Skip to main content
Log in

Structural-Phase State and Fracture of a Low-Carbon Steel Coating

  • ADVANCED MATERIALS AND TECHNOLOGIES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The structural-phase state and the fracture surfaces of low-carbon alloy steel coatings formed by arc surfacing are studied by scanning and transmission electron microscopy. A quantitative analysis of the structure and dislocation substructure parameters of the coatings is performed. The contributions of the scalar and excess dislocation densities to the hardening of the coatings are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. E. Gromov, E. V. Kapralov, S. V. Raikov, Yu. F. Ivanov, and E. A. Budovskikh, “Structure and properties of the wear-resistant coatings deposited by the electric arc method onto steel using flux-cored electrodes,” Usp. Fiz. Met. 15 (4), 211–232 (2014).

    Google Scholar 

  2. E. V. Kapralov, S. V. Raykov, E. A. Budovskikh, V. E. Gromov, E. S. Vashchuk, and Yu. F. Ivanov, “Structural-phase states and properties of coatings welded onto steel surfaces using powder wires,” Bull. Russ. Acad. Sci.: Phys. 78 (10), 1015–1021 (2014).

    Article  CAS  Google Scholar 

  3. Y. Ivanov, A. Teresov, V. Gromov, S. Konovalov, V. Kormyshev, and K. Aksenova, “Structure and properties of strengthening layer on Hardox 450 steel,” Mater. Sci. Technol. 33 (17), 2040–2045 (2017).

    Article  CAS  Google Scholar 

  4. R. Li, D. Y. He, Z. Zhou, Z. J. Wang, and X. Y. Song, “Wear and high temperature oxidation behavior of wire arc sprayed iron based coatings,” Surf. Eng. 30, 784–790 (2014).

    Article  Google Scholar 

  5. R. Kejžar and J. Grum, “Hardfacing of wear-resistant deposits by MAG welding with a flux-cored wire having graphite in its filling,” Weld. Int. 20, 961–976 (2005).

    Google Scholar 

  6. M. Kirchgabner, E. Badisch, and F. Franek, “Behaviour of iron-based hardfacing alloys under abrasion and impact,” Wear J. 265, 772–779 (2008).

    Article  Google Scholar 

  7. N. A. Kozyrev, A. A. Usol’tsev, R. E. Kryukov, A. I. Gusev, and I. V. Osetkovskii, “Operational indicators of new Fe–C–Si–Mn–Cr–Ni–Mo flux-cored electrodes,” Chern. Metall., Byull. Nauchno-Tekhn. Ekonom. Inform. 75 (7), 860–868 (2019).

    Google Scholar 

  8. N. A. Kozyrev, A. I. Gusev, R. E. Kryukov, A. A. Usol’tsev, and L. P. Baschenko, “Development of new flux-cored electrodes for surfacing. Flux-cored electrode for surfacing of parts operating under shock-abrasive wear conditions,” Chern. Metall., Byull. Nauchno-Tekhn. Ekonom. Inform., No. 7, 70–77 (2018).

  9. N. N. Koval’ and Yu. F. Ivanov, Evolution of the Structure of the Surface Layer of Steel Subjected to Electron–Ion–Plasma Processing (Izd. NTL, Tomsk, 2016).

    Google Scholar 

  10. V. P. Rotshtein, D. I. Proskurovskii, G. E. Ozur, and Yu. F. Ivanov, Modification of the Surface Layers of Metallic Materials by Low-Energy High-Current Electron Beams (Nauka, Novosibirsk, 2019).

    Google Scholar 

  11. F. R. Egerton, Physical Principles of Electron Microscopy (Springer, Basel, 2016).

    Book  Google Scholar 

  12. C. S. S. R. Kumar, Transmission Electron Microscopy. Characterization of Nanomaterials (Springer, New York, 2014).

    Book  Google Scholar 

  13. C. B. Carter and D. B. Williams, Transmission Electron Microscopy (Springer, Berlin, 2016).

    Book  Google Scholar 

  14. K. S. Chernyavskii, Stereology in Metal Science (Metallurgiya, Moscow, 1977).

    Google Scholar 

  15. P. Hirsch, A. Howie, R. Nicholson, D. Pashley, and M. Whelan, Electron Microscopy of Thin Crystals (Plenum, New York, 1967).

    Google Scholar 

  16. V. E. Gromov, E. V. Kozlov, V. I. Bazaikin, V. Ya. Tsellermaer, Yu. F. Ivanov, et al., Physics and Mechanics of Drawing and Die Forging (Nedra, Moscow, 1997).

    Google Scholar 

  17. Yu. F. Ivanov, V. E. Gromov, N. A. Popova, S. V. Konovalov, and N. A. Koneva, Structural-Phase States and Mechanisms of Hardening of Deformed Steel (Poligrafist, Novokuznetsk, 2016).

    Google Scholar 

  18. D. Mac Lean, Mechanical Properties of Metals (Metallurgiya, Moscow, 1965).

    Google Scholar 

  19. I. D. Embyri, “Strengthening by dislocations structure,” in Strengthening Method in Crystals (Applied Sci. Publ., 1971), pp. 331–402.

    Google Scholar 

  20. N. A. Koneva and E. V. Kozlov, “Physical nature of the stages of plastic deformation,” in Structural Levels of Plastic Deformation and Fracture, Ed. by V. E. Panin (Nauka, Novosibirsk, 1990), pp. 123–186.

    Google Scholar 

  21. N. Koneva, S. Kiseleva, and N. Popova, Evolution of Structure and Internal Stress Fields. Austenitic Steel (LAP LAMBERT Academic Publishing, Saarbrucken, 2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Gromov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryukov, R.E., Kozyrev, N.A., Gromov, V.E. et al. Structural-Phase State and Fracture of a Low-Carbon Steel Coating. Russ. Metall. 2022, 320–324 (2022). https://doi.org/10.1134/S0036029522040152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522040152

Keywords:

Navigation