Skip to main content

Advertisement

Log in

Aminolytic Depolymerization of Polyethylene Terephthalate Wastes Using Sn-Doped ZnO Nanoparticles

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(ethylene terephthalate) (PET) is one of the most consumed polymers because of its excellent thermal and mechanical properties. By increasing in PET production and since the disposal of PET waste has grown to be a major global environmental issue each year. Chemical recycling is the most successful method to achieve circular economy in the PET utilizing industries. Current research work aims to complete depolymerization of waste PET from soft drink bottles by the aminolysis method to produce bis (2-hydroxy ethylene) terephthalamide (BHETA) in the presence of Sn doped ZnO. To evaluate catalytic activity, Sn(II) doped ZnO nanoparticles prepared using different Sn(II) molar ratios at 0.5, 1.0 and 2.0 mol% and calcined at 500 °C for 1 h. The synthesized catalysts characterised using FT-IR, XRD, and UV–vis spectroscopy. The surface morphology and percentage doping obtained from SEM and SEM–EDS, respectively. We have observed a reduction in optical band gap and crystallite size of ZnO due to tin doping. Aminolytic depolymerization of PET waste using ethanolamine was promoted by Sn doped ZnO effectively under conventional thermal method. Increase in the yield of the BHETA observed with respect to increased doping percentage of Sn, and 1, 2 mol% Sn doped ZnO nanoparticles afforded over 90% of BHETA. Structure and purity of BHETA, depolymerised product was characterized by FT-IR, 1HNMR, 13C NMR, and MS.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The sample of catalysts and BHETA available from the corresponding author.

References

  1. Vinitha V, Preeyanghaa M, Vinesh V, Dhanalakshmi R, Neppolian B, Sivamurugan V (2021) Two is better than one: catalytic, sensing and optical applications of doped zinc oxide nanostructures. Emerg Mater 4:1093–1124. https://doi.org/10.1007/s42247-021-00262-x

    Article  CAS  Google Scholar 

  2. Singh P, Kumar R, Singh RK (2019) Progress on transition metal-doped ZnO nanoparticles and its application. Ind Eng Chem Res 58:17130–17163. https://doi.org/10.1021/acs.iecr.9b01561

    Article  CAS  Google Scholar 

  3. Kumari V, Mittal A, Jindal J, Yadav S, Kumar N (2019) S-, N- and C-doped ZnO as semiconductor photocatalysts: a review. Front Mater Sci. https://doi.org/10.1007/s11706-019-0453-4

    Article  Google Scholar 

  4. Bharat TC, Shubham MS, Gupta HS, Singh PK, Das AK (2019) Synthesis of doped zinc oxide nanoparticles: a review. Mater Today Proc 11:767–775. https://doi.org/10.1016/j.matpr.2019.03.041

    Article  CAS  Google Scholar 

  5. Borysiewicz MA (2019) ZnO as a functional material, a review. Curr Comput-Aided Drug Des. https://doi.org/10.3390/cryst9100505

    Article  Google Scholar 

  6. Carofiglio M, Barui S, Cauda V, Laurenti M (2020) Doped zinc oxide nanoparticles: synthesis, characterization and potential use in nanomedicine. Appl Sci. https://doi.org/10.3390/app10155194

    Article  PubMed  Google Scholar 

  7. Rajabinejad H, Khajavi R, Rashidi M, Yazdanshenas ME (2009) Recycling of used bottle grade poly ethyleneterephthalate to nanofibers by melt-electrospinning method. Int J Environ Res 3:663–667. https://doi.org/10.22059/IJER.2010.82

    Article  CAS  Google Scholar 

  8. Payne J, Jones MD (2021) The chemical recycling of polyesters for a circular plastics economy: challenges and emerging opportunities. Chemsuschem 14:4041–4070. https://doi.org/10.1002/cssc.202100400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Repp L, Hekkert M, Kirchherr J (2021) Circular economy-induced global employment shifts in apparel value chains: job reduction in apparel production activities, job growth in reuse and recycling activities. Resour Conserv Recycl 171:105621. https://doi.org/10.1016/j.resconrec.2021.105621

    Article  Google Scholar 

  10. Thomas P, Rumjit NP, Lai CW, Johan MRB, Saravanakumar MP (2020) Polymer-recycling of bulk plastics. Encycl Renew Sustain Mater. https://doi.org/10.1016/b978-0-12-803581-8.10765-9

    Article  Google Scholar 

  11. Reis JML, Carneiro EP (2012) Evaluation of PET waste aggregates in polymer mortars. Constr Build Mater 27:107–111. https://doi.org/10.1016/j.conbuildmat.2011.08.020

    Article  Google Scholar 

  12. Pohjakallio M, Vuorinen T, Oasmaa A (2020) Chapter 13 - Chemical routes for recycling—dissolving, catalytic, and thermochemical technologies. Academic Press, Cambridge, pp 359–384

    Google Scholar 

  13. Revel M, Châtel A, Mouneyrac C (2018) Micro(nano)plastics: a threat to human health? Curr Opin Environ Sci Health 1:17–23. https://doi.org/10.1016/j.coesh.2017.10.003

    Article  Google Scholar 

  14. Palacios-Mateo C, van der Meer Y, Seide G (2021) Analysis of the polyester clothing value chain to identify key intervention points for sustainability. Environ Sci Eur. https://doi.org/10.1186/s12302-020-00447-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jeya G, Anbarasu M, Dhanalakshmi R, Vinitha V, Sivamurugan V (2020) Depolymerization of poly(ethylene terephthalate) wastes through glycolysis using lewis acidic bentonite catalysts. Asian J Chem 32:187–191. https://doi.org/10.14233/ajchem.2020.22387

    Article  CAS  Google Scholar 

  16. Jeya G, Ilbeygi H, Radhakrishnan D, Sivamurugan V (2017) Glycolysis of post-consumer poly(ethylene terephthalate) wastes using Al, Fe and Zn exchanged Kaolin catalysts with lewis acidity. Adv Porous Mater 5:128–136. https://doi.org/10.1166/apm.2017.1141

    Article  Google Scholar 

  17. Jeya G, Rajalakshmi S, Gayathri KV, Priya P, Sakthivel P, Sivamurugan V (2022) A bird’s eye view on sustainable management solutions for non-degradable plastic wastes. In: Vasanthy M, Sivasankar V, Sunitha TG (eds) Organic pollutants. Emerging contaminants and associated treatment technologies. Springer, Cham

    Google Scholar 

  18. Jeya G, Dhanalakshmi R, Anbarasu M, Vinitha V, Sivamurugan V (2021) A short review on latest developments in catalytic depolymerization of poly (ethylene terephathalate) wastes. J Indian Chem Soc. https://doi.org/10.1016/j.jics.2021.100291

    Article  Google Scholar 

  19. Gopal J, Elumalai G, Tajuddin AAH, Ito Y, Vajiravelu S, Ravikumar D (2022) Recyclable clay-supported heteropolyacid catalysts for complete glycolysis and aminolysis of post-consumer PET beverage bottles. J Polym Environ. https://doi.org/10.1007/s10924-022-02386-5

    Article  Google Scholar 

  20. Musale RM, Shukla SR (2016) Deep eutectic solvent as effective catalyst for aminolysis of polyethylene terephthalate (PET) waste. Int J Plast Technol 20:106–120. https://doi.org/10.1007/s12588-016-9134-7

    Article  CAS  Google Scholar 

  21. Pham DD, Cho J (2021) Low-energy catalytic methanolysis of poly(ethylene terephthalate). Green Chem. https://doi.org/10.1039/d0gc03536j

    Article  Google Scholar 

  22. Cano I, Martin C, Fernandes JA, Lodge RW, Dupont J, Casado-Carmona FA, de Pedro I (2019) Paramagnetic ionic liquid-coated SiO2@Fe3O4 nanoparticles - the next generation of magnetically recoverable nanocatalysts applied in the glycolysis of PET. Appl Catal B 260:118110. https://doi.org/10.1016/j.apcatb.2019.118110

    Article  CAS  Google Scholar 

  23. Kapadi PU, Shukla SR, Mhaske ST, More A, Mali MN (2015) Development of corrosion resistant polyurethane coating from aminolytic depolymerization of PET bottle waste. J Mater Environ Sci 6:119–128

    CAS  Google Scholar 

  24. Liu B, Fu W, Lu X, Zhou Q, Zhang S (2018) Lewis acid-base synergistic catalysis for PET degradation by 1,3-dimethylurea/Zn(OAc)2 deep eutectic solvent. ACS Sustain Chem Eng 7:3292–3300. https://doi.org/10.1021/acssuschemeng.8b05324

    Article  CAS  Google Scholar 

  25. Bolanle A, Zainon Z, Hassan A (2019) Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production : a review current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials productio. J Clean Prod 225:1052–1064. https://doi.org/10.1016/j.jclepro.2019.04.019

    Article  CAS  Google Scholar 

  26. Kang MJ, Yu HJ, Jegal J, Kim HS, Cha HG (2020) Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst. Chem Eng J 398:125655. https://doi.org/10.1016/j.cej.2020.125655

    Article  CAS  Google Scholar 

  27. Du JT, Sun Q, Zeng XF, Wang D, Wang JX, Chen JF (2020) ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate. Chem Eng Sci 220:115642. https://doi.org/10.1016/j.ces.2020.115642

    Article  CAS  Google Scholar 

  28. George N, Kurian T (2016) Sodium carbonate catalyzed aminolytic degradation of PET. Prog Rubber Plast Recycl Technol 32(3):153–168. https://doi.org/10.1177/147776061603200304

    Article  Google Scholar 

  29. Alzuhairi MAH, Khalil BI, Hadi RS (2017) Nano ZnO Catalyst for Chemical Recycling of Polyethylene terephthalate (PET). Eng Technol J 35:831–837

    Google Scholar 

  30. Harish S, Archana J, Navaneethan M, Silambarasan A, Nisha KD, Ponnusamy S, Muthamizhchelvan C, Ikeda H, Aswal DK, Hayakawa Y (2016) Enhanced visible light induced photocatalytic activity on the degradation of organic pollutants by SnO nanoparticle decorated hierarchical ZnO nanostructures. RSC Adv 6:89721–89731. https://doi.org/10.1039/c6ra19824d

    Article  CAS  Google Scholar 

  31. Siva N, Sakthi D, Ragupathy S, Arun V, Kannadasan N (2020) Synthesis, structural, optical and photocatalytic behavior of Sn doped ZnO nanoparticles. Mater Sci Eng B Solid-State Mater Adv Technol 253:114497. https://doi.org/10.1016/j.mseb.2020.114497

    Article  CAS  Google Scholar 

  32. Shalan AE, El-Shazly AN, Rashad MM, Allam NK (2019) Tin-zinc-oxide nanocomposites (SZO) as promising electron transport layers for efficient and stable perovskite solar cells. Nanoscale Adv 1:2654–2662. https://doi.org/10.1039/c9na00182d

    Article  CAS  Google Scholar 

  33. Ishak S, Johari S, Ramli MM (2020) Influence of Sn dopant on ZnO thin film for formaldehyde detection. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1535/1/012003

    Article  Google Scholar 

  34. Yarahmadi M, Maleki-Ghaleh H, Mehr ME, Dargahi Z, Rasouli F, Siadati MH (2021) Synthesis and characterization of Sr-doped ZnO nanoparticles for photocatalytic applications. J Alloys Compd 853:157000. https://doi.org/10.1016/j.jallcom.2020.157000

    Article  CAS  Google Scholar 

  35. Kadam AN, Bhopate DP, Kondalkar VV, Majhi SM, Bathula CD, Tran AV, Lee SW (2018) Facile synthesis of Ag-ZnO core–shell nanostructures with enhanced photocatalytic activity. J Ind Eng Chem 61:78–86. https://doi.org/10.1016/j.jiec.2017.12.003

    Article  CAS  Google Scholar 

  36. Ozugurlu E (2021) Cd-doped ZnO nanoparticles: an experimental and first-principles DFT studies. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.158620

    Article  Google Scholar 

  37. Achilias D, Karayannidis G (2004) The chemical recycling of PET in the framework of sustainable development. Water Air Soil Pollut 4(4–5):385–396

    Article  CAS  Google Scholar 

  38. Achilias DS, Tsintzou GP, Nikolaidis AK, Bikiaris DN, Karayannidis GP (2011) Aminolytic depolymerization of poly(ethylene terephthalate) waste in a microwave reactor. Polym Int 60:500–506. https://doi.org/10.1002/pi.2976

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support received from the University Grants Commission (UGC) in the form of a minor research project [File No. F: MRP-6393/16 (SERO/UGC)] is gratefully acknowledged by Dr.V.Sivamurugan. All the authors are very thankful to Centralized Sophisticated Instrument Facilities (CSIF), Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Katankulathur – 603 203 and SCIF:SRM Central Instrumentation Facility, NANOTECHNOLOGY RESEARCH CENTRE for providing characterisation facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernaurdshaw Neppolian or Vajiravelu Sivamurugan.

Ethics declarations

Conflict of interest

The authors have declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinitha, V., Preeyanghaa, M., Anbarasu, M. et al. Aminolytic Depolymerization of Polyethylene Terephthalate Wastes Using Sn-Doped ZnO Nanoparticles. J Polym Environ 30, 3566–3581 (2022). https://doi.org/10.1007/s10924-022-02455-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02455-9

Keywords

Navigation