Skip to main content
Log in

Effect of the Phase Composition of Austenitic–Martensitic VNS9-Sh TRIP Steel on the Characteristics of Dry Sliding Friction in the Tribocontact with ShKh15 Steel

  • APPLIED PROBLEMS OF STRENGTH AND PLASTICITY
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The effect of the martensite phase content (from 0 to 50 vol %) on the hardness and tribotechnical properties of VNS9-Sh TRIP steel under conditions of dry sliding friction on ShKh15 steel (counterbody) is studied. The best combination of the hardness and the wear resistant is found in the steel with a martensite phase content of ≈32 vol %. The strength of VNS9-Sh steel is higher by a factor of more than two than that of 110G13L steel at comparable hardnesses and tribotechnical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. N. Kablov, “Innovative solutions of FGUP VIAM GNTs RF for ‘Strategic Directions of Designing Materials and Technologies of Their Processing until 2030,’” Aviats. Mater. Tekhnol., No. 1 (34), 3–33 (2015).

  2. V. M. Buznik and E. N. Kablov, “State and perspectives of arctic materials science,” Vestn. Ross. Akad. Nauks 87 (9), 827–839 (2017).

    Google Scholar 

  3. V. I. Gromov, N. M. Voznesenskaya, N. G. Pokrovskaya, and O. A. Tonysheva, “High-strength structural and corrosion-resistant steels of VIAM for parts of aviation engineering,” Aviats. Mater. Technol., No. 5, 159–174 (2017).

  4. O. G. Ospennikova, “Results of realizing strategic directions on development of new-generation high-temperature cast and deformable alloys and steels in 2012–2016,” Aviats. Mater. Technol., No. 5, 17–23 (2017).

  5. V. I. Bolobov and V. S. Bochkov, “Wear resistance of 110G13L steel in various abrasive media,” Zapiski Gorn. Inst. 209, 17–22 (2014).

    Google Scholar 

  6. A. M. Gur’ev, M. A. Gur’ev, O. L. Lomov, V. A. Zharenkov, S. G. Ivanov, and E. V. Chernykh, “Effect of preliminary strain hardening on the surface hardness of 110G13L steel,” Fundament. Probl. Sovrem. Materialoved. 15 (3), 429–433 (2018).

    Google Scholar 

  7. A. N. Zhavnerov and K. A. Lozovatskaya, “Effect of heat treatment modes of 110G13L steel on the performance of carterpillar tracks,” Nauka Voen. Bezopashoct’ 1 (8), 69–72 (2017).

    Google Scholar 

  8. L. G. Korshunov and N. L. Chernenko, “Effect of aluminum on structuraltransitions and the wear resistance of Hadfield steel under friction,” Phys. Met. Metallogr. 119 (7), 700–706 (2018).

    Article  CAS  Google Scholar 

  9. E. A Eliseev, V. F. Terent’ev, N. M. Voznesenskaya, A. K. Slizov, V. P. Sirotinkin, A. S. Bankin, and G. S. Seval’nev, “Effect of the strain rate on the mechanical properties of a thin-sheet TRIP steel with high martensite content,” Deform. Razrushenie Mater., No. 7, 31–33 (2016).

  10. E. A. Eliseev, V. F. Terent’ev, V. S. Erasov, D. V. Prosvirnin, G. V. Kopiev, G. S. Seval’nev, and A. K. Slizov, “Static and fatigue strength of a were made of VNS9-Sh TRIP steel,” Deform. Razrushenie Mater., No. 8, 29–35 (2016).

  11. V. F. Terent’ev, V. V. Roshchupkin, A. G. Penkin, and M. A. Penkin, “ Effect of the martensite content on the mechanical behavior and acoustic-emission characteristics of a thin-sheet TRIP steel during static tension,” Deform. Razrushenie Mater., No. 2, 36–41 (2019).

  12. P. S. Kusakin and V. F. Terent’ev, “Structure and mechanical properties of high-strength austenitic–martensitic VNS9-Sh TRIP steel,” Metalloved. Term. Obrab. Met. No. 1 (763), 9–13 (2019).

    Google Scholar 

  13. V. F. Terent’ev, E. A. Eliseev, M. Yu. Yazvitskii, V. P. Sirotinkin, A. Yu. Marchenkov, and V. I. Gromov, “Correlation between the mechanical properties of a thin-sheet austenitic–martensitic TRIP steel and the content of deformation martensite determined by various methods,” Deform. Razrushenie Mater., No. 1, 34–38 (2020).

  14. V. F. Terent’ev, O. V. Rybal’chenko, A. S. Baikin, M. A. Kaplan, V. P. Sirotinkin, and L. I. Kobeleva, “Effect of the strain rate on the mechanical properties of a thin-sheet austenitic–martensitic TRIP steel with low martensite content,” Deform. Razrushenie Mater., No. 4, 37–42 (2020).

  15. T. G. Seval’neva, V. F. Terent’ev, G. S. Seval’nev, and I. I. Vlasov, “Peculiarities of the formation of the structure of a wire made of a thin-sheet austenitic–martensitic VNS9-Sh TRIP steel under drawing,” Deform. Razrushenie Mater., No. 2, 26–31 (2021).

  16. V. F. Terent’ev, D. V. Prosvirnin, A. G. Kolmakov, A. A. Ashmarin, M. E. Prutskov, and S. V. Pivovarchik, “Effect of the electroerosion cutting on a local change in the phase composition and fatigue strength of a thin-sheet austenitic–martensitic TRIP steel,” Deform. Razrushenie Mater., No. 5, 18–21 (2021).

  17. A. D. Breki, S. G. Chulkin, A. E. Gvozdev, A. G. Kolmakov, and A. M. Kuz’min, “Sliding friction of R6AM5 steel on St3 steel in the M14G2TS lubricating oil medium with an additive of magnesium hydrosilicate powder,” Deform. Razrushenie Mater., No. 8, 30–36 (2021).

  18. A. G. Kolmakov, I. E. Kalashnikov, L. K. Bolotova, N. B. Podymova, P. A. Bykov, I. V. Katin, and L. I. Kobeleva, “Properties of composites based on antifriction B83 alloy,” Zavod. Lab 85 (5), 38–45 (2019).

    Article  CAS  Google Scholar 

  19. I. E. Kalashnikov, A. G. Kolmakov, L. K. Bolotova, P. A. Bykov, L. I. Kobeleva, R. S. Mikheev, and M. L. Kheifets, “Technological production modes and properties of welding wire rods and antifriction coating from a composite based on an SnSbCu alloy,” Fiz. Khim. Obrab. Mater., No. 1, 33–41 (2018).

  20. N. M. Rusin, A. L. Skorentsev, and E. A. Kolybaev, “Effect of severe plastic treatment on the wear resistance of sintered Al–Sn alloys during dry friction on steel,” Trenie Iznos 41 (3), 355–364 (2020).

    CAS  Google Scholar 

  21. V. V. Fadin, A. V. Kolubaev, and M. I. Aleutdinova, “On the wear resistance of steel-containing composites under extreme friction conditions,” Izv. Vysshikh Uchebn. Zaved., Cher. Met. 62 (8), 621–626 (2019).

    Google Scholar 

  22. V. R. Baraz and O. N. Fedorenko, “Effect of friction deformation on the structure and properties of a metastable austenitic chromium–nickel steel,” Deform. Razrushenie Mater., No. 12, 15–18 (2011).

  23. A. V. Makarov, L. G. Korshunov, I. L. Solodova, and I. Yu. Malygina, “Hardness, heat resistance and tribological properties of quenched carbon steels hardened under sliding friction,” Deform. Razrushenie Mater., No. 4, 26–33 (2006).

  24. V. A. Kim and Ch. F. Yakubov, “Dissipative structure of contact-friction interaction during metal cuttind,” Vestn. IrGTU 22 (12 (143)), 35–45 (2018).

  25. A. D. Breki, A. E. Gvozdev, and A. G. Kolmakov, “Semiempirical mathematical models of the spinning friction of ShKh-15 steel on R6M5 steel in the ball–plate scheme with inclusion of a wear,” Materialoved., No. 2, 43–48 (2019).

  26. X. Wu, H. Lin, Y. Wang, and H. Jiang, “Hydrogen embrittlement and fracture mechanism of friction stir welded quenching and partitioning 980 steel,” Mater. Sci. Eng. A 802, 140683 (2021).

    Article  CAS  Google Scholar 

  27. D. Shaysultanov, K. Rainov, N. Stepanov, and S. Zherebtsov, “Friction stir welding of a high-entropy Fe49Mn30Cr10Co10C1 TRIP alloy,” Metals 11 (1), 66 (2021).

    Article  CAS  Google Scholar 

  28. B. Mao, S. Chu, and S. Wang, “Effect of grain size on the friction-induced martensitic transformation and tribological properties of 304 austenite stainless steel,” Metals 10 (9), 1246 (2020).

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed, on the side of the All-Russia Institute of Aviation Materials VIAM, in the framework of complex direction 8.2 “High-strength structural and corrosion-resistant welded steels with high fracture toughness” and, on the side of the Baikov Institute of Metallurgy and Materials Science of Russian Academy of Sciences, in the framework of state task no. 075-00328-21-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Seval’nev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seval’nev, G.S., Seval’neva, T.G., Kolmakov, A.G. et al. Effect of the Phase Composition of Austenitic–Martensitic VNS9-Sh TRIP Steel on the Characteristics of Dry Sliding Friction in the Tribocontact with ShKh15 Steel. Russ. Metall. 2022, 404–410 (2022). https://doi.org/10.1134/S0036029522040267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522040267

Keywords:

Navigation