Skip to main content
Log in

Optimization, Production and Characterization of Polyhydroxyalkanoate (PHA) from Indigenously Isolated Novel Bacteria

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Synthetic plastics have multiple applications in modern world. However, being non-degradable in nature, these have turned into environmental pollutants. Natural ecosystem and global biodiversity are facing serious challenges due to the plastic pollution. Effective degradation and replacement of synthetic plastics with natural and ecofriendly biomaterial is crucial. Polyhydroxyalkanoates (PHAs) are the microbial polyesters and have great potential as biopolymers for the development of bioplastics. PHA produced and accumulated as granules in the cytoplasm of various microbes under limited supply of nutrients can serve the purpose of bioplastic production. Biosynthesis of PHA using bacteria needs well-optimized nutrient and growth conditions for which, studies optimizing the parameters of bacterial growth using various carbon and nitrogen sources are required. Current study optimized the production of PHA by two indigenously isolated strains of Pseudomonas sp. AK-3 and AK-4. The strain AK-3 produced 1.08 g/L of PHA with a yield of 54.82% in the presence of 2% sucrose as carbon source and 1% of (NH4)2SO4 as nitrogen source (C/N ratio of 4:1). The yield, however, reduced to 7.73% when 2% (NH4)2SO4 was added as a nitrogen source in the production medium (C/N ratio of 4:2). Pseudomonas sp. AK-4 produced 0.92 g/L of PHA with a yield of 43.80% for 2% sucrose as carbon source. Addition of 1% (NH4)2SO4 had negligible effect on the yield. Considerable increase in cell dry mass was observed when high concentrations of various carbon sources were used. Biosynthesis of PHA was declined when 1% concentrations of nitrogen sources such as ammonium chloride (NH4Cl), ammonium nitrate (NH4NO3) and ammonium sulphate (NH4)2SO4 were used. The optimum temperature and pH for production of PHA were found to be 38 °C and 8.0 respectively, with an optimum incubation period of 72 h. FTIR results of the extracted polyesters showed transmittance peaks at wavenumbers of 1725 cm−1, 1375 cm−1, 1278 cm−1, 1132 cm−1, 1054 cm−1 and 977 cm−1. Based on FTIR analysis it was concluded that the polyester produced by both Pseudomonas sp. AK-3 and AK-4 was poly-3-hydroxybutyrate P(3HB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbasi K (2020) Bad science in a plastic world. J R Soc Med 113:47. https://doi.org/10.1177/0141076820905749

    Article  PubMed  PubMed Central  Google Scholar 

  2. Esan EO (2019) Lord A, Yurgel S (2019) Exploring the long-term effect of plastic on compost microbiome. PLoS ONE 14:1–17. https://doi.org/10.1371/journal.pone.0214376

    Article  CAS  Google Scholar 

  3. Muneer F, Nadeem H, Arif A, Zaheer W (2021) Bioplastics from biopolymers: an eco-friendly and sustainable solution of plastic pollution. Polym Sci Ser C 63:47–63. https://doi.org/10.1134/S1811238221010057

    Article  Google Scholar 

  4. Mehmood U, Muneer F, Riaz M, Sarfraz S, Nadeem H (2021) Biocatalytic processes for biodiesel production. Scrivener Publishing LLC. https://doi.org/10.1002/9781119724957.ch1

    Article  Google Scholar 

  5. Windsor FM, Durance I, Horton AA, Thompson RC, Tyler CR, Ormerod SJ (2019) A catchment-scale perspective of plastic pollution. Glob Chang Biol 25:1207–1221. https://doi.org/10.1111/gcb.14572

    Article  PubMed Central  Google Scholar 

  6. Chae Y, An YJ (2018) Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environ Pollut 240:387–395. https://doi.org/10.1016/j.envpol.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  7. McClements DJ, Gumus CE (2016) Natural emulsifiers—biosurfactants, phospholipids, biopolymers, and colloidal particles: molecular and physicochemical basis of functional performance. Adv Colloid Interface Sci 234:3–26. https://doi.org/10.1016/j.cis.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  8. Muneer F, Hussain S, Sidra-tul-Muntaha, Riaz M, Nadeem H (2021) Plastics versus bioplastics. Mater Res Forum LLC. https://doi.org/10.21741/9781644901335-9.

  9. Muneer F, Rasul I, Azeem F, Siddique MH, Zubair M, Nadeem H (2020) Microbial polyhydroxyalkanoates (PHAs): efficient replacement of synthetic polymers. J Polym Environ 28:2301–2323. https://doi.org/10.1007/s10924-020-01772-1

    Article  CAS  Google Scholar 

  10. M. Koller (2017) Production of polyhydroxyalkanoate (PHA) biopolyesters by extremophiles? MOJ Polym Sci. https://doi.org/10.15406/mojps.2017.01.00011.

  11. Laycock B, Halley P, Pratt S, Werker A, Lant P (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38:536–583. https://doi.org/10.1016/j.progpolymsci.2012.06.003

    Article  CAS  Google Scholar 

  12. Bernard M (2014) Industrial potential of polyhydroxyalkanoate bioplastic: a brief review. USURJ Univ Saskatchewan Undergrad Res J. https://doi.org/10.32396/usurj.v1i1.55.

  13. Obruca S, Sedlacek P, Krzyzanek V, Mravec F, Hrubanova K, Samek O, Kucera D, Benesova P, Marova I (2016) Accumulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing. PLoS ONE 11:1–16. https://doi.org/10.1371/journal.pone.0157778

    Article  CAS  Google Scholar 

  14. Kurt-Kızıldoğan A, Türe E, Okay S, Otur Ç (2021) Improved production of poly(3-hydroxybutyrate) by extremely halophilic archaeon Haloarcula sp. TG1 by utilization of rCKT3eng-treated sugar beet pulp. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-02011-w.

  15. Sagong HY, Son HF, Choi SY, Lee SY, Kim KJ (2018) Structural insights into polyhydroxyalkanoates biosynthesis. Trends Biochem Sci 43:790–805. https://doi.org/10.1016/j.tibs.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  16. Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I (2018) Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: biotechnological consequences and applications. Biotechnol Adv 36:856–870. https://doi.org/10.1016/j.biotechadv.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  17. Muneer F, Azam MH, Zubair M, Farooq T, Ibrahim M, Rasul I, Afzal M, Ahmad A, Nadeem H (2021) Remediation of water pollution by plastics. Environ Chem Sustain World 54:89–117. https://doi.org/10.1007/978-3-030-52395-4_3

    Article  Google Scholar 

  18. Koller M (2018) Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 23:1–20. https://doi.org/10.3390/molecules23020362

    Article  CAS  Google Scholar 

  19. Grigore ME, Grigorescu RM, Iancu L, Ion RM, Zaharia C, Andrei ER (2019) Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review. J Biomater Sci Polym Ed 30:695–712. https://doi.org/10.1080/09205063.2019.1605866

    Article  CAS  PubMed  Google Scholar 

  20. Mannina G, Presti D, Montiel-Jarillo G, Suárez-Ojeda ME (2019) Bioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresour Technol 282:361–369. https://doi.org/10.1016/j.biortech.2019.03.037

    Article  CAS  PubMed  Google Scholar 

  21. Dietrich K, Dumont MJ, Del Rio LF, Orsat V (2017) Producing PHAs in the bioeconomy—towards a sustainable bioplastic. Sustain Prod Consum 9:58–70. https://doi.org/10.1016/j.spc.2016.09.001

    Article  Google Scholar 

  22. Foong CP, Higuchi-Takeuchi M, Numata K (2019) Optimal iron concentrations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition. PLoS ONE 14:1–12. https://doi.org/10.1371/journal.pone.0212654

    Article  CAS  Google Scholar 

  23. Mohapatra S, Maity S, Dash HR, Das S, Pattnaik S, Rath CC, Samantaray D (2017) Bacillus and biopolymer: prospects and challenges. Biochem Biophys Reports 12:206–213. https://doi.org/10.1016/j.bbrep.2017.10.001

    Article  Google Scholar 

  24. Kalia VC, Ray S, Patel SKS, Singh M, Singh GP (2019) The dawn of novel biotechnological applications of polyhydroxyalkanoates. Biotechnol Appl Polyhydroxyalkanoates. https://doi.org/10.1007/978-981-13-3759-8_1.

  25. Sohn YJ, Kim HT, Baritugo KA, Song HM, Ryu MH, Kang KH, Jo SY, Kim H, Kim YJ, Choi J, Park SK, Joo JC, Park SJ (2020) Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains. Int J Biol Macromol 149:593–599. https://doi.org/10.1016/j.ijbiomac.2020.01.254

    Article  CAS  PubMed  Google Scholar 

  26. Andreeßen C, Steinbüchel A (2019) Recent developments in non-biodegradable biopolymers: precursors, production processes, and future perspectives. Appl Microbiol Biotechnol 103:143–157. https://doi.org/10.1007/s00253-018-9483-6

    Article  CAS  PubMed  Google Scholar 

  27. Nahar S, Jeong MH, Hur JS (2019) Lichen-associated bacterium, a novel bioresource of polyhydroxyalkanoate (PHA) production and simultaneous degradation of naphthalene and anthracene. J Microbiol Biotechnol 29:79–90. https://doi.org/10.4014/jmb.1808.08037

    Article  CAS  PubMed  Google Scholar 

  28. Alshehrei F (2019) Production of polyhydroxybutyrate (PHB) by bacteria isolated from soil of Saudi Arabia. J Pure Appl Microbiol 13:897–904. https://doi.org/10.22207/JPAM.13.2.26.

  29. Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  CAS  Google Scholar 

  30. Nadeem H, Alia KB, Muneer F, Rasul I, Siddique MH, Azeem F, Zubair M (2021) Isolation and identification of low-density polyethylene degrading novel bacterial strains. Arch Microbiol. https://doi.org/10.1007/s00203-021-02521-1

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pernicova I, Enev V, Marova I, Obruca S (2018) Interconnection of waste chicken feather biodegradation and keratinase and mcl-PHA production employing Pseudomonas putida KT2440. Appl Food Biotechnol 6:83–90. https://doi.org/10.22037/afb.v6i1.21429.

  32. Aljuraifani AA, Berekaa MM, Ghazwani AA (2018) Perspectives of polyhydroxyalkanoate (PHAs) biopolymer production using indigenous bacteria: Screening and characterization. J Pure Appl Microbiol 12:1997–2009

    Article  CAS  Google Scholar 

  33. Susianingsih E, Kadriah IAK, Nurhidayah (2020) Screening and isolation of PHB (Poly-β-hydroxybutyrate) producing bacteria as an alternative material for disease prevention on the shrimp culture. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/564/1/012053

    Article  Google Scholar 

  34. Tufail S, Munir S, Jamil N (2017) Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons, Brazilian. J Microbiol 48:629–636. https://doi.org/10.1016/j.bjm.2017.02.008

    Article  CAS  Google Scholar 

  35. Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutschera C, Hesse P, Braunegg G (2008) Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresour Technol 99:4854–4863. https://doi.org/10.1016/j.biortech.2007.09.049

    Article  CAS  PubMed  Google Scholar 

  36. Yamaguchi T, Narsico J, Kobayashi T, Inoue A, Ojima T (2019) Production of poly(3-hydroyxybutylate) by a novel alginolytic bacterium Hydrogenophaga sp. strain UMI-18 using alginate as a sole carbon source. J Biosci Bioeng 128:203–208. https://doi.org/10.1016/j.jbiosc.2019.02.008

    Article  CAS  PubMed  Google Scholar 

  37. Abid S, Raza ZA, Hussain T (2016) Production kinetics of polyhydroxyalkanoates by using Pseudomonas aeruginosa gamma ray mutant strain EBN-8 cultured on soybean oil. 3 Biotech https://doi.org/10.1007/s13205-016-0452-4.

  38. Raza ZA, Tariq MR, Majeed MI, Banat IM (2019) Recent developments in bioreactor scale production of bacterial polyhydroxyalkanoates. Bioprocess Biosyst Eng 42:901–919

    Article  CAS  Google Scholar 

  39. Wei YH, Chen WC, Huang CK, Wu HS, Sun YM, Lo CW, Janarthanan OM (2011) Screening and evaluation of polyhydroxybutyrate-producing strains from indigenous isolate Cupriavidus taiwanensis strains. Int J Mol Sci 12:252–265. https://doi.org/10.3390/ijms12010252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koller M, Rodríguez-Contreras A (2015) Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra- and extracellular PHA. Eng Life Sci 15:558–581. https://doi.org/10.1002/elsc.201400228

    Article  CAS  Google Scholar 

  41. López-Cortés A, Lanz-Landázuri A, García-Maldonado JQ (2008) Screening and isolation of PHB-producing bacteria in a polluted marine microbial mat. Microb Ecol 56:112–120. https://doi.org/10.1007/s00248-007-9329-8

    Article  CAS  PubMed  Google Scholar 

  42. Costa SS, Miranda AL, Andrade BB, Assis DJ, Souza CO, de Morais MG, Costa JAV, Druzian JI (2018) Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. Int J Biol Macromol 116:552–562. https://doi.org/10.1016/j.ijbiomac.2018.05.064

    Article  CAS  PubMed  Google Scholar 

  43. Joyline M (2019) Production and charaterization of polyhydroxyalkanoate (PHA) by Bacillus megaterium strain JHA using inexpensive agro-industrial wastes. Int J Recent Sci Res https://doi.org/10.24327/ijrsr.2019.1007.3656.

  44. Burniol-Figols A, Skiadas IV, Daugaard AE, Gavala HN (2020) Polyhydroxyalkanoate (PHA) purification through dilute aqueous ammonia digestion at elevated temperatures. J Chem Technol Biotechnol 95:1519–1532. https://doi.org/10.1002/jctb.6345

    Article  CAS  Google Scholar 

  45. Zargoun LM, Zain NAM, Shahir S (2015) Isolation and characterization polyhydrobutyrate (PHB) producing bacteria from waste cooking oil using pomegranate molasses as carbon source. J Teknol 77: 85–93. https://doi.org/10.11113/jt.v77.6916.

  46. Ghosh S, Gnaim R, Greiserman S, Fadeev L, Gozin M, Golberg A (2019) Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei. Bioresour Technol 271:166–173. https://doi.org/10.1016/j.biortech.2018.09.108

    Article  CAS  PubMed  Google Scholar 

  47. Asad-Ur-Rehman A, Aslam R, Masood MN, Aftab R (2016) Ajmal, Ikram-Ul-Haq, Production and characterization of a thermostable bioplastic (Poly-s-hydroxybutyrate) from Bacillus cereus NRRL-b-3711. Pak J Bot 48:349–356

    CAS  Google Scholar 

  48. Pérez R, Cantera S, Bordel S, García-Encina PA, Muñoz R (2019) The effect of temperature during culture enrichment on methanotrophic polyhydroxyalkanoate production. Int Biodeterior Biodegrad 140:144–151. https://doi.org/10.1016/j.ibiod.2019.04.004

    Article  CAS  Google Scholar 

  49. Montiel-Jarillo G, Carrera J, Suárez-Ojeda ME (2017) Enrichment of a mixed microbial culture for polyhydroxyalkanoates production: effect of pH and N and P concentrations. Sci Total Environ 583:300–307. https://doi.org/10.1016/j.scitotenv.2017.01.069

    Article  CAS  PubMed  Google Scholar 

  50. Preethi K, Umesh M (2015) Water Hyacinth: a potential substrate for bioplastic (PHA) production using Pseudomonas aeruginosa. Int J Appl Res 1:349–354

    Google Scholar 

Download references

Acknowledgements

The results and data presented in this study are a part of Mr. Faizan Muneer’s MS thesis .The authors would like to acknowledge the Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan, for providing lab facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habibullah Nadeem.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest in this work.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2067 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muneer, F., Rasul, I., Qasim, M. et al. Optimization, Production and Characterization of Polyhydroxyalkanoate (PHA) from Indigenously Isolated Novel Bacteria. J Polym Environ 30, 3523–3533 (2022). https://doi.org/10.1007/s10924-022-02444-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02444-y

Keywords

Navigation