Skip to main content
Log in

Assessment of groundwater dynamics in Quaternary aquifers of the Phrae Basin, northern Thailand, using isotope techniques

Evaluation de la dynamique des eaux souterraines des aquifères quaternaires du bassin de Phrae au nord de la Thaïlande à l’aide des techniques isotopiques

Evaluación de la dinámica de las aguas subterráneas en acuíferos cuaternarios de la cuenca de Phrae en el norte de Tailandia mediante técnicas isotópicas

利用同位素技术评估泰国北部Phrae盆地第四系含水层的地下水动态

Avaliação da dinâmica das águas subterrâneas em aquíferos quaternários da Bacia Phrae, norte da Tailândia, usando técnicas isotópicas

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Quaternary sequences in the Phrae Basin, northern Thailand, can be classified into three aquifers based on depth. The groundwater dynamics and recharge of these aquifers were assessed using isotope techniques, and flow directions were acquired using groundwater level of selected wells. Groundwater flows from northwest and west to the centre of the basin on the western side of the Yom River, while flow is from northeast and east to centre on the eastern side. The groundwater mean residence time (MRT) within the shallow aquifer is 1–30 years using 3H time series, estimated by the exponential piston-flow model (EPM), which is one option of the selected lumped-parameter model (TracerLPM). Groundwater in the shallow aquifer mainly originated from local rainfall and surface water. Recharge rates were estimated using MRT and chloride mass balance, with results of 305 mm year−1 and 301–309 mm year−1, respectively. The groundwater age range (1,087–22,920 years BP) was determined by 14C dating and corrected using 14C-DIC models. The horizontal velocities of the deep aquifer were between 3 and 5 m year−1, and vertical velocity was ~0.0235 m year−1 based on 14C ages and depth. Groundwater in the intermediate and deep aquifers was recharged mainly from local rainfall at 220–300 m above mean sea level. Interactions between groundwater and river water were detected close to the Yom River when it was in full flow. These findings on groundwater dynamics and quantity could aid water resource management within the Phrae Basin.

Résumé

Les séquences du Quaternaire dans le bassin de Phrae au nord de la Thaïlande peuvent être classées en fonction de la profondeur en trois aquifères. La dynamique des eaux souterraines et la recharge de ces aquifères ont été évaluées en utilisant des techniques isotopiques et les directions d’écoulement déterminées en utilisant les niveaux d’eau souterraine sur une sélection de puits. Les écoulements souterrains vont du nord-ouest et de l’ouest vers le centre du bassin sur la rive ouest de la rivière Yom alors que l’écoulement est du nord-est et est vers le centre pour la partie orientale. Les temps moyens de résidence des eaux souterraines (TMR) au sein de l’aquifère superficiel sont de 1–30 ans déterminés par les séries temporelles de 3H à partir d’un modèle exponentiel de flux piston (EPM) qui est une option du modèle à paramètres groupés sélectionné (Tracer LPM). Les eaux souterraines au sein de l’aquifère peu profond proviennent des pluies locales et des eaux de surface. La recharge est estimée à partir du TMR et d’un bilan de masse des chlorures à respectivement 305 mm.a−1 et 301–309 mm an−1. La gamme d’âge des eaux (1,087–22,920 ans BP) a été déterminée par datation au 14C corrigée en utilisant des modèles de 14C-CID. La vitesse horizontale de l’aquifère profond est comprise entre 3 et 5 m an−1 et la vitesse verticale à ~0.0235 m an−1 en se basant sur les âges 14C et les profondeurs. Les aquifères des niveaux intermédiaires et profonds sont rechargés principalement à partir des pluies à 220–300 m d’altitude au-dessus du niveau de la mer. Des interactions entre les eaux souterraines et les rivières ont été détectées près de la rivière Yom en période de forts débits. Ces constatations sur la dynamique et la quantité des eaux souterraines pourraient faciliter la gestion de la ressource en eau dans le bassin de Phrae.

Resumen

Las secuencias cuaternarias de la cuenca de Phrae, en el norte de Tailandia, pueden clasificarse en tres acuíferos en función de su profundidad. La dinámica de las aguas subterráneas y la recarga de estos acuíferos se evaluaron mediante técnicas isotópicas, y las direcciones de los flujos se obtuvieron utilizando el nivel de las aguas subterráneas de los pozos seleccionados. Las aguas subterráneas fluyen desde el noroeste y el oeste hacia el centro de la cuenca en el margen occidental del río Yom, mientras que el flujo es desde el noreste y el este hacia el centro en el margen oriental. El tiempo medio de residencia de las aguas subterráneas (MRT) dentro del acuífero poco profundo es de 1 a 30 años utilizando series temporales de 3H, estimadas por el modelo de flujo de pistón exponencial (EPM), que es una opción del modelo de parámetros globales seleccionado (Tracer LPM). Las aguas subterráneas del acuífero poco profundo proceden principalmente de las precipitaciones locales y de las aguas superficiales. Las tasas de recarga se estimaron utilizando la MRT y el balance de masas de cloruro, con resultados de 305 mm año−1 y 301–309 mm año−1, respectivamente. El rango de edad de las aguas subterráneas (1,087–22,920 años BP) se determinó mediante datación por 14C y se corrigió utilizando modelos 14C-DIC. Las velocidades horizontales del acuífero profundo se situaron entre 3 y 5 m año−1, y la velocidad vertical fue de ~0.0235 m año−1 según las edades de 14C y la profundidad. Las aguas subterráneas de los acuíferos intermedios y profundos se recargaron principalmente con las precipitaciones locales a 220–300 m sobre el nivel medio del mar. Se detectaron interacciones entre las aguas subterráneas y las aguas fluviales cerca del río Yom cuando éste estaba en su máximo caudal. Estos resultados sobre la dinámica y la cantidad de las aguas subterráneas podrían ayudar a la gestión de los recursos hídricos en la cuenca de Phrae.

摘要

泰国北部Phrae盆地的第四系层序可按深度分成三个含水层。使用同位素技术评估了含水层的地下水动态和补给, 并选择井中的地下水位获得了流向。地下水在Yom河西侧由西北和西流向盆地中心, 而在东侧由东北和东流向流域中心。使用 3H 时间序列和指数活塞流模型 (EPM) 估算浅层含水层中的地下水平均滞留时间(MRT)为 1–30 年, 这是所选集中参数模型的一种结果(Tracer LPM)。浅层含水层地下水主要来源于局部降雨和地表水。使用 MRT 和氯质量平衡估算补给率, 结果分别为 305 mm year−1 和 301–309 mm year−1。地下水年龄范围 (1,087–22,920 years BP)由 14C 测年确定, 并使用 14C-DIC 模型进行校正。根据 14C 年龄和深度, 深层含水层的水平流速在 3 到 5 m year−1 之间, 垂直流速约为 0.0235 m year−1。中层和深层含水层地下水的补给主要来自平均海平面以上 220–300 m的局部降雨。在全流量时, Yom河附近检测到地下水和河水之间的相互作用。这些关于地下水动态和数量的研究结果有助于 Phrae 盆地内的水资源管理。

Resumo

As sequências quaternárias na Bacia Phrae, norte da Tailândia, podem ser classificadas em três aquíferos com base na profundidade. A dinâmica das águas subterrâneas e a recarga desses aquíferos foram avaliadas usando técnicas isotópicas, e as direções de fluxo foram obtidas usando o nível das águas subterrâneas dos poços selecionados. As águas subterrâneas fluem do noroeste e oeste para o centro da bacia no lado oeste do Rio Yom, enquanto o fluxo é do nordeste e leste para o centro no lado leste. O tempo médio de residência da água subterrânea (TMR) dentro dos aquíferos rasos é de 1 a 30 anos usando séries temporais de 3H, estimadas pelo modelo exponencial de fluxo de pistão (EPM), que é uma opção do modelo de parâmetro concentrado (Tracer LPM). A água subterrânea no aquífero raso originou-se principalmente de chuvas locais e águas superficiais. As taxas de recarga foram estimadas usando TRM e balanço de massa de cloreto, com resultados de 305 mm ano−1 e 301–309 mm ano−1, respectivamente. A faixa etária das águas subterrâneas (1,087–22,920 anos AP) foi determinada por datação 14C e corrigida usando modelos 14C-DIC. As velocidades horizontais dos aquíferos profundos estavam entre 3 e 5 m ano−1, e a velocidade vertical foi de ~0.0235 m ano−1, baseado em idades de 14C e profundidade. A água subterrânea nos aquíferos intermediários e profundos foi recarregada principalmente a partir de chuvas locais a 220–300 m acima do nível médio do mar. As interações entre a água subterrânea e a água do rio foram detectadas perto do Rio Yom quando este estava em pleno fluxo. Essas descobertas sobre a dinâmica e quantidade das águas subterrâneas podem ajudar na gestão dos recursos hídricos na Bacia Phrae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Addai MO, Yidana SM, Chegbeleh LP, Adomako D, Yakubo BB (2015) Groundwater recharge processes in the Nasia sub-catchment of the White Volta basin: analysis of porewater characteristics in the unsaturated zone. J Afr Earth Sci 122:4–14

  • Ammar BS, Taupin JD, Alaya MB, Zouari K, Patris N, Khouatmia M (2020) Using geochemical and isotopic tracers to characterize groundwater dynamics and salinity sources in the northern Tunisia. J Arid Environ 178(104150):1–14. https://doi.org/10.1016/j.jaridenv.2020.104150

    Article  Google Scholar 

  • Bajjali W (2004) Recharge mechanism and hydrochemistry evaluation of groundwater in the Nuaimeh area, Jordan, using environmental isotope techniques. Hydrogeol J 14:180–191

    Article  Google Scholar 

  • Bethke CM, Johnson TM (2008) Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci 36:121–152

    Article  Google Scholar 

  • Bhandary H, Al-Senafy M, Marzouk F (2015) Usage of carbon isotopes in characterizing groundwater age, flow direction, flow velocity and recharge area. Procedia Environ Sci 25:28–35

    Article  Google Scholar 

  • Bohlke JK, Wanty R, Tuttle M, Delin G, Landon M (2002) Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota. Water Resour Res 38(7). https://doi.org/10.1029/2001WR000663

  • Bohlke JK, Verstraeten IM, Kraemer TF (2007) Effect of surface water irrigation on sources, fluxes, and residence times of water, nitrate, and uranium in an alluvial aquifer. Appl Geochem 22:152–174

    Article  Google Scholar 

  • Buckau G, Artinger R, Geyer S, Wolf M, Fritz P, Kim JI (2000) 14C dating of Gorbeben groundwater. Appl Geochem 15:583–597

    Article  Google Scholar 

  • Burrow KR, Dubrovsky NM, Shelton JL (2007) Temporal trends in concentrations of DBCP and nitrate in groundwater in the eastern San Joaquin Valley, California, USA. Hydrogeol J 15:991–1007

    Article  Google Scholar 

  • Cartwright I, Morgenstern U (2012) Constraining groundwater recharge and the rate of geochemical process using tritium and major ion geochemistry: Ovens catchment, Southeast Australia. J Hydrol 475:137–149

    Article  Google Scholar 

  • Cartwright I, Cendon D, Currell M, Meredith K (2017) A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: possibilities, challenges, and limitations. J Hydrol 555:797–811

    Article  Google Scholar 

  • Chen Z, Nie Z, Zhang G, Wan L, Shen J (2006) Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River basin, northwestern China. Hydrogeol J 14:1635–1165

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, FL

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1170

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotope in precipitation. Tellus 16:436–468. https://doi.org/10.3402/tellusa.v16i4.5993

    Article  Google Scholar 

  • Darling WG, Osiensky JL, Keller CK (1997) Isotopic evidence for paleowaters in the British Isles. Appl Geochem 12:813–829

    Article  Google Scholar 

  • Demlie M, Wohnlich S, Wisotsky FB, Gizar B (2007) Groundwater recharge, flow and hydrogeological evolution in a complex volcanic aquifer system, central Ethiopia. Hydrogeol J 15(6):1169–1181

    Article  Google Scholar 

  • Department of Groundwater Resources (2009) Thailand’s groundwater database. http://www2dgrgoth/officerservphp. Accessed 12 August 2020

  • Department of Groundwater Resources (DGR) (2001) Groundwater map scale 1:100,000. Ministry of Natural Resources and Environment, Bangkok, Thailand

    Google Scholar 

  • Department of Groundwater Resources (DGR) (2015) Report of groundwater situation of Thailand phrase I. Ministry of Natural Resources and Environment, Environment, Bangkok, Thailand

    Google Scholar 

  • Department of Mineral Resources (DMR) (1988) Geological map scale 1:250,000. Ministry of Natural Resources and Environment, Bangkok, Thailand

    Google Scholar 

  • Deshpande RD, Maurya AS, Kumar B, Sarkar A, Gupta SK (2010) Rain-vapor interaction and vapor source identification using stable isotopes from semiarid western India. J Geophys Res 115:1–11

    Google Scholar 

  • Douglas AA, Osiensky JL, Keller CK (2007) Carbon-14 dating of ground water in the Palouse Basin of the Columbia River basalts. Hydrogeol J 334:502–512

    Google Scholar 

  • Edmunds WM, Darling WG, Kinnibugh DG (1988) Solute profile techniques for recharge estimation in semi-arid and arid terrain. In: Simmers PDI (ed) Estimation of natural groundwater recharge. Springer, The Netherlands, pp 139–157

    Chapter  Google Scholar 

  • Edmunds W, Fellman E, Goni I, Prudhomme C (2002) Spatial and temporal distribution of groundwater recharge in northern Nigeria. Hydrogeol J 10:203–215

    Article  Google Scholar 

  • Eichinger L (1983) A contribution to the interpretation of 14C groundwater ages considering the example of a partially confined sandstone aquifer. Radiocarbon 25:347–356

    Article  Google Scholar 

  • Evans GV, Otlet RL, Downing A, Monkhouse RA, Rae G (1979) Some problems in the interpretation of isotope measurements in United Kingdom aquifers. In: Isotope hydrology II. IAEA, Vienna, pp 679–708

    Google Scholar 

  • Fouty SC (1989) Chloride mass balance as method for determining long-term groundwater recharge rates and geomorphic-surface stability in arid and semi-arid regions, Whisky Flat and Beatty, Nevada. PhD Thesis, Univ. of Arizona, Tucson, AZ

  • Gat JR, Carmi I (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3048

    Article  Google Scholar 

  • Gates JB, Edmunds WM, Darling WG, Ma J, Pang Z, Young AA (2008) Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers. Appl Geochem 23:3519–3534

    Article  Google Scholar 

  • Gee GW, Hillel D (1988) Groundwater recharge in arid regions: review and critique of estimation methods. Hydrol Process 2:255–266

    Article  Google Scholar 

  • Geo-Informatics and Space Technology Development Agency (GISTDA) (2015) Digital altitude model. GISTDA, Bangkok, Thailand

  • Green CT, Fisher LH, Bekins BA (2008) Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States. J Environ Qual 37:1073–1085

    Article  Google Scholar 

  • Gusyev M, Morgenstern U, Stewart MK, Yamazaki Y, Kashiwaya K, Nishihara T, Kuribayashi D, Sawana H, Iwami Y (2016) Application of tritium in precipitation and baseflow in Japan: a case study of groundwater transit times and storage in Hokkaido watersheds. Hydrol Earth Syst Sci 20:3043–3058

    Article  Google Scholar 

  • Gusyev MA, Morgenstern U, Nishihara T, Hayashi T, Akata N, Ichiyanagi K, Sugimoto A, Hasegawa A, Stewart MK (2019) Evaluating anthropogenic and environmental tritium effects using precipitation and Hokkaido snowpack at selected coastal locations in Asia. Sci Total Environ 659:1307–1321

    Article  Google Scholar 

  • Harada Y, Kamahori H, Kobayashi C, Endo H, Kobayashi S, Ota Y, Onoda H, Onogi K, Miyaoka K, Takahashi K (2016) The JRA-55 reanalysis: representation of atmospheric circulation and climate variability. J Meteor Soc Jpn 94:269–302. https://doi.org/10.2151/jmsj.2016-015

    Article  Google Scholar 

  • Huang T, Pang Z (2011) Combined conceptual model (V&P model) to correct groundwater radiocarbon age. International Symposium on Water Resource and Environmental Protection, Xi'an, China, pp 28–30

  • Hunt RJ, Coplen TB, Haas NL, Saad DA, Borchardt MA (2005) Investigating surface water-well interaction using stable isotope ratios of water. J Hydrol 302:154–172

    Article  Google Scholar 

  • Ingerson E, Pearson FJ (1964) Estimation of age and rate of motion of groundwater by the 14C-method. In: Miyake Y, Koyama T (eds) Recent researches in the field of hydrosphere, atmosphere and nuclear geochemistry. Tokyo, Maruzen, Tokyo, pp 263–283

    Google Scholar 

  • Jafavi H, Sudegi A, Bagheri R (2019) Contribution of rainfall and agricultural returns to groundwater recharge in arid zone. J Hydrol 575:1230–1238. https://doi.org/10.1016/j.jhydrol.2019.06.029

    Article  Google Scholar 

  • Jurgens BC, Bohlke JK, Eberts SM (2012) Tracer LPM (version 1) an Excel® workbook for interpreting groundwater age distributions from environmental tracer data. US Geol Surv Techniques Methods Rep 4-F3

  • Kamdee K (2021) Dynamics of groundwater in Phrae Basin using isotope techniques. PhD Dissertation, Kasetsart University, Bangkok, Thailand

  • Kamdee K, Srisuk K, Lorphensri O, Chitradon R, Noipow N, Laoharojanaphand S, Chantarachot W (2013) Use of isotope hydrology for groundwater resources study in Upper Chi River Basin. J Radioanal Nucl Chem 297:405–418

    Article  Google Scholar 

  • Kamdee K, Alvarado JAC, Occarach O, Hunyek V, Wongsit A, Saengkorakot C, Chanruang P, Polee C, Khaweerat S, IoannisMatiatos I, Matsumoto T (2020) Application of isotope techniques to study groundwater resources in the unconsolidated aquifers along the Ping River (Thailand). Isot Environ Health Sci 56:95–110. https://doi.org/10.1080/10256016.2020.1739672

    Article  Google Scholar 

  • Klongvessa P, Chotpantarat S (2022) Determination of rainfall data for direct runoff prediction in monsoon region: a case study in the Upper Yom basin, Thailand. Nat Hazards. https://doi.org/10.1007/s11069-021-05133-6

  • Klongvessa P, Lu M, Chotpantarat S (2018a) Variation of characteristics of consecutive rainfall days over northern Thailand. Theor Appl Climatol 133:737–749

    Article  Google Scholar 

  • Klongvessa P, Lu M, Chotpantarat S (2018b) Response of the flood peak to the spatial distribution of rainfall in the Yom River basin, Thailand. Stoch Environ Res Risk Assess 32:2871–2887

    Article  Google Scholar 

  • Koontanakulvong S, Hanittinan P, Suthidhummajit C (2014) Flood impact and risk assessment at Yom River basin due to global climate change: part 2 impact and adaptation. PAWEES 2014 International Conference Sustainable Water and Environmental Management in Monsoon Asia, 30–31 October 2014, Kaohsiung, Taiwan

  • Kornkul J, Chotpantarat S (2013) Distributed groundwater recharge estimation in Phrae Province using Wetspass, the second environment Asia international conference on “human vulnerability and global environmental change”, 15–17 May 2013, Chonburi, Thailand

  • Kornkul J, Rojborwornwittaya W, Chotpantarat S (2014) Hydrogeologic characteristics and groundwater potentiality mapping using potential surface analysis in the Huay Sai area, Phetchaburi province, Thailand. Geosci J 18:89–103

    Article  Google Scholar 

  • Kralik M (2015) How to estimate mean residence time of groundwater. Procedia Earth Planet Sci 13:301–306

    Article  Google Scholar 

  • Krishan G, Kumar B, Sudarsan N, Someshwar M, Ghosh NC, Taloor AK, Bhattacharya P, Singh S, Kumar CP, Sharma A, Jain SK, Sidhu BS, Kumar S, Vasisht R (2021) Isotopes (δ18O, δD and 3H) variations in groundwater with emphasis on salinization in the state of Punjab, India. Sci Total Environ 789. https://doi.org/10.1016/j.scitotenv.2021.148051

  • Le Gal La Salle C, Marlin C, Savoye S, Fontes JC (1996) Geochemistry and 14C dating of groundwater from Jurassic aquifer of North Aquitaine Basin (France). Appl Geochem 11:433–445

  • Liu G, Wang Y, Zhang Y, Song T (2009) Application of chloride profile and water balance methods in estimating groundwater recharge in Luanjing irrigation area, Inner Mongolia/application des methodes du profil de chlorure et du bilan hydrique pour I’estimation de la recharge hydrogeologique dans le perimetre Irrigue de Luanjing, Mongolie Interieure. Hydrol Sci J 54:961–973

    Article  Google Scholar 

  • Liu Z, Yu X, Jia G, Wang D (2018) Oxygen and hydrogen isotopes of precipitation in a rocky mountainous area of Beijing to distinguish and estimate spring recharge. Water 10(6):1–14. https://doi.org/10.3390/w10060705

    Article  Google Scholar 

  • Maloszewski P, Zuber A (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers, I-models and their applicability. J Hydrol 57:207–231

    Article  Google Scholar 

  • Maneenai D (1987) The geologic reports of Amphoe Mae Tha, Amphoe Bo Khuae and Changwat Phrae. Technical report of Department of Mineral Resources (DMR), Bangkok, Thailand

    Google Scholar 

  • Manning AH, Solomon DK, Thiros SA (2005) 3H/3He age data in assessing the susceptibility of wells to contamination. Groundwater 43:353–367

    Article  Google Scholar 

  • McMahon PB, Bohlke JK, Christenson SC (2004) Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the Central High Plains aquifer, southwestern Kansas, USA. Appl Geochem 19:1655–1686

    Article  Google Scholar 

  • McMahon PB, Burrow KR, Kauffiman LJ, Eberts SM, Bohlke JK, Gurdak JJ (2008) Simulated response of water quality in public supply wells to land use change. Water Resour Res 44(7). https://doi.org/10.1029/2007WR006731

  • McMahon PB, Plummer LN, Bohlke JK, Shapiro SD, Hinkle SR (2011) A comparison of recharge rates in aquifers of the United States based on groundwater-age data. Hydrogeol J 19:779–800

    Article  Google Scholar 

  • Mekki OAE, Laftouhi NE, Hanich L (2017) Estimate of regional groundwater recharge rate in the Central Haouz plain, Morocco, using the chloride mass balance method and a geographical information system. Appl Water Sci 7:1679–1688

    Article  Google Scholar 

  • Morgenstern U, Stewart MK, Stenger K (2010) Dating of stream water using tritium in a post nuclear bomb pulse world: continuous variation of mean transit time with streamflow. Hydrol Earth Syst Sci 14:2289–2301

    Article  Google Scholar 

  • Myint S, Won-In K, Takashima I, Charusiri P (2008) Lateritic soil mapping of the Phrae basin, northern Thailand using satellite data. Sci Asia 34:307–316

    Article  Google Scholar 

  • Osenbruck K, Fiedler S, Knoller K, Weise SM, Sultenfuss J, Oster H, Strauch G (2006) Timescales and development of groundwater pollution by nitrate in drinking water wells of the Jahna Aue, Saxonia, Germany. Water Resour Res 42(12). https://doi.org/10.1029/2006WR004977

  • Plastino W, Chereji I, Cuna S, Kaihola L, Felice PD, Lupsa N, Balas G, Mirel V, Berde P, Baciu C (2007) Tritium in water electrolytic enrichment and liquid scintillation counting. Radiat Meas 42:68–73

    Article  Google Scholar 

  • Puckett LT, Cowdery TK, McMahon PB, Tornes LH, Stoner JD (2002) Using chemical, hydrological, and age dating analysis to delineate redox process and flow paths in the riparian zone of a glacial outwash aquifer-stream system. Water Resour Res 38(8). https://doi.org/10.1029/2001WR000396

  • Saghravani SR, Yusoff I, Tahir WZWM, Othman Z (2014) Comparison of water table fluctuation and chloride mass balance methods for recharge estimation in a tropical rainforest climate: a case study from Kelantan River catchment, Malaysia. Environ Earth Sci 73:4419–4428

    Article  Google Scholar 

  • Schlosser P, Stute M, Sonntag C, Munnich KO (1989) Tritiogenic 3He in shallow groundwater. Earth Planet Sci Lett 94:245–256. https://doi.org/10.1016/0012-821X(89)90144-1

    Article  Google Scholar 

  • Sengupta A, Sarkar A (2006) Stable isotope evidence of dual (Arabian Sea and Bay of Bengal) vapour sources in monsoonal precipitation over North India. Earth Planet Sci Lett 94(250):511–521

    Article  Google Scholar 

  • Sinsakul S (1987) The survey report of Quaternary geology in the Phrae Basin. Technical document, Department of Mineral and Resources, Bangkok

    Google Scholar 

  • Solomon DK, Sudicky EA (1991) Tritium and helium 3 isotope ratios for direct estimation of spatial variations in groundwater recharge. Water Resour Res 27:2309–2319. https://doi.org/10.1029/91WR01446

    Article  Google Scholar 

  • Subyani AM (2004) Use of chloride-mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, western Saudi Arabia. Environ Geol 46:741–749

    Article  Google Scholar 

  • Ting CS, Kerh T, Liao CJ (1998) Estimation of groundwater recharge using the chloride mass balance method, Pingtung Plain, Taiwan. Hydrogeol J 6:282–292

    Article  Google Scholar 

  • USGS (2012) Tracer LPM (version): an Excel workbook for interpreting groundwater age distributions from environmental tracer data. US Geological Survey, Reston, VA

    Google Scholar 

  • Vita-Finzi C, Leaney F (2006) The direct absorption method of 14C assay-historical perspective and future potential. Quat Sci Rev 25:1073–1079

    Article  Google Scholar 

  • Vogel JC (1967) Investigation of groundwater flow with radiocarbon. Isotopes in Hydrology, International Atomic Energy Agency, Vienna, pp 345–362

    Google Scholar 

  • Won-in K (2003) Quaternary geology of the Phrae Basin, northern Thailand, and application of thermoluminescence technique for Quaternary chronology. PhD Thesis, University of Akita, Japan, pp 146–150

  • Wood WW (1999) Use and misuse of the chloride-mass balance method in estimating groundwater recharge. Groundwater 37:282–292

    Article  Google Scholar 

  • Xianfang S, Xiangchao L, Jun X, Jingjie Y, Changyuan T (2006) A study of interaction between surface water and groundwater using environmental isotopes in Huaisha River basin. Sci China Series D Earth Sci 49(12):1299–1310

  • Yeh HF, Lee CH, Hsu KC, Chang PH, Wang CH (2009) Using stable isotopes for assessing the hydrological characteristic and sources of groundwater recharge. J Environ Eng Manage 19(4):185–191

    Google Scholar 

Download references

Acknowledgements

We thank the International Atomic Energy Agency who supported this research through the program RAS7030. We also thank Ms. Occapasorn Occarach and Krittiya Lerdlumfrom from DGR who provided all essential information. The manuscript was greatly improved by two native English speakers, Dr. Max Gibbs (New Zealand) and Dr. John Booth (UK). Dr. Maksym Gusyev is thanked for his support in dealing with the 3H data.

Funding

This work was mainly funded by Thailand Institute of Nuclear Technology. The TSRI Fund (CU_FRB640001_01_21_6 and CUFRB65_dis(2)_090_23_20) and Ratchadaphisek Sompoch Endowment Fund (2021) Chulalongkorn University (764002-ENV) are thanked for their partial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prayath Nantasin or Srilert Chotpantarat.

Ethics declarations

Conflicts of interests

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamdee, K., Nantasin, P., Chotpantarat, S. et al. Assessment of groundwater dynamics in Quaternary aquifers of the Phrae Basin, northern Thailand, using isotope techniques. Hydrogeol J 30, 1091–1109 (2022). https://doi.org/10.1007/s10040-022-02478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02478-5

Keywords

Navigation