Skip to main content
Log in

Destruction of a Water-in-Oil Emulsion under Combined Action of a Low-Frequency Acoustic Field and a Demulsifier

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The effect from the combined action of a low-frequency acoustic field, a demulsifier (DE), and the temperature factor on the stability of the water-in-oil emulsions formed by crude oils differing in the contents of resins, asphaltenes, and paraffin hydrocarbons was examined. It was shown that the DE acts on the emulsions more effectively after acoustic treatment which accelerates the process of coalescence and separation of free aqueous phase. Preliminary exposure of the emulsion to the physical field facilitates migration of the DE molecules towards the interfacial film and causes loosening of the protective shells around the water droplets, thereby leading to formation of new disperse structures via redistribution of the oil components. An IR-spectroscopic analysis showed that the resin molecules in the emulsion are more susceptible to the acoustic field exposure than the asphaltene molecules, which causes a change in their structural-group composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kilpatrick, P.K., Energy Fuels, 2012, vol. 26, no. 7, pp. 4017–4026. https://doi.org/10.1021/ef3003262

    Article  CAS  Google Scholar 

  2. Wong, S.F., Lim, J.S., and Do, S.S., Petrol. Sci. Eng., 2015, vol. 135, pp. 498–504. https://doi.org/10.1016/j.petrol.2015.10.006

    Article  CAS  Google Scholar 

  3. Malkin, A.Ya. and Khadjev, S.N., Petrol. Chem., 2019, vol. 59, no. 10, pp. 1092–1107. https://doi.org/10.1134/S0965544119100062

    Article  CAS  Google Scholar 

  4. Moradi, M., Alvarado, V., and Huzurbazar, S., Energy Fuels, 2011, vol. 25, no. 1, pp. 260–268. https://doi.org/10.1021/ef101236h

    Article  CAS  Google Scholar 

  5. Mousavi, М., Abdollahi, Т., Pahlavan, F., and Fini, E.H., Fuel, 2016, vol. 183, pp. 262–271. https://doi.org/10.1016/j.fuel.2016.06.100

    Article  CAS  Google Scholar 

  6. Shi, Ch., Zhang, L., Xie, L., Xie, L., Lu, X., Liu, Q., He, J., Mantilla, C.A., Van den berg, F.G.A., and Zeng, H., Langmuir, 2017, vol. 33, no. 5, pp. 1265–1274. https://doi.org/10.1021/acs.langmuir.6b04265

    Article  CAS  PubMed  Google Scholar 

  7. Speight, J.G., Petrol. Sci. Eng., 1999, vol. 22, nos. 1–3, pp. 3–15. https://doi.org/10.1016/S0920-4105(98)00051-5

    Article  CAS  Google Scholar 

  8. Spiecker, M., Gawrys, K.L., Trail, C.B., and Kilpatrick, P.K., Colloid Surf. A: Physicochem. Eng. Asp., 2003, vol. 220, no. 1, pp. 9–27. https://doi.org/10.1016/S0927-7757(03)00079-7

    Article  CAS  Google Scholar 

  9. Nebogina, N.A., Prozorova, I.V., Savinykh, Yu.V., and Yudina, N.V., Petrol. Chem., 2010, vol. 50, pp. 158–163. https://doi.org/10.1134/S0965544110020131

    Article  Google Scholar 

  10. Sullivan, A.P., Zaki, N.N., Sjöblom, J., and Kilpatrick, P.K., Can. J. Chem. Eng., 2007, vol. 85, no. 6, pp. 793–807. https://doi.org/10.1002/cjce.5450850601

    Article  CAS  Google Scholar 

  11. Czarnecki, J., Energy Fuels, 2009, vol. 23, no. 3, pp. 1253–1257. https://doi.org/10.1021/ef800607u

    Article  CAS  Google Scholar 

  12. Forgiarini, A.M., Marquez, R., and Salager, J.-L., Molecules, 2021, vol. 26, no. 12, Art. 3771. https://doi.org/10.3390/molecules26123771

  13. Angle, C.W., in Encyclopedic Handbook of Emulsion Technology, Sjoblom, J., Ed., New York: Marcel Dekker, 2001, pp. 541−594.

  14. Myers, D., Surfactant Science and Technology, 4th ed., Hoboken, New Jersey: John Wiley & Sons, 2006.

  15. Holtze, Ch., Sivaramakrishnan, R., Antonietti, M., Tsuwi, J., Kremer, F., and Kramer, K.D., J. Colloid Interface Sci., 2006, vol. 302, pp. 651–657. https://doi.org/10.1016/j.jcis.2006.07.020

    Article  CAS  PubMed  Google Scholar 

  16. Mhatre, S., Simon, S., Sjöblom, J., and Xu, Z., Chem. Eng. Res. Des., 2018, vol. 134, pp. 117−129. https://doi.org/10.1016/j.cherd.2018.04.001

    Article  CAS  Google Scholar 

  17. Hazrati, N., Beigi, A.A.M., and Abdouss, M., Fuel, 2018, vol. 229, pp. 126–134. https://doi.org/10.1016/j.fuel.2018.05.010

    Article  CAS  Google Scholar 

  18. Sjoblom, J., Mhatre, S., Simon, S., Skartlien, R., and Sørland, G., Adv. Colloid Interface Sci., 2021, vol. 294, Art. 102455. https://doi.org/10.1016/j.cis.2021.102455

  19. Martínez-Palou, R., Cerón-Camacho, R., Chávez, B., Vallejo, A.A., Villanueva-Negrete, D., Castellanos, J., Karamath, J., Reyes, J., and Aburto, J., Fuel, 2013, vol. 113, pp. 407–414. https://doi.org/10.1016/j.fuel.2013.05.094

    Article  CAS  Google Scholar 

  20. Taolti, S., Yiyang, Z., Lu, W., Sun, T., Zhang, L., Wang, Y., Zlfat, S., Peng, B., Li, M., and Jiayong, Y., J. Colloid Interface Sci., 2002, vol. 255, pp. 241–247. https://doi.org/10.1006/jcis.2002.8661

    Article  CAS  Google Scholar 

  21. Aske, N., Kallevik, H., and Sjöblom, J., Petrol. Sci. Eng., 2002, vol. 36, pp. 1–17. https://doi.org/10.1016/S0920-4105(02)00247-4

    Article  CAS  Google Scholar 

  22. Saad, M.A., Kamil, M., Abdurahman, N.H., Yunus, R.M., and Awad, O.I., Processes, 2019, vol. 7, no. 7, p. 470. https://doi.org/10.3390/pr7070470

    Article  CAS  Google Scholar 

  23. Kakhki, A.N., Farsi, M., and Rahimpour, M.R., J. Taiwan Inst. Chem. Eng., 2016, vol. 67, pp. 1–10. https://doi.org/10.1016/j.jtice.2016.06.021

    Article  CAS  Google Scholar 

  24. Antes, F.G., Diehl, L.O., Pereira, J.S.F., Guimarães, R.C.L., Guarnieri, R.A., Ferreira, B.M.S., and Flores, E.M.M., Ultrason. Sonochem., 2017, vol. 35, pp. 541–546. https://doi.org/10.1016/j.ultsonch.2016.03.031

    Article  CAS  PubMed  Google Scholar 

  25. Guoxiang, Y., Xiaoping, L., Fei, P., Ye, G., Lü, X., Peng, F., Han, P., and Shen, X., Chin. J. Chem. Eng., 2008, vol. 16, pp. 564–569. https://doi.org/10.1016/S1004-9541(08)60122-6

    Article  Google Scholar 

  26. Loskutova, Yu.V. and Yudina, N.V., Chem. Sustain. Dev., 2020, vol. 28, pp. 256–262. https://doi.org/10.15372/CSD2020228

    Article  Google Scholar 

  27. Daneker, V.A., Raschet i konstruirovanie elektromagnitnykh preobrazovatelei dlya aktivatsii zhidkikh sistem: Uchebno-metodicheskoe posobie (Calculation and Design of Electromagnetic Transducers for Activation of Liquid Systems: Study Guide), Tomsk: Tomsk. Politekh. Univ., 2018.

  28. Petrova, L.M., Abbakumova, N.A., Foss, T.R., and Romanov, G.V., Petrol. Chem., 2011, vol. 51, no. 4, pp. 252–266. https://doi.org/10.1134/S0965544111040062

    Article  CAS  Google Scholar 

  29. Al-Sabagh, A.M., El-Din, M.R. Noor, Morsi, R.E., and Elsabee, M.Z., J. Appl. Polym. Sci., 2008, vol. 108, no. 4, pp. 2301–2311. https://doi.org/10.1002/app.27124

    Article  CAS  Google Scholar 

  30. Djuve, J., Yang, X., Fjellanger, I.J., Sjöblom, J., and Pelizzetti, E., Colloid Polym. Sci., 2001, vol. 279, no. 3, pp. 232–239. https://doi.org/10.1007/s003960000413

    Article  CAS  Google Scholar 

  31. Morozova, A.V. and Volkova, G.I., Petrol. Chem., 2019, vol. 59, no. 10, pp. 1153–1160. https://doi.org/10.15372/CSD20202570

    Article  CAS  Google Scholar 

  32. Sharma, A., Groenzin, H., Tomita, A., and Mullins, O.C., Energy Fuels, 2002, vol. 16, no. 2, pp. 490–496. https://doi.org/10.1021/ef010240f

    Article  CAS  Google Scholar 

  33. Ok, S. and Mal, T., Energy Fuels, 2019, vol. 33, no. 11, p. 10391. https://doi.org/10.1021/acs.energyfuels.9b02240

    Article  CAS  Google Scholar 

  34. Acevedo, S., Guzman, K., and Ocanto, O., Energy Fuels, 2010, vol. 24, no. 3, pp. 1809–1813. https://doi.org/10.1021/ef9012714

    Article  CAS  Google Scholar 

  35. Loskutova, Yu.V., Yudina, N.V., and Daneker, V.A., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2019, vol. 62, no. 1, pp. 70–77.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Assignment to the Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Loskutova.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loskutova, Y.V., Yudina, N.V. Destruction of a Water-in-Oil Emulsion under Combined Action of a Low-Frequency Acoustic Field and a Demulsifier. Pet. Chem. 62, 506–514 (2022). https://doi.org/10.1134/S0965544122020220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122020220

Keywords:

Navigation