2022;37:162–70.

    CAS  PubMed  Google Scholar 

  47. Price DL, Rockenstein E, Mante M, Adame A, Overk C, Spencer B, Duong-Polk KX, Bonhaus D, Lindsey J, Masliah E. Longitudinal live imaging of retinal alpha-synuclein::GFP deposits in a transgenic mouse model of Parkinson’s Disease/Dementia with Lewy Bodies. Sci Rep. 2016;6:29523.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all the participants in this study. They also thank the staff of the Second Core Laboratory, Department of Medical Research, National Taiwan University Hospital for their technical support of the study.

Funding

The authors are grateful to the funding support from the Academia Sinica (AS-HLGC-110–03) and National Taiwan University Hospital (111-UN0036).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CW Lin and CH Lin; data curation: CW Lin, TT Lai, SJ Chen, and CH Lin; formal analysis: CW Lin, TT Lai, and SJ Chen; funding acquisition: CH Lin. investigation: CW Lin, TT Lai, and CH Lin; methodology: CW Lin, TT Lai, SJ Chen, and CH Lin; resources: CW Lin, TT Lai, and CH Lin; supervision: CH Lin. validation: CW Lin and CH Lin; writing — original draft: CW Lin; writing — review and editing: CH Lin.

Corresponding author

Correspondence to Chin-Hsien Lin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 164 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CW., Lai, TT., Chen, SJ. et al. Elevated α-synuclein and NfL levels in tear fluids and decreased retinal microvascular densities in patients with Parkinson’s disease. GeroScience 44, 1551–1562 (2022). https://doi.org/10.1007/s11357-022-00576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00576-6

Keywords

Navigation