Skip to main content
Log in

Groundwater quality and mineralization process in the Braga shallow aquifer, Central Tunisia: an overview

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

In the Braga aquifer, groundwater quality and mineralization processes have been assessed using a qualitative hydrogeochemical data analysis. The interpretation of physico-chemical parameters indicates that all groundwater samples have TDS and EC values superior to the permissible limits of WHO standards and are classified as very hard (TH > 300). According to Gibbs diagrams, these high values are in part related to the predominance of evaporation process, which indicates the importance of the return flow phenomenon. While, the WQI classification shows that roughly 2.3% of groundwater is unsuitable for human consumption, 27.9 is very poor, 62.8 is poor, and 7% is good. For irrigation purposes, more than 93% of samples are unsuitable and 7% are suitable based on the SAR. However, the Permeability index (PI) and the Kelly Ratio (KR) demonstrate that almost all samples are suitable for irrigation. The interpretation major ion analyses demonstrate that groundwater mineralization is mainly controlled by the dissolution of evaporate minerals, the direct/reverse ion exchange process, and the leaching of nitrogen and fertilizers. A higher concentration of nitrate in the groundwater of the Braga aquifer was mainly located in the north-east and the central parts and may cause a serious impact on human health. The non-carcinogenic health risk assessment of nitrate (NO3) indicated that the children are more vulnerable to direct ingestion of drinking water than adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability and materials

All data included in this study are available upon request by contact with the corresponding author. The information about the materials used during the current study is available from the corresponding author.

Code availability

'Not applicable' for that section.

References

  • Abbes C (2004) Structurations et évolutions Tectono-Sédimentaires Mésozoïques et Cénozoïques, associées aux accidents regmatiques, à la jonction des marges Téthysienne et Nord-africaine (Chaîne Nord-Sud—Tunisie centrale). [Mesozoic and Cenozoic Tectono-Sedimentary structures and evolutions, associated with regmatic accidents, at the junction of the Tethysian and North African margins (North-South chain—Central Tunisia)]. Doc. Thesis. FST, Univ. Tunis El Manar, p 402

  • Adams S, Tredoux G, Harris C, Titus R, Pietersen K (2001) Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. J Hydrol 241:91–103. https://doi.org/10.1016/S0022-1694(00)00370-X

    Article  Google Scholar 

  • Adimalla N (2019) Spatial distribution, exposure, and potential health risk assessment from nitrate in drinking water from semi-arid region of South India. Hum Ecol Risk Assess Int J 26(2):310–334. https://doi.org/10.1080/10807039.2018.1508329

    Article  Google Scholar 

  • Adimalla N, Li P (2018) Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State. India Hum Ecol Risk Assess 25:81–103. https://doi.org/10.1080/10807039.2018.1480353

    Article  Google Scholar 

  • Adimalla N, Vasa SK, Li P (2018) Evaluation of groundwater quality, Peddavagu in Central Telangana (PCT), South India: an insight of controlling factors of fluoride enrichment. Model Earth Syst Environ 4:841–852. https://doi.org/10.1007/s40808-018-0443-z

    Article  Google Scholar 

  • Ahmed MF, Bin Mokhtar M, Alam L, Mohamed CAR, Ta GC (2019) Noncarcinogenic health risk assessment of aluminum ingestion via drinking water in Malaysia. Expos Health 11:167–180. https://doi.org/10.1007/s12403-019-00297-w

    Article  Google Scholar 

  • Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Rotterdam

    Google Scholar 

  • Azaeiz H, Gabtni H, Bouyahya I, Tanfous D, Haji S, Bedir M (2011) Lineaments extraction from gravity data by automatic lineament tracing method in Sidi Bouzid basin (Central Tunisia): structural framework inference and hydrogeological implication. Int J Geosci 2:373–383. https://doi.org/10.4236/ijg.2011.23040

    Article  Google Scholar 

  • Azhdarpoor A, Radfard M, Pakdel M, Abbasnia A, Badeenezhad A, Mohammadi AA, Yousefi M (2019) Assessing fluoride and nitrate contaminants in drinking water resources and their health risk assessment in a semiarid region of southwest Iran. Desalin Water Treat 149:43–51. https://doi.org/10.5004/dwt.2019.23865

    Article  Google Scholar 

  • Barakat A (2020) Groundwater NO3 concentration and its potential health effects in Beni Moussa perimeter (Tadla plain, Morocco). Geo Environ Disasters 7:1. https://doi.org/10.1186/s40677-020-00149-9

    Article  Google Scholar 

  • Bédir M (1995) Mécanismes géodynamiques des bassins associés aux couloirs de coulissements de la marge atlasique de la Tunisie. Sismo -stratigraphie, sismo -tectonique et implications pétrolières. [Geodynamic mechanisms of the basins associated with the slide corridors of the Atlas margin of Tunisia. Sismo -stratigraphy, seismo -tectonics and petroleum implications]. Doc. Thesis. FST, Univ. Tunis El Manar, p 417

  • Belguith Y, Geoffroy L, Rigane A, Gourmelen C, Ben Dhia H (2011) Neogene extensional deformation and related stress regimes in central Tunisia. Tectonophysics 509:198–207. https://doi.org/10.1016/j.tecto.2011.06.009

    Article  Google Scholar 

  • Boughanmi M (2018) Etude expérimentale et numérique du transfert hydrique dans la plaine de Sidi Bouzid. [Experimental and digital study of water transfer in the plain of Sidi Bouzid]. Thesis. Tunisia, Univ. Sousse, Univ Strasbourg, p 341

  • Boughattas NH (2017) Diagnostic de l’état actuel du système aquifère Braga et effet des pratiques culturales sur la surexploitation et la pollution par les nitrates. Symposium Régional : Impact des pratiques culturales sur la pollution des ressources en eau souterraine par les nitrates, Sidi Bouzid, Tunisie

  • Boukadi N (1994) Signification géométrique et cinématique des nœuds et des zones d’interférences structurales au contact de grands couloirs tectoniques. [Geometric and kinematic significance of nodes and structural interference zones in contact with large tectonic corridors]. Doc. Thesis. FST, Univ. Tunis El Manar, p 249

  • Bulusu KR, Pande SP (1990) Nitrates a serious threat to groundwater pollution. Bhu-Jal News 5:39–43

    Google Scholar 

  • Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie centrale. Anal Des Mines Géol 1956:345

    Google Scholar 

  • Castany G, Degallier R, Domergue C (1952) Les grands problèmes d’hydrogéologie en Tunisie. In : XIXème congrès géologique international [The major hydrogeological problems in Tunisia. XIXth international geological congress] Alger

  • Chebbi H (2019) Rapport de synthèse sur l’agriculture en Tunisie. In: Projet d’appui à l’initiative enpard méditerranée, p 100

  • Chen H, Teng Y, Lu S, Wang Y, Wu J, Wang J (2016) Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere 144:1002–1011

    Article  Google Scholar 

  • Chen J, Wu H, Qian H, Gao Y (2017) Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of northwest China. Expos Health 9(3):183–195

    Article  Google Scholar 

  • Chihi L, Ben Ayed N (1991) Le rôle de la fracturation précoce sur la distribution des structures récentes le long du décrochement de Kasserine [The role of early fracturing on the distribution of recent structures along the Kasserine strike-slip]. An Tec 1991:64–73

  • Dassi L (2011) Investigation by multivariate analysis of groundwater composition in a multilayer aquifer system from North Africa: a multi-tracer approach. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2011.05.012

    Article  Google Scholar 

  • Dassi L, Tarki M, El Mejri H, Ben Hammadi M (2018) Effect of overpumping and irrigation stress on hydrochemistry and hydrodynamics of a Saharan oasis groundwater system. J Hydrol Sci 63:227–250. https://doi.org/10.1080/02626667.2017.1417595

    Article  Google Scholar 

  • DGAT (Direction Générale de l’Aménagement du Territoire) (2018) Atlas du gouvernorat de Sidi Bouzid, Ministère de l’équipement, l’habitat et l’aménagement du territoire, p 106

  • Dhahri F, Boukadi N (2017) Triassic salt sheets of Mezzouna, Central Tunisia: new comments on Late Cretaceous halokinesis and geodynamic evolution of the northern African margin. J Afr Earth Sci 129:318–329. https://doi.org/10.1016/j.jafrearsci.2017.01.016

    Article  Google Scholar 

  • Dhahri F, TanfousAmri D, Gabtni H, Boukadi N (2015) Structural and geodynamic study in central Tunisia using field and geophysical data: new structural interpretation of the N-S axis and associated Atlassic structures. Inter J Earth Sci 104:1819–1835. https://doi.org/10.1007/s00531-015-1159-1

    Article  Google Scholar 

  • Djuma AW, Olla F (2016) The examination of total hardness on drinking water with boiling and filter process using complexometry method. J Info Kesehatan 14:5

    Google Scholar 

  • Dlala A (1995) Application de la télédétection et les Systèmes d’Informations Géographique à l’étude du fonctionnement hydrologique du bassin versant de l’Oued Sejnane [Application of remote sensing and Geographic Information Systems to the study of the hydrological functioning of the Oued Sejnane watershed]. Master Univ Sfax, Tunisia, p 124

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrology. Wiley, New York

    Google Scholar 

  • Doneen LD (1964) Notes on water quality in agriculture. In: Published in water science and engineering. Univ. California, Davis

  • Duggal V, Rani A, Mehra R, Balaram V (2017) Risk assessment of metals from groundwater in northeast Rajasthan. J Geol Soc India 90(1):77–84

    Article  Google Scholar 

  • Ennaji W, Barakat A, El Baghdadi M, Oumenskou H, Aadraoui M, Karroum LA, Hilali A (2018) GIS-based multi-criteria land suitability analysis for sustainable agriculture in the northeast area of Tadla plain (Morocco). J Earth Syst Sci 127:79

    Article  Google Scholar 

  • Ezugwu CK, Onwuka OS, Egbueri JC, Unigwe CO, Ayejoto DA (2019) Multi-criteria approach to water quality and health risk assessments in a rural agricultural province, southeast Nigeria. HydroResearch. https://doi.org/10.1016/j.hydres.2019.11.005

    Article  Google Scholar 

  • FAO (Organisation des Nations Unies pour l'Alimentation et l'Agriculture) (2018) Évaluation de l’approvisionnement alimentaire dans un contexte de pénurie d’eau. Tunisie [Assessment of the food supply in a context of water scarcity. Tunisia], p 164

  • Feng W, Qian H, Xu P, Hou K (2020) Hydrochemical characteristic of groundwater and its impact on crop yields in the Baojixia Irrigation area. China Water 12:1443. https://doi.org/10.3390/w12051443

    Article  Google Scholar 

  • Gassara A (1980) Contribution à l’étude hydrogéologique du bassin de Horchane-Braga (Sidi Bouzid). [Contribution to the hydrogeological study of the Horchane-Braga basin (Sidi Bouzid)] Thesis. FST, Univ. Tunis El Manar, p 89

  • Haji T, Zouaghi T, Boukadi N (2014) The role of inherited structures in the evolution of the Meknassy Basin, Central Tunisia, based on geological–geophysical transects. J Afr Earth Sc 96:51–59. https://doi.org/10.1016/j.jafrearsci.2014.03.016

    Article  Google Scholar 

  • Hamdi M, Majdoub R, M’Sadek Y, Chalbaoui M (2013) Sensibilité des caractéristiques hydrochimiques de la nappe phréatique de Braga dans la Tunisie centrale aux pratiques culturales. 2ème Colloque International sur la gestion intégrée des ressources en eau (GIRE’2013), Batna, Algérie. https://www.researchgate.net/publication/274253284

  • He X, Wu J, He S (2018) Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Hum Ecol Risk Assess Int J. https://doi.org/10.1080/10807039.2018.1531693

    Article  Google Scholar 

  • Kelley WP (1963) Use of saline irrigation. Water Soil Sci 95(4):355–391

    Google Scholar 

  • Khessibi M (1978) Etudes géologiques du secteur de Maknassy-Mezzouna et du Jebel Kebar (Tunisie centrale). [Geological studies of the Maknassy-Mezzouna and Jebel Kebar sector (central Tunisia)]. Thesis. France, Univ. Claude Bernard, Lyon, p 175

  • Koschel R (1980) Etude hydrogéologique de la nappe de Hajeb Layoun Jilma Ouled Askar [Hydrogeological study of the Hajeb Layoun—Jilma—Ouled Askar aquifer]. In: Projet de coopération technique Tuniso-Allemande

  • Li PY, Wu JH, Qian H, Lyu XS, Liu HW (2014) Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, Northwest China. Environ Geochem Health 36:693–712

    Article  Google Scholar 

  • Lioyed JW, Heathcote JA (1985) Natural hydrochemistry in relation to groundwater. Clarendon Press, Oxford, p 296

    Google Scholar 

  • M’Rabet A (1981) Stratigraphie, sédimentation et diagenèse carbonatée des séries du Crétacé inférieur de Tunisie centrale. [Stratigraphy, sedimentation and carbonate diagenesis of the Lower Cretaceous series of central Tunisia] Thesis. Paris, Univ. Paris Sud, Centre d’Orsay, p 540

  • Mansouri R (1980) Contribution à l’étude hydrogéologique de la plaine de Sebkhat El Bhira (Sud-Ouest de Kairouan). [Contribution to the hydrogeological study of the Sebkhat El Bhira plain (South West of Kairouan)]. Thesis. France, Univ. Bordeaux, p 107

  • Mgbenu CN, Egbueri JC (2019) The hydrogeochemical signatures, quality indices and health risk assessment of water resources in Umunya district, Southeast Nigeria. Appl Water Sci 9(1):22. https://doi.org/10.1007/s13201-019-0900-5

    Article  Google Scholar 

  • ONAGRI National Observatory of Agriculture (2020) Le Tableau de Bord

  • Ouali J (1984) Structure et evolution géodynamique de chaînon Nara—Sidi Khalif (Tunisiecentrale), [Structure and geodynamic evolution of the Nara—Sidi Khalif chain (central Tunisia)] Thesis. France, Univ. Rennes, p 120

  • Paul R, Brindha K, Gowrisankar G, Tan ML, Singh MK (2019) Identification of hydrogeochemical processes controlling groundwater quality in Tripura, Northeast India using evaluation indices, GIS, and multivariate statistical methods. Environ Earth Sci. https://doi.org/10.1007/s12665-019-8479-6

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in geochemical interpretation of water analysis. Trans Am Geophys Union 25:914–928

    Article  Google Scholar 

  • Rabhi M, Chekhma H, Maamri R, Bel Hajd Ali M (1999) Configuration structurale de la région de l’Axe N-S au cours du Jurassique (Tunisie centrale) [Structural configuration of the N-S Axis region during the Jurassic period (central Tunisia], Résumé, 7ème journée de Géologie Tunisienne, p 19

  • Rahman MM, Islam MA, Bodrud-Doza M, Muhib MI, Zahid A, Shammi M, Tareq SM, Kurasaki M (2017) Spatio-temporal assessment of groundwater quality and human health risk: a case study in Gopalganj, Bangladesh. Expo Health 10:167–188. https://doi.org/10.1007/s12403-017-0253-y

    Article  Google Scholar 

  • Ravikumar P, Somashekar RK, Prakash KL (2015) A comparative study on usage of Durov and Piper diagrams to interpret hydrochemical processes in groundwater from SRLIS river basin, Karnataka, India. Elixir Earth Sci 80:31073–31077

    Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. In: Agriculture Handbook 60, Department of Agricultural, Washington DC: US

  • Rigane A, Gourmelen C (2010) Tunisian Transtensive basins in tethyan geodynamic context and their post-Tortonian inversion. In book: New Frontiers in Tectonic Research—At the Midst of Plate Convergence. Project: tectonic inversion—sedimentary basins and petroleum implications. https://doi.org/10.5772/18833

  • Rigane A, Feki M, Gourmelen C, Montacer M (2010) The “Aptian Crisis” of the South-Tethyan margin: new tectonic data in Tunisia. J Afr Earth Sci 57:360–366. https://doi.org/10.1016/j.jafrearsci.2009.11.005

    Article  Google Scholar 

  • Rindsberger M, Jaffe S, Rahamim S, Gat JR (1990) Patterns of the isotopic composition of precipitation in time and space: data from the Israeli storm Water collection program. Tellus 42:263–271. https://doi.org/10.3402/tellusb.v42i3.15218

    Article  Google Scholar 

  • Sawyer CN, McCarty PL (1967) Chemistry for sanitary engineers, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Scherer T (2017) Water softening (ion exchange). In: It’s all in your water. Water quality association. www.wqa.org/sitelogic.cfm?id=2

  • Schoeller H (1965) Qualitative evaluation of groundwater resources. In: Schoeller H (ed) Methods and techniques of groundwater investigations and development, The United Nations Educational, Scientific and Cultural Organization, Paris, pp 54–83

  • Schoeller H (1977) Geochemistry of groundwater. In: Groundwater studies—an international guide for research and practice. UNESCO, Paris, pp 1–18

  • Skipton S.O, Dvorak B.I (2014) Drinking water treatment: water softening (Ion Exchange). NebGuide

  • Smida H (2008) Apports des Systèmes d’Informations Géographiques (SIG) pour une approche intégrée dans l’étude et la gestion des ressources en eau des systèmes aquifères de la région de Sidi Bouzid (Tunisie centrale), [Contribution of Geographic Information Systems (GIS) for a integrated approach in the study and management of water resources in aquifer systems in the region of Sidi Bouzid (central Tunisia)] Thesis. Tunisia, Univ. Sfax, p 341

  • Smida H, Zairi M, Trabelsi R, Ben Dhia H (2005) Etude et gestion des Ressources en eau dans une region aride par le SIG: Cas de la région de Regueb—Sidi Bouzid—Tunisie [Study and management of water resources in an arid region by GIS: Case of the region of Regueb—Sidi Bouzid—Tunisia]. Conférence francophone ESRI, Issy Les Moulineaux, Paris, France, p 20

  • Subba Rao NS, Sunitha B, Rambabu R, Rao PVN, Rao PS, Spandana BD, Sravanthi M, Marghade D (2018) Quality and degree of pollution of groundwater, using PIG from a rural part of Telangana State, India. Appl Water Sci 8:227. https://doi.org/10.1007/s13201-018-0864-x

    Article  Google Scholar 

  • Sundaray SK, Nayak BB, Bhatta D (2009) Environmental studies on river water quality with reference to suitability for agricultural purposes: Mahanadi River estuarine system, India-a case study. Environ Monit Assess 155:227–243. https://doi.org/10.1007/s10661-008-0431-2

    Article  Google Scholar 

  • Talib MA, Tang Z, Shahab A, Siddique J, Faheem M, Fatima M (2019) Hydrogeochemical characterization and suitability assessment of groundwater: a case study in Central Sindh, Pakistan. Int J Environ Res Public Health 16:886. https://doi.org/10.3390/ijerph16050886

  • Tanfous Amri D, Bédir M, Soussi M, Lahoussine HA, Zitouni M, Inoubli H, Ben Boubaker K (2005) Halocinèse précoce associée au rifting jurassique dans l’Atlas central de Tunisie (région de Majoura–El Hfay) [Early halokinesis associated to the Jurassic rift faulting in Central Tunisia (Majoura–El Hfay area]. CR Geosci 337:703–711. https://doi.org/10.1016/j.crte.2005.02.007

    Article  Google Scholar 

  • Tarki M, Dassi L, Jedoui Y (2011) Geochemical and isotopic composition of groundwater in the complex terminal aquifer in southwestern Tunisia, with emphasis on the mixing by vertical leakage. Environ Earth Sc 64:85–95. https://doi.org/10.1007/s12665-010-0820-z

    Article  Google Scholar 

  • Tarki M, Dassi L, Jedoui Y (2012) Groundwater composition and recharge origin in the shallow aquifer of the Djerid oases, southern Tunisia: implications of return flow. Hydrol Sci J 57:790–804. https://doi.org/10.1080/02626667.2012.681783

    Article  Google Scholar 

  • Tarki M, Dassi L, Ben hamadi H, El Mejri H (2016) Assessment of hydrochemical processes and groundwater hydrodynamics in a multilayer aquifer system under long-term irrigation condition: a case study of Nefzaoua basin, southern Tunisia. Appl Rad Isot 110:138–149. https://doi.org/10.1016/j.apradiso.2016.01.009

    Article  Google Scholar 

  • Todd DK (1980) Groundwater hydrology, 2nd edn. Wiley, New York, p 535

    Google Scholar 

  • Ukah BU, Egbueri JC, Unigwe CO, Ubido OE (2019) Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. Int J Energ Water Res. https://doi.org/10.1007/s42108-019-00039-3

    Article  Google Scholar 

  • USEPA (US Environmental Protection Agency) (1989) Risk assessment guidance for superfund, vol 1, Human health evaluation manual (Part A). Office of Emergency and Remedial Response, Washington

  • USEPA (US Environmental Protection Agency) (2012) Integrated risk information system

  • USEPA (US Environmental Protection Agency) (2014) Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E). http://www.epa.gov/oswer/riskassessment/ragse/pdf/introduction.pdf

  • Vasanthavigar M, Srinivasamoorthy K, Rajiv Ganthi R, Vijayaraghavan K, Sarma VS (2012) Characterization and quality assessment of groundwater with a special emphasis on irrigation utility: Thirumanimuttar sub-basin, Tamil Nadu, India. Arab J Geosci 5:245–258. https://doi.org/10.1007/s12517-010-0190-6

    Article  Google Scholar 

  • Vrouhakis I, Tziritis E, Panagopoulos A, Stamatis G (2021) Hydrogeochemical and hydrodynamic assessment of Tirnavos Basin, Central Greece. Water 13:759. https://doi.org/10.3390/w13060759

    Article  Google Scholar 

  • WHO (World Health Organization) (2011) Hardness in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality. https://www.who.int.dwq.chemicals.hardness

  • WHO (World Health Organization) (2017) Guidelines for drinking-water quality: first addendum to the fourth edition, 1st add, 4th ed

  • Wilcox LV (1955) Classification and use of irrigation waters, USDA Circular No. 969. pp 19

  • Zhang M, Chunyan G, Lui C, Zong Y, Chen Z, Wang J (2020) Distributions and origins of nitrate, nitrite, and ammonium in various aquifers in an urbanized coastal area, south China. J Hydrol 582:124528

    Article  Google Scholar 

  • Zouaghi T, Bédir M, Inoubli MH (2015) 2D Seismic interpretation of strike-slip faulting, salt tectonics, and Cretaceous unconformities, Atlas Mountains, central Tunisia. J Afr Earth Sc 43:464–486. https://doi.org/10.1016/j.jafrearsci.2005.09.010

    Article  Google Scholar 

Download references

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

HS carried out investigations, sampling, and analyses. HS and MT carried out writing the original draft. MT and LD revised the manuscript. The publication has been approved by all co-author.

Corresponding author

Correspondence to Lassâad Dassi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval

'Not applicable' for that section.

Consent to participate

All authors have read and agreed with their participation.

Consent for publication

The authors are responsible for the correctness of the statements provided in the manuscript. The publication has been approved by all co-authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smida, H., Tarki, M. & Dassi, L. Groundwater quality and mineralization process in the Braga shallow aquifer, Central Tunisia: an overview. Carbonates Evaporites 37, 28 (2022). https://doi.org/10.1007/s13146-022-00771-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-022-00771-8

Keywords

Navigation