Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipid metabolism in T cell signaling and function

Subjects

Abstract

T cells orchestrate adaptive immunity against pathogens and other immune challenges, but their dysfunction can also mediate the pathogenesis of cancer and autoimmunity. Metabolic adaptation in response to immunological and microenvironmental signals contributes to T cell function and fate decision. Lipid metabolism has emerged as a key regulator of T cell responses, with selective lipid metabolites serving as metabolic rheostats to integrate environmental cues and interplay with intracellular signaling processes. Here, we discuss how extracellular, de novo synthesized and membrane lipids orchestrate T cell biology. We also describe the roles of lipids as regulators of intracellular signaling at the levels of transcriptional, epigenetic and post-translational regulation in T cells. Finally, we summarize therapeutic targeting of lipid metabolism and signaling, and conclude with a discussion of important future directions. Understanding the molecular and functional interplay between lipid metabolism and T cell biology will ultimately inform therapeutic intervention for human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Extracellular lipids in T cell differentiation and functional adaptation.
Fig. 2: Regulation of lipid metabolism by immunological signals.
Fig. 3: Intracellular lipid metabolism in T cells.
Fig. 4: Membrane lipids coordinate signaling in T cells.
Fig. 5: Lipid-dependent post-translational modifications orchestrate T cell responses.

Similar content being viewed by others

References

  1. Chapman, N. M. & Chi, H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 55, 14–30 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maseda, D., Ricciotti, E. & Crofford, L. J. Prostaglandin regulation of T cell biology. Pharmacol. Res. 149, 104456 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Trompette, A. et al. Dietary fiber confers protection against flu by shaping Ly6c patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity 48, 992–1005 e1008 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Bachem, A. et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51, 285–297.e285 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Dudek, M. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 592, 444–449 (2021). This paper shows a pathogenic role for the SCFA acetate in CD8+ T cell-mediated autoinflammation and tissue damage in the liver, which is in contrast to the protective roles of SCFAs in tissue homeostasis or anti-pathogen immunity.

    Article  CAS  PubMed  Google Scholar 

  6. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Haghikia, A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, H. et al. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat. Immunol. 21, 298–308 (2020). This study establishes a role for CD36-dependent lipid uptake in supporting Treg cell function in the TME.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity 54, 1561–1577 e1567 (2021). This study, along with ref. 13, shows that CD36-mediated lipid uptake triggers CD8+ T cell dysfunction in the TME.

    Article  CAS  PubMed  Google Scholar 

  13. Ma, X. et al. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab. 33, 1001–1012 e1005 (2021). This study, along with ref. 12, reveals that CD36-mediated lipid uptake triggers CD8+ T cell dysfunction in the TME.

    Article  CAS  PubMed  Google Scholar 

  14. Manzo, T. et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J. Exp. Med. 217, e20191920 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wu, L. et al. Niche-selective inhibition of pathogenic Th17 cells by targeting metabolic redundancy. Cell 182, 641–654.e620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Proto, J. D. et al. Hypercholesterolemia induces T cell expansion in humanized immune mice. J. Clin. Invest. 128, 2370–2375 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ma, X. et al. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab. 30, 143–156.e145 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma, X. et al. Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity. J. Exp. Med. 215, 1555–1569 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, J., Lu, E., Yi, T. & Cyster, J. G. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature 533, 110–114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuan, J. et al. Potentiating CD8(+) T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling. Protein Cell 12, 240–260 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019). This study establishes that selective bile acids balance intestinal TH17 and Treg cell differentiation, which contributes to tissue homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Li, W. et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe 29, 1366–1377 e1369 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, M. L. et al. CAR directs T cell adaptation to bile acids in the small intestine. Nature 593, 147–151 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14, 489–499 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Su, W. et al. Protein prenylation drives discrete signaling programs for the differentiation and maintenance of effector Treg cells. Cell Metab. 32, 996–1011.e1017 (2020). This paper demonstrates that mevalonate metabolism-dependent post-translational modifications are essential for Treg cell activation and establishment of immunological tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klein Geltink, R. I. et al. Mitochondrial priming by CD28. Cell 171, 385–397 e311 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, K. et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Endo, Y. et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep. 12, 1042–1055 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Endo, Y. et al. ACC1 determines memory potential of individual CD4+ T cells by regulating de novo fatty acid biosynthesis. Nat. Metab. 1, 261–275 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, J. et al. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J. Immunol. 192, 3190–3199 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Lim, S. A. et al. Lipid signalling enforces functional specialization of Treg cells in tumours. Nature 591, 306–311 (2021). This study establishes a relationship between lipid synthesis and PD-1 immune checkpoint signaling in Treg cell-mediated suppression of antitumor immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tian, M. et al. ACLY ubiquitination by CUL3-KLHL25 induces the reprogramming of fatty acid metabolism to facilitate iTreg differentiation. eLife 10, e62394 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sofi, M. H. et al. Ceramide synthesis regulates T cell activity and GVHD development. JCI Insight 2, e91701 (2017).

    Article  PubMed Central  Google Scholar 

  38. Vaena, S. et al. Aging-dependent mitochondrial dysfunction mediated by ceramide signaling inhibits antitumor T cell response. Cell Rep. 35, 109076 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, G. et al. Nanoliposome C6-ceramide increases the anti-tumor immune response and slows growth of liver tumors in mice. Gastroenterology 154, 1024–1036 e1029 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Lacher, S. M. et al. HMG-CoA reductase promotes protein prenylation and therefore is indispensible for T-cell survival. Cell Death Dis. 8, e2824 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Timilshina, M. et al. Activation of mevalonate pathway via LKB1 is essential for stability of Treg cells. Cell Rep. 27, 2948–2961.e2947 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, K. et al. Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature 548, 602–606 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish Treg-cell function. Nature 499, 485–490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Karmaus, P. W. F. et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature 565, 101–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Borges da Silva, H. et al. The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. Nature 559, 264–268 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. O’Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Cui, G. et al. IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell 161, 750–761 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Raud, B. et al. Etomoxir actions on regulatory and memory T cells are independent of cpt1a-mediated fatty acid oxidation. Cell Metab. 28, 504–515 e507 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, C. et al. STAT3 activation-induced fatty acid oxidation in CD8+ T effector cells is critical for obesity-promoted breast tumor growth. Cell Metab. 31, 148–161.e145 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Ringel, A. E. et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183, 1848–1866 e1826 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017). This paper establishes that fatty acid binding proteins are essential for regulating TRM cell accumulation in the skin, pointing to a role for extracellular fatty acid uptake and oxidization in orchestrating TRM cell persistence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Frizzell, H. Organ-specific isoform selection of fatty acid-binding proteins in tissue-resident lymphocytes. Sci. Immunol. 5, eaay9283 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Lin, R. et al. Fatty acid oxidation controls CD8+ tissue-resident memory T-cell survival in gastric adenocarcinoma. Cancer Immunol. Res. 8, 479–492 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Field, C. S. et al. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for Treg suppressive function. Cell Metab. 31, 422–437 e425 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ecker, C. et al. Differential reliance on lipid metabolism as a salvage pathway underlies functional differences of T cell subsets in poor nutrient environments. Cell Rep. 23, 741–755 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Howie, D. et al. A novel role for triglyceride metabolism in Foxp3 expression. Front. Immunol. 10, 1860 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, X. et al. Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy. Sci. Transl. Med. 13, eaaz6314 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Shin, J., O’Brien, T. F., Grayson, J. M. & Zhong, X. P. Differential regulation of primary and memory CD8 T cell immune responses by diacylglycerol kinases. J. Immunol. 188, 2111–2117 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Yang, W. et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 531, 651–655 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, F., Beck-Garcia, K., Zorzin, C., Schamel, W. W. & Davis, M. M. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nat. Immunol. 17, 844–850 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fu, G. et al. Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine. Nature 595, 724–729 (2021). This study establishes a context-specific role for de novo phosphatidylethanolamine synthesis in driving TFH cell generation and humoral immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Corrado, M. et al. Dynamic cardiolipin synthesis is required for CD8+ T cell immunity. Cell Metab. 32, 981–995.e987 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Howie, D., Ten Bokum, A., Necula, A. S., Cobbold, S. P. & Waldmann, H. The role of lipid metabolism in T lymphocyte differentiation and survival. Front. Immunol. 8, 1949 (2017).

    Article  PubMed  CAS  Google Scholar 

  66. Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bensinger, S. J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xu, J., Wagoner, G., Douglas, J. C. & Drew, P. D. Liver X receptor agonist regulation of Th17 lymphocyte function in autoimmunity. J. Leukoc. Biol. 86, 401–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vigne, S. et al. IL-27-induced Type 1 regulatory T-cells produce oxysterols that constrain IL-10 production. Front. Immunol. 8, 1184 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Qiu, J. et al. Acetate promotes T cell effector function during glucose restriction. Cell Rep. 27, 2063–2074.e2065 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Balmer, M. L. et al. Memory CD8+ T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 44, 1312–1324 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Luu, M. et al. Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Sci. Rep. 8, 14430 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Bailis, W. et al. Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function. Nature 571, 403–407 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thurnher, M. & Gruenbacher, G. T lymphocyte regulation by mevalonate metabolism. Sci. Signal. 8, re4 (2015).

    Article  PubMed  CAS  Google Scholar 

  75. Morrison, E. et al. Dynamic palmitoylation events following T-cell receptor signaling. Commun. Biol. 3, 368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wen, Z. et al. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nat. Immunol. 20, 313–325 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saravia, J. et al. Homeostasis and transitional activation of regulatory T cells require c-Myc. Sci. Adv. 6, eaaw6443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bu, D. X. et al. Statin-induced Kruppel-like factor 2 expression in human and mouse T cells reduces inflammatory and pathogenic responses. J. Clin. Invest. 120, 1961–1970 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ibitokou, S. A. et al. Early inhibition of fatty acid synthesis reduces generation of memory precursor effector T cells in chronic infection. J. Immunol. 200, 643–656 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Voss, K., Luthers, C. R., Pohida, K. & Snow, A. L. Fatty acid synthase contributes to restimulation-induced cell death of human CD4 T cells. Front. Mol. Biosci. 6, 106 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wohlfert, E. A., Nichols, F. C., Nevius, E. & Clark, R. B. Peroxisome proliferator-activated receptor γ (PPARγ) and immunoregulation: enhancement of regulatory T cells through PPARγ-dependent and -independent mechanisms. J. Immunol. 178, 4129–4135 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Gocke, A. R. et al. Transcriptional modulation of the immune response by peroxisome proliferator-activated receptor- α agonists in autoimmune disease. J. Immunol. 182, 4479–4487 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Polak, P. E. et al. Protective effects of a peroxisome proliferator-activated receptor- β/δ agonist in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 168, 65–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Marino, E. et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 18, 552–562 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Pompura, S. L. et al. Oleic acid restores suppressive defects in tissue-resident FOXP3 Tregs from patients with multiple sclerosis. J. Clin. Invest. 131, e138519 (2011).

    Article  Google Scholar 

  86. Mathewson, N. D. et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat. Immunol. 17, 505–513 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021). This study suggests that high dietary fiber intake improves responsiveness to immunotherapy via interplay with microbiota-derived production of the SCFA propionate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Longo, J., van Leeuwen, J. E., Elbaz, M., Branchard, E. & Penn, L. Z. Statins as anticancer agents in the era of precision medicine. Clin. Cancer Res. 26, 5791–5800 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Calle, R. A. et al. ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials. Nat. Med. 27, 1836–1848 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Pecin, I. & Reiner, Z. Novel experimental agents for the treatment of hypercholesterolemia. J. Exp. Pharm. 13, 91–100 (2021).

    Article  Google Scholar 

  93. Payandeh, J. & Volgraf, M. Ligand binding at the protein–lipid interface: strategic considerations for drug design. Nat. Rev. Drug Discov. 20, 710–722 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Lopes, N. et al. Distinct metabolic programs established in the thymus control effector functions of γδ T cell subsets in tumor microenvironments. Nat. Immunol. 22, 179–192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kobayashi, T. et al. Increased lipid metabolism impairs NK cell function and mediates adaptation to the lymphoma environment. Blood 136, 3004–3017 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Michelet, X. et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Fu, S. et al. Impaired lipid biosynthesis hinders anti-tumor efficacy of intratumoral iNKT cells. Nat. Commun. 11, 438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ko, J. S. et al. Palmitate inhibits arthritis by inducing t-bet and gata-3 mRNA degradation in iNKT cells via IRE1α-dependent decay. Sci. Rep. 7, 14940 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Muri, J., Thut, H., Bornkamm, G. W. & Kopf, M. B1 and marginal zone B cells but not follicular B2 cells require Gpx4 to prevent lipid peroxidation and ferroptosis. Cell Rep. 29, 2731–2744.e2734 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Bibby, J. A. et al. Cholesterol metabolism drives regulatory B cell IL-10 through provision of geranylgeranyl pyrophosphate. Nat. Commun. 11, 3412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants AI105887, AI131703, AI140761, AI150241, AI150514 and CA253188, Alliance for Lupus Research grant, and ALSAC (to H.C.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

S.A.L. and W.S. conceived, designed and wrote the manuscript. N.M.C. co-wrote the manuscript. H.C. co-wrote the manuscript and provided overall direction.

Corresponding author

Correspondence to Hongbo Chi.

Ethics declarations

Competing interests

H.C. is a consultant for Kumquat Biosciences.

Peer review

Peer review information

Nature Chemical Biology thanks Ping-Chih Ho and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S.A., Su, W., Chapman, N.M. et al. Lipid metabolism in T cell signaling and function. Nat Chem Biol 18, 470–481 (2022). https://doi.org/10.1038/s41589-022-01017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-022-01017-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing