1932

Abstract

Macrophages are first responders for the immune system. In this role, they have both effector functions for neutralizing pathogens and sentinel functions for alerting other immune cells of diverse pathologic threats, thereby initiating and coordinating a multipronged immune response. Macrophages are distributed throughout the body—they circulate in the blood, line the mucosal membranes, reside within organs, and survey the connective tissue. Several reviews have summarized their diverse roles in different physiological scenarios and in the initiation or amplification of different pathologies. In this review, we propose that both the effector and the sentinel functions of healthy macrophages rely on three hallmark properties: response specificity, context dependence, and stimulus memory. When these hallmark properties are diminished, the macrophage's biological functions are impaired, which in turn results in increased risk for immune dysregulation, manifested by immune deficiency or autoimmunity. We review the evidence and the molecular mechanisms supporting these functional hallmarks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101320-031555
2022-04-26
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/40/1/annurev-immunol-101320-031555.html?itemId=/content/journals/10.1146/annurev-immunol-101320-031555&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Mechnikov I. 1908. Ilya Mechnikov—Nobel lecture. The Nobel Prize https://www.nobelprize.org/prizes/medicine/1908/mechnikov/lecture/
    [Google Scholar]
  2. 2. 
    Mass E, Ballesteros I, Farlik M, Halbritter F, Günther P et al. 2016. Specification of tissue-resident macrophages during organogenesis. Science 353:6304aaf4238
    [Google Scholar]
  3. 3. 
    Wynn TA, Chawla A, Pollard JW. 2013. Macrophage biology in development, homeostasis and disease. Nature 496:7446445–55
    [Google Scholar]
  4. 4. 
    Rivera A, Siracusa MC, Yap GS, Gause WC. 2016. Innate cell communication kick-starts pathogen-specific immunity. Nat. Immunol. 17:4356–63
    [Google Scholar]
  5. 5. 
    Sreejit G, Fleetwood AJ, Murphy AJ, Nagareddy PR. 2020. Origins and diversity of macrophages in health and disease. Clin. Transl. Immunol. 9:12e1222
    [Google Scholar]
  6. 6. 
    Uderhardt S, Martins AJ, Tsang JS, Lämmermann T, Germain RN 2019. Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell 177:3541–55.e17
    [Google Scholar]
  7. 7. 
    Hume PS, Gibbings SL, Jakubzick CV, Tuder RM, Curran-Everett D et al. 2020. Localization of macrophages in the human lung via design-based stereology. Am. J. Respir. Crit. Care Med. 201:101209–17
    [Google Scholar]
  8. 8. 
    Epelman S, Lavine KJ, Randolph GJ. 2014. Origin and functions of tissue macrophages. Immunity 41:121–35
    [Google Scholar]
  9. 9. 
    Krausgruber T, Fortelny N, Fife-Gernedl V, Senekowitsch M, Schuster LC et al. 2020. Structural cells are key regulators of organ-specific immune responses. Nature 583:7815296–302
    [Google Scholar]
  10. 10. 
    Bautista-Hernández LA, Gómez-Olivares JL, Buentello-Volante B, Bautista-de Lucio VM. 2017. Fibroblasts: the unknown sentinels eliciting immune responses against microorganisms. Eur. J. Microbiol. Immunol. 7:3151–57
    [Google Scholar]
  11. 11. 
    Cheng CS, Behar MS, Suryawanshi GW, Feldman KE, Spreafico R, Hoffmann A. 2017. Iterative modeling reveals evidence of sequential transcriptional control mechanisms. Cell Syst 4:3330–43.e5
    [Google Scholar]
  12. 12. 
    Davidson S, Coles M, Thomas T, Kollias G, Ludewig B et al. 2021. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21:11704–17
    [Google Scholar]
  13. 13. 
    Sen S, Cheng Z, Sheu KM, Chen YH, Hoffmann A. 2020. Gene regulatory strategies that decode the duration of NFκB dynamics contribute to LPS- versus TNF-specific gene expression. Cell Syst 10:2169–182.e5
    [Google Scholar]
  14. 14. 
    Opitz B, Püschel A, Beermann W, Hocke AC, Förster S et al. 2006. Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J. Immunol. 176:1484–90
    [Google Scholar]
  15. 15. 
    Opitz B, Eitel J, Meixenberger K, Suttorp N. 2009. Role of Toll-like receptors, NOD-like receptors and RIG-I-like receptors in endothelial cells and systemic infections. Thromb. Haemost. 102:61103–9
    [Google Scholar]
  16. 16. 
    Anand AR, Cucchiarini M, Terwilliger EF, Ganju RK. 2008. The tyrosine kinase Pyk2 mediates lipopolysaccharide-induced IL-8 expression in human endothelial cells. J. Immunol. 180:85636–44
    [Google Scholar]
  17. 17. 
    Tissari J, Sirén J, Meri S, Julkunen I, Matikainen S 2005. IFN-alpha enhances TLR3-mediated antiviral cytokine expression in human endothelial and epithelial cells by up-regulating TLR3 expression. J. Immunol. 174:74289–94
    [Google Scholar]
  18. 18. 
    Andonegui G, Zhou H, Bullard D, Kelly MM, Mullaly SC et al. 2009. Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection. J. Clin. Investig. 119:71921–30
    [Google Scholar]
  19. 19. 
    Galli SJ, Borregaard N, Wynn TA. 2011. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12:111035–44
    [Google Scholar]
  20. 20. 
    Prame Kumar K, Nicholls AJ, Wong CHY 2018. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res 371:3551–65
    [Google Scholar]
  21. 21. 
    Paul S, Lal G 2017. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front. Immunol. 8:1124
    [Google Scholar]
  22. 22. 
    Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124:4783–801
    [Google Scholar]
  23. 23. 
    Beutler BA. 2009. TLRs and innate immunity. Blood 113:71399–407
    [Google Scholar]
  24. 24. 
    Mogensen TH. 2009. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22:2240–73
    [Google Scholar]
  25. 25. 
    Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:114–20
    [Google Scholar]
  26. 26. 
    Adelaja A, Taylor B, Sheu KM, Liu Y, Luecke S, Hoffmann A 2021. Six distinct NFκB signaling codons convey discrete information to distinguish stimuli and enable appropriate macrophage responses. Immunity 54:5916–30.e7
    [Google Scholar]
  27. 27. 
    Gottschalk RA, Dorrington MG, Dutta B, Krauss KS, Martins AJ et al. 2019. IFN-mediated negative feedback supports bacteria class-specific macrophage inflammatory responses. eLife 8:e46836
    [Google Scholar]
  28. 28. 
    Kok F, Rosenblatt M, Teusel M, Nizharadze T, Gonçalves Magalhães V et al. 2020. Disentangling molecular mechanisms regulating sensitization of interferon alpha signal transduction. Mol. Syst. Biol. 16:7e8955
    [Google Scholar]
  29. 29. 
    Cheng QJ, Ohta S, Sheu KM, Spreafico R, Adelaja A et al. 2021. NF-κB dynamics determine the stimulus specificity of epigenomic reprogramming in macrophages. Science 372:65481349–53
    [Google Scholar]
  30. 30. 
    Kang K, Park SH, Chen J, Qiao Y, Giannopoulou E et al. 2017. Interferon-γ represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAF. Immunity 47:2235–50.e4
    [Google Scholar]
  31. 31. 
    Cheng Q, Behzadi F, Sen S, Ohta S, Spreafico R et al. 2019. Sequential conditioning-stimulation reveals distinct gene- and stimulus-specific effects of Type I and II IFN on human macrophage functions. Sci. Rep. 9:15288
    [Google Scholar]
  32. 32. 
    Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD et al. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. PNAS 97:2513766–71
    [Google Scholar]
  33. 33. 
    DeFelice MM, Clark HR, Hughey JJ, Maayan I, Kudo T et al. 2019. NF-κB signaling dynamics is controlled by a dose-sensing autoregulatory loop. Sci. Signal. 12:579eaau3568
    [Google Scholar]
  34. 34. 
    Gottschalk RA, Martins AJ, Angermann BR, Dutta B, Ng CE et al. 2016. Distinct NF-κB and MAPK activation thresholds uncouple steady-state microbe sensing from anti-pathogen inflammatory responses. Cell Syst 2:6378–90
    [Google Scholar]
  35. 35. 
    Hoffmann A, Levchenko A, Scott ML, Baltimore D. 2002. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298:55961241–45
    [Google Scholar]
  36. 36. 
    Zhang Q, Gupta S, Schipper DL, Kowalczyk GJ, Mancini AE et al. 2017. NF-κB dynamics discriminate between TNF doses in single cells. Cell Syst 5:6638–45.e5
    [Google Scholar]
  37. 37. 
    Nau GJ, Richmond JFL, Schlesinger A, Jennings EG, Lander ES, Young RA. 2002. Human macrophage activation programs induced by bacterial pathogens. PNAS 99:31503–8
    [Google Scholar]
  38. 38. 
    Werner SL, Barken D, Hoffmann A. 2005. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309:57421857–61
    [Google Scholar]
  39. 39. 
    Amit I, Garber M, Chevrier N, Leite AP, Donner Y et al. 2009. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326:5950257–63
    [Google Scholar]
  40. 40. 
    Dehne N, Jung M, Mertens C, Mora J, Weigert A 2016. Macrophage heterogeneity during inflammation. Compendium of Inflammatory Diseases MJ Parnham 865–74 Basel, Switz: Springer
    [Google Scholar]
  41. 41. 
    Gordon S, Taylor PR. 2005. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5:12953–64
    [Google Scholar]
  42. 42. 
    Kawai T, Akira S. 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:5637–50
    [Google Scholar]
  43. 43. 
    Chen G, Shaw MH, Kim Y-G, Nuñez G. 2009. NOD-like receptors: role in innate immunity and inflammatory disease. Annu. Rev. Pathol. Mech. Dis. 4:365–98
    [Google Scholar]
  44. 44. 
    Rehwinkel J, Gack MU. 2020. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat. Rev. Immunol. 20:9537–51
    [Google Scholar]
  45. 45. 
    Ablasser A, Chen ZJ. 2019. cGAS in action: expanding roles in immunity and inflammation. Science 363:6431eaat8657
    [Google Scholar]
  46. 46. 
    Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell 140:6805–20
    [Google Scholar]
  47. 47. 
    Botos I, Segal DM, Davies DR. 2011. The structural biology of Toll-like receptors. Structure 19:4447–59
    [Google Scholar]
  48. 48. 
    Kawasaki T, Kawai T. 2014. Toll-like receptor signaling pathways. Front. Immunol. 5:461
    [Google Scholar]
  49. 49. 
    Devarkar SC, Schweibenz B, Wang C, Marcotrigiano J, Patel SS 2018. RIG-I uses an ATPase-powered translocation-throttling mechanism for kinetic proofreading of RNAs and oligomerization. Mol. Cell 72:2355–68.e4
    [Google Scholar]
  50. 50. 
    Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M et al. 2010. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. PNAS 107:2611942–47
    [Google Scholar]
  51. 51. 
    Sandri S, Rodriguez D, Gomes E, Monteiro HP, Russo M, Campa A. 2008. Is serum amyloid A an endogenous TLR4 agonist?. J. Leukoc. Biol. 83:51174–80
    [Google Scholar]
  52. 52. 
    Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C et al. 2007. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13:91042–49
    [Google Scholar]
  53. 53. 
    Kim S, Kim SY, Pribis JP, Lotze M, Mollen KP et al. 2013. Signaling of high mobility group box 1 (HMGB1) through Toll-like receptor 4 in macrophages requires CD14. Mol. Med. 19:188–98
    [Google Scholar]
  54. 54. 
    Liu S, Cai X, Wu J, Cong Q, Chen X et al. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347:6227aaa2630
    [Google Scholar]
  55. 55. 
    Chen H, Jiang Z 2013. The essential adaptors of innate immune signaling. Protein Cell 4:127–39
    [Google Scholar]
  56. 56. 
    Cheng Z, Taylor B, Ourthiague DR, Hoffmann A. 2015. Distinct single-cell signaling characteristics are conferred by the MyD88 and TRIF pathways during TLR4 activation. Sci. Signal. 8:385ra69
    [Google Scholar]
  57. 57. 
    Covert MW, Leung TH, Gaston JE, Baltimore D 2005. Achieving stability of lipopolysaccharide-induced NF-κB activation. Science 309:57421854–57
    [Google Scholar]
  58. 58. 
    Shih VF, Kearns JD, Basak S, Savinova OV, Ghosh G, Hoffmann A 2009. Kinetic control of negative feedback regulators of NF-κB/RelA determines their pathogen- and cytokine-receptor signaling specificity. PNAS 106:249619–24
    [Google Scholar]
  59. 59. 
    Regot S, Hughey JJ, Bajar BT, Carrasco S, Covert MW. 2014. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157:71724–34
    [Google Scholar]
  60. 60. 
    Park JM, Greten FR, Wong A, Westrick RJ, Arthur JSC et al. 2005. Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis—CREB and NF-κB as key regulators. Immunity 23:3319–29
    [Google Scholar]
  61. 61. 
    Wang N, Lefaudeux D, Mazumder A, Li JJ, Hoffmann A. 2021. Identifying the combinatorial control of signal-dependent transcription factors. PLOS Comput. Biol. 17:6e1009095
    [Google Scholar]
  62. 62. 
    Cheong R, Rhee A, Wang CJ, Nemenman I, Levchenko A 2011. Information transduction capacity of noisy biochemical signaling networks. Science 334:6054354–58
    [Google Scholar]
  63. 63. 
    Lane K, Andres-Terre M, Kudo T, Monack DM, Covert MW. 2019. Escalating threat levels of bacterial infection can be discriminated by distinct MAPK and NF-κB signaling dynamics in single host cells. Cell Syst 8:3183–96.e4
    [Google Scholar]
  64. 64. 
    Nelson RH, Nelson DE. 2018. Signal distortion: how intracellular pathogens alter host cell fate by modulating NF-κB dynamics. Front. Immunol. 9:2962
    [Google Scholar]
  65. 65. 
    Selimkhanov J, Taylor B, Yao J, Pilko A, Albeck J et al. 2014. Accurate information transmission through dynamic biochemical signaling networks. Science 346:62151370–73
    [Google Scholar]
  66. 66. 
    Sung M-H, Li N, Lao Q, Gottschalk RA, Hager GL, Fraser IDC 2014. Switching of the relative dominance between feedback mechanisms in lipopolysaccharide-induced NF-κB signaling. Sci. Signal. 7:308ra6
    [Google Scholar]
  67. 67. 
    Tong AJ, Liu X, Thomas BJ, Lissner MM, Baker MR et al. 2016. A stringent systems approach uncovers gene-specific mechanisms regulating inflammation. Cell 165:1165–79
    [Google Scholar]
  68. 68. 
    Ramirez-Carrozzi VR, Braas D, Bhatt DM, Cheng CS, Hong C et al. 2009. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138:1114–28
    [Google Scholar]
  69. 69. 
    Sheu KM, Luecke S, Hoffmann A 2019. Stimulus-specificity in the responses of immune sentinel cells. Curr. Opin. Syst. Biol. 18:53–61
    [Google Scholar]
  70. 70. 
    Lee RE, Walker SR, Savery K, Frank DA, Gaudet S 2014. Fold change of nuclear NF-κB determines TNF-induced transcription in single cells. Mol. Cell 53:6867–79
    [Google Scholar]
  71. 71. 
    Tay S, Hughey JJ, Lee TK, Lipniacki T, Quake SR, Covert MW. 2010. Single-cell NF-κB dynamics reveal digital activation and analogue information processing. Nature 466:7303267–71
    [Google Scholar]
  72. 72. 
    Van Valen DA, Kudo T, Lane KM, Macklin DN, Quach NT et al. 2016. Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLOS Comput. Biol. 12:11e1005177
    [Google Scholar]
  73. 73. 
    Lane K, Van Valen D, DeFelice MM, Macklin DN, Kudo T et al. 2017. Measuring signaling and RNA-seq in the same cell links gene expression to dynamic patterns of NF-κB activation. Cell Syst 4:4458–69.e5
    [Google Scholar]
  74. 74. 
    Ourthiague DR, Birnbaum H, Ortenlöf N, Vargas JD, Wollman R, Hoffmann A 2015. Limited specificity of IRF3 and ISGF3 in the transcriptional innate-immune response to double-stranded RNA. J. Leukoc. Biol. 98:1119–28
    [Google Scholar]
  75. 75. 
    Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D et al. 2014. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510:7505363–69
    [Google Scholar]
  76. 76. 
    Peignier A, Parker D. 2021. Impact of Type I interferons on susceptibility to bacterial pathogens. Trends Microbiol 29:9823–35
    [Google Scholar]
  77. 77. 
    Barker BR, Taxman DJ, Ting JP-Y. 2011. Cross-regulation between the IL-1β/IL-18 processing inflammasome and other inflammatory cytokines. Curr. Opin. Immunol. 23:5591–97
    [Google Scholar]
  78. 78. 
    Afonina IS, Müller C, Martin SJ, Beyaert R 2015. Proteolytic processing of interleukin-1 family cytokines: variations on a common theme. Immunity 42:6991–1004
    [Google Scholar]
  79. 79. 
    Aletaha D, Smolen JS 2018. Diagnosis and management of rheumatoid arthritis: a review. JAMA 320:131360–72
    [Google Scholar]
  80. 80. 
    Buch MH, Eyre S, McGonagle D 2021. Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis. Nat. Rev. Rheumatol. 17:117–33
    [Google Scholar]
  81. 81. 
    Steinman L. 2014. Immunology of relapse and remission in multiple sclerosis. Annu. Rev. Immunol. 32:257–81
    [Google Scholar]
  82. 82. 
    Banchereau J, Pascual V. 2006. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25:3383–92
    [Google Scholar]
  83. 83. 
    Hall JC, Rosen A. 2010. Type I interferons: crucial participants in disease amplification in autoimmunity. Nat. Rev. Rheumatol. 6:140–49
    [Google Scholar]
  84. 84. 
    Palucka AK, Blanck J-P, Bennett L, Pascual V, Banchereau J 2005. Cross-regulation of TNF and IFN-α in autoimmune diseases. PNAS 102:93372–77
    [Google Scholar]
  85. 85. 
    Bonelli M, Dalwigk K, Platzer A, Olmos Calvo I, Hayer S et al. 2019. IRF1 is critical for the TNF-driven interferon response in rheumatoid fibroblast-like synoviocytes. Exp. Mol. Med. 51:71–11
    [Google Scholar]
  86. 86. 
    Vila-del Sol V, Punzón C, Fresno M 2008. IFN-gamma-induced TNF-alpha expression is regulated by interferon regulatory factors 1 and 8 in mouse macrophages. J. Immunol. 181:74461–70
    [Google Scholar]
  87. 87. 
    Sieweke MH, Allen JE. 2013. Beyond stem cells: self-renewal of differentiated macrophages. Science 342:61611242974
    [Google Scholar]
  88. 88. 
    Blériot C, Chakarov S, Ginhoux F 2020. Determinants of resident tissue macrophage identity and function. Immunity 52:6957–70
    [Google Scholar]
  89. 89. 
    Martinez FO, Gordon S. 2014. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13
    [Google Scholar]
  90. 90. 
    Murray PJ. 2017. Macrophage polarization. Annu. Rev. Physiol. 79:541–66
    [Google Scholar]
  91. 91. 
    Dorrington MG, Fraser IDC. 2019. NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration. Front. Immunol. 10:705
    [Google Scholar]
  92. 92. 
    Sirén J, Pirhonen J, Julkunen I, Matikainen S 2005. IFN-α regulates TLR-dependent gene expression of IFN-α, IFN-β, IL-28, and IL-29. J. Immunol. 174:41932–37
    [Google Scholar]
  93. 93. 
    Qiao Y, Giannopoulou EG, Chan CH, Park S-H, Gong S et al. 2013. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and Toll-like receptor signaling. Immunity 39:3454–69
    [Google Scholar]
  94. 94. 
    Mitchell S, Mercado EL, Adelaja A, Ho JQ, Cheng QJ et al. 2019. An NFκB activity calculator to delineate signaling crosstalk: Type I and II interferons enhance NFκB via distinct mechanisms. Front. Immunol. 10:1425
    [Google Scholar]
  95. 95. 
    Xu J, Zhou L, Ji L, Chen F, Fortmann K et al. 2016. The REGγ-proteasome forms a regulatory circuit with IκBε and NFκB in experimental colitis. Nat. Commun. 7:10761
    [Google Scholar]
  96. 96. 
    Kuenzel S, Till A, Winkler M, Häsler R, Lipinski S et al. 2010. The nucleotide-binding oligomerization domain-like receptor NLRC5 is involved in IFN-dependent antiviral immune responses. J. Immunol. 184:41990–2000
    [Google Scholar]
  97. 97. 
    Cui J, Zhu L, Xia X, Wang HY, Legras X et al. 2010. NLRC5 negatively regulates the NF-κB and type I interferon signaling pathways. Cell 141:3483–96
    [Google Scholar]
  98. 98. 
    Arimoto K, Löchte S, Stoner SA, Burkart C, Zhang Y et al. 2017. STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling. Nat. Struct. Mol. Biol. 24:3279–89
    [Google Scholar]
  99. 99. 
    Jiang Y, Hao N. 2021. Memorizing environmental signals through feedback and feedforward loops. Curr. Opin. Cell Biol. 69:96–102
    [Google Scholar]
  100. 100. 
    Nakagawa R, Naka T, Tsutsui H, Fujimoto M, Kimura A et al. 2002. SOCS-1 participates in negative regulation of LPS responses. Immunity 17:5677–87
    [Google Scholar]
  101. 101. 
    Arnold CE, Whyte CS, Gordon P, Barker RN, Rees AJ, Wilson HM 2014. A critical role for suppressor of cytokine signalling 3 in promoting M1 macrophage activation and function in vitro and in vivo. Immunology 141:196–110
    [Google Scholar]
  102. 102. 
    Whyte CS, Bishop ET, Rückerl D, Gaspar-Pereira S, Barker RN et al. 2011. Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function. J. Leukoc. Biol. 90:5845–54
    [Google Scholar]
  103. 103. 
    Mudla A, Jiang Y, Arimoto K, Xu B, Rajesh A et al. 2020. Cell-cycle-gated feedback control mediates desensitization to interferon stimulation. eLife 9:e58825
    [Google Scholar]
  104. 104. 
    Lawrence T, Natoli G 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11:11750–61
    [Google Scholar]
  105. 105. 
    Piccolo V, Curina A, Genua M, Ghisletti S, Simonatto M et al. 2017. Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat. Immunol. 18:5530–40
    [Google Scholar]
  106. 106. 
    Park SH, Kang K, Giannopoulou E, Qiao Y, Kang K et al. 2017. Type I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activation. Nat. Immunol. 18:101104–16
    [Google Scholar]
  107. 107. 
    Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J 2001. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294:55461540–43
    [Google Scholar]
  108. 108. 
    Kang K, Bachu M, Park SH, Kang K, Bae S et al. 2019. IFN-γ selectively suppresses a subset of TLR4-activated genes and enhancers to potentiate macrophage activation. Nat. Commun. 10:13320
    [Google Scholar]
  109. 109. 
    Piaszyk-Borychowska A, Széles L, Csermely A, Chiang H-C, Wesoły J et al. 2019. Signal integration of IFN-I and IFN-II with TLR4 involves sequential recruitment of STAT1-complexes and NFκB to enhance pro-inflammatory transcription. Front. Immunol. 10:1253
    [Google Scholar]
  110. 110. 
    Hoeksema MA, Scicluna BP, Boshuizen MCS, van der Velden S, Neele AE et al. 2015. IFN-γ priming of macrophages represses a part of the inflammatory program and attenuates neutrophil recruitment. J. Immunol. 194:83909–16
    [Google Scholar]
  111. 111. 
    Martins AJ, Narayanan M, Prüstel T, Fixsen B, Park K et al. 2017. Environment tunes propagation of cell-to-cell variation in the human macrophage gene network. Cell Syst 4:4379–92.e12
    [Google Scholar]
  112. 112. 
    Hoeksema MA, Glass CK. 2019. Nature and nurture of tissue-specific macrophage phenotypes. Atherosclerosis 281:159–67
    [Google Scholar]
  113. 113. 
    Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ et al. 2014. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:61327–40
    [Google Scholar]
  114. 114. 
    Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H et al. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:61312–26
    [Google Scholar]
  115. 115. 
    Okabe Y, Medzhitov R. 2014. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157:4832–44
    [Google Scholar]
  116. 116. 
    Olson GS, Murray TA, Jahn AN, Mai D, Diercks AH et al. 2021. Type I interferon decreases macrophage energy metabolism during mycobacterial infection. Cell Rep 35:9109195
    [Google Scholar]
  117. 117. 
    Gough DJ, Messina NL, Clarke CJP, Johnstone RW, Levy DE. 2012. Constitutive type I interferon modulates homeostatic balance through tonic signaling. Immunity 36:2166–74
    [Google Scholar]
  118. 118. 
    Franceschi C, Campisi J. 2014. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A 69:Suppl. 1S4–9
    [Google Scholar]
  119. 119. 
    Dali-Youcef N, Mecili M, Ricci R, Andrès E. 2013. Metabolic inflammation: connecting obesity and insulin resistance. Ann. Med. 45:3242–53
    [Google Scholar]
  120. 120. 
    Tilg H, Zmora N, Adolph TE, Elinav E. 2020. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 20:140–54
    [Google Scholar]
  121. 121. 
    Philipose Z, Smati N, Wong CSJ, Aspey K, Mendall M 2020. Obesity, old age, and frailty are the true risk factors for COVID-19 mortality and not chronic disease or ethnicity. medRxiv 2020.08.12.20156257. https://doi.org/10.1101/2020.08.12.20156257
    [Crossref]
  122. 122. 
    Mahbub S, Deburghgraeve CR, Kovacs EJ. 2012. Advanced age impairs macrophage polarization. J. Interferon Cytokine Res. 32:118–26
    [Google Scholar]
  123. 123. 
    van Beek AA, Van den Bossche J, Mastroberardino PG, de Winther MPJ, Leenen PJM. 2019. Metabolic alterations in aging macrophages: ingredients for inflammaging?. Trends Immunol 40:2113–27
    [Google Scholar]
  124. 124. 
    Franceschi C, Santoro A, Capri M. 2020. The complex relationship between immunosenescence and inflammaging: special issue on the new biomedical perspectives. Semin. Immunopathol. 42:5517–20
    [Google Scholar]
  125. 125. 
    Frasca D, Blomberg BB. 2016. Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 17:17–19
    [Google Scholar]
  126. 126. 
    Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH et al. 2018. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes?. Front. Immunol. 8:1960
    [Google Scholar]
  127. 127. 
    Oishi Y, Manabe I. 2016. Macrophages in age-related chronic inflammatory diseases. npj Aging Mech. Dis. 2:16018
    [Google Scholar]
  128. 128. 
    Cui C, Driscoll RK, Piao Y, Chia CW, Gorospe M, Ferrucci L 2019. Skewed macrophage polarization in aging skeletal muscle. Aging Cell 18:6e13032
    [Google Scholar]
  129. 129. 
    Wensveen FM, Jelenčić V, Valentić S, Šestan M, Wensveen TT et al. 2015. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat. Immunol. 16:4376–85
    [Google Scholar]
  130. 130. 
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 112:121796–808
    [Google Scholar]
  131. 131. 
    O'Rourke RW, White AE, Metcalf MD, Winters BR, Diggs BS et al. 2012. Systemic inflammation and insulin sensitivity in obese IFN-γ knockout mice. Metabolism 61:81152–61
    [Google Scholar]
  132. 132. 
    Allis CD, Jenuwein T 2016. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17:8487–500
    [Google Scholar]
  133. 133. 
    Hayes JJ, Wolffe AP. 1992. The interaction of transcription factors with nucleosomal DNA. BioEssays 14:9597–603
    [Google Scholar]
  134. 134. 
    Heinz S, Romanoski CE, Benner C, Glass CK. 2015. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16:3144–54
    [Google Scholar]
  135. 135. 
    Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M, Zaret KS. 2015. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161:3555–68
    [Google Scholar]
  136. 136. 
    Fernandez Garcia M, Moore CD, Schulz KN, Alberto O, Donague G et al. 2019. Structural features of transcription factors associating with nucleosome binding. Mol. Cell 75:5921–32.e6
    [Google Scholar]
  137. 137. 
    Ostuni R, Piccolo V, Barozzi I, Polletti S, Termanini A et al. 2013. Latent enhancers activated by stimulation in differentiated cells. Cell 152:1–2157–71
    [Google Scholar]
  138. 138. 
    Angelov D, Lenouvel F, Hans F, Müller CW, Bouvet P et al. 2004. The histone octamer is invisible when NF-κB binds to the nucleosome. J. Biol. Chem. 279:4142374–82
    [Google Scholar]
  139. 139. 
    Lone IN, Shukla MS, Charles Richard JL, Peshev ZY, Dimitrov S, Angelov D 2013. Binding of NF-κB to nucleosomes: effect of translational positioning, nucleosome remodeling and linker histone H1. PLOS Genet 9:9e1003830
    [Google Scholar]
  140. 140. 
    Li G, Widom J. 2004. Nucleosomes facilitate their own invasion. Nat. Struct. Mol. Biol. 11:8763–69
    [Google Scholar]
  141. 141. 
    Li G, Levitus M, Bustamante C, Widom J. 2005. Rapid spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 12:146–53
    [Google Scholar]
  142. 142. 
    Zhu F, Farnung L, Kaasinen E, Sahu B, Yin Y et al. 2018. The interaction landscape between transcription factors and the nucleosome. Nature 562:772576–81
    [Google Scholar]
  143. 143. 
    Comoglio F, Simonatto M, Polletti S, Liu X, Smale ST et al. 2019. Dissection of acute stimulus-inducible nucleosome remodeling in mammalian cells. Genes Dev 33:1159–74
    [Google Scholar]
  144. 144. 
    Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F et al. 2010. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32:3317–28
    [Google Scholar]
  145. 145. 
    Zaret KS. 2020. Pioneer transcription factors initiating gene network changes. Annu. Rev. Genet. 54:367–85
    [Google Scholar]
  146. 146. 
    Kaikkonen MU, Spann NJ, Heinz S, Romanoski CE, Allison KA et al. 2013. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 51:3310–25
    [Google Scholar]
  147. 147. 
    Barozzi I, Simonatto M, Bonifacio S, Yang L, Rohs R et al. 2014. Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers. Mol. Cell 54:5844–57
    [Google Scholar]
  148. 148. 
    Zhang DX, Glass CK. 2013. Towards an understanding of cell-specific functions of signal-dependent transcription factors. J. Mol. Endocrinol. 51:3T37–50
    [Google Scholar]
  149. 149. 
    Liu Y, Zhou K, Zhang N, Wei H, Tan YZ et al. 2020. FACT caught in the act of manipulating the nucleosome. Nature 577:7790426–31
    [Google Scholar]
  150. 150. 
    Lorch Y, Zhang M, Kornberg RD. 2001. RSC unravels the nucleosome. Mol. Cell 7:189–95
    [Google Scholar]
  151. 151. 
    Wagner FR, Dienemann C, Wang H, Stützer A, Tegunov D et al. 2020. Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature 579:7799448–51
    [Google Scholar]
  152. 152. 
    Brahma S, Henikoff S. 2020. Epigenome regulation by dynamic nucleosome unwrapping. Trends Biochem. Sci. 45:113–26
    [Google Scholar]
  153. 153. 
    Logie C, Stunnenberg HG. 2016. Epigenetic memory: a macrophage perspective. Semin. Immunol. 28:4359–67
    [Google Scholar]
  154. 154. 
    Penkov S, Mitroulis I, Hajishengallis G, Chavakis T. 2019. Immunometabolic crosstalk: an ancestral principle of trained immunity?. Trends Immunol 40:11–11
    [Google Scholar]
  155. 155. 
    Serefidou M, Venkatasubramani AV, Imhof A. 2019. The impact of one carbon metabolism on histone methylation. Front. Genet. 10:764
    [Google Scholar]
  156. 156. 
    Baardman J, Licht I, de Winther MPJ, Van den Bossche J. 2015. Metabolic-epigenetic crosstalk in macrophage activation. Epigenomics 7:71155–64
    [Google Scholar]
  157. 157. 
    O'Neill LAJ, Kishton RJ, Rathmell J 2016. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16:9553–65
    [Google Scholar]
  158. 158. 
    Van den Bossche J, O'Neill LA, Menon D 2017. Macrophage immunometabolism: Where are we (going)?. Trends Immunol 38:6395–406
    [Google Scholar]
  159. 159. 
    Akula MK, Shi M, Jiang Z, Foster CE, Miao D et al. 2016. Control of the innate immune response by the mevalonate pathway. Nat. Immunol. 17:8922–29
    [Google Scholar]
  160. 160. 
    Arts RJW, Novakovic B, Ter Horst R, Carvalho A, Bekkering S et al. 2016. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab 24:6807–19
    [Google Scholar]
  161. 161. 
    Liu P-S, Wang H, Li X, Chao T, Teav T et al. 2017. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18:9985–94
    [Google Scholar]
  162. 162. 
    Arts RJW, Carvalho A, La Rocca C, Palma C, Rodrigues F et al. 2016. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep 17:102562–71
    [Google Scholar]
  163. 163. 
    Cheng S-C, Quintin J, Cramer RA, Shepardson KM, Saeed S et al. 2014. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345:62041250684
    [Google Scholar]
  164. 164. 
    Ifrim DC, Quintin J, Joosten LAB, Jacobs C, Jansen T et al. 2014. Trained immunity or tolerance: opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors. Clin. Vaccine Immunol. 21:4534–45
    [Google Scholar]
  165. 165. 
    Freudenberg MA, Galanos C. 1988. Induction of tolerance to lipopolysaccharide (LPS)–d-galactosamine lethality by pretreatment with LPS is mediated by macrophages. Infect. Immun. 56:51352–57
    [Google Scholar]
  166. 166. 
    Seeley JJ, Ghosh S. 2017. Molecular mechanisms of innate memory and tolerance to LPS. J. Leukoc. Biol. 101:1107–19
    [Google Scholar]
  167. 167. 
    El Gazzar M, Liu T, Yoza BK, McCall CE. 2010. Dynamic and selective nucleosome repositioning during endotoxin tolerance. J. Biol. Chem. 285:21259–71
    [Google Scholar]
  168. 168. 
    Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC et al. 2012. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12:2223–32
    [Google Scholar]
  169. 169. 
    Saeed S, Quintin J, Kerstens HHD, Rao NA, Aghajanirefah A et al. 2014. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345:62041251086
    [Google Scholar]
  170. 170. 
    Wager CML, Hole CR, Campuzano A, Castro-Lopez N, Cai H et al. 2018. IFN-γ immune priming of macrophages in vivo induces prolonged STAT1 binding and protection against Cryptococcus neoformans. PLOS Pathog 14:10e1007358
    [Google Scholar]
  171. 171. 
    Hole CR, Wager CML, Castro-Lopez N, Campuzano A, Cai H et al. 2019. Induction of memory-like dendritic cell responses in vivo. Nat. Commun. 10:12955
    [Google Scholar]
  172. 172. 
    Mitroulis I, Ruppova K, Wang B, Chen L-S, Grzybek M et al. 2018. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172:1–2147–61.e12
    [Google Scholar]
  173. 173. 
    Crowley T, Buckley CD, Clark AR. 2018. Stroma: the forgotten cells of innate immune memory. Clin. Exp. Immunol. 193:124–36
    [Google Scholar]
  174. 174. 
    Hamada A, Torre C, Drancourt M, Ghigo E. 2019. Trained immunity carried by non-immune cells. Front. Microbiol. 9:3225
    [Google Scholar]
  175. 175. 
    Kamada R, Yang W, Zhang Y, Patel MC, Yang Y et al. 2018. Interferon stimulation creates chromatin marks and establishes transcriptional memory. PNAS 115:39E9162–71
    [Google Scholar]
  176. 176. 
    Naik S, Larsen SB, Gomez NC, Alaverdyan K, Sendoel A et al. 2017. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550:7677475–80
    [Google Scholar]
  177. 177. 
    Calmette A. 1931. Preventive vaccination against tuberculosis with BCG. Proc. R. Soc. Med. 24:111481–90
    [Google Scholar]
  178. 178. 
    Covián C, Fernández-Fierro A, Retamal-Díaz A, Díaz FE, Vasquez AE et al. 2019. BCG-induced cross-protection and development of trained immunity: implication for vaccine design. Front. Immunol. 10:2806
    [Google Scholar]
  179. 179. 
    Arts RJW, Moorlag SJCFM, Novakovic B, Li Y, Wang S-Y et al. 2018. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23:189–100.e5
    [Google Scholar]
  180. 180. 
    Cirovic B, de Bree LCJ, Groh L, Blok BA, Chan J et al. 2020. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host Microbe 28:2322–34.e5
    [Google Scholar]
  181. 181. 
    Kaufmann E, Sanz J, Dunn JL, Khan N, Mendonça LE et al. 2018. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172:1176–90.e19
    [Google Scholar]
  182. 182. 
    Chumakov K, Avidan MS, Benn CS, Bertozzi SM, Blatt L et al. 2021. Old vaccines for new infections: exploiting innate immunity to control COVID-19 and prevent future pandemics. PNAS 118:21e2101718118
    [Google Scholar]
  183. 183. 
    Pulendran B, Ahmed R. 2006. Translating innate immunity into immunological memory: implications for vaccine development. Cell 124:4849–63
    [Google Scholar]
  184. 184. 
    Jeljeli M, Riccio LGC, Doridot L, Chêne C, Nicco C et al. 2019. Trained immunity modulates inflammation-induced fibrosis. Nat. Commun. 10:15670
    [Google Scholar]
  185. 185. 
    Dowson C, Simpson N, Duffy L, O'Reilly S 2017. Innate immunity in systemic sclerosis. Curr. Rheumatol. Rep. 19:12
    [Google Scholar]
  186. 186. 
    Domínguez-Andrés J, Novakovic B, Li Y, Scicluna BP, Gresnigt MS et al. 2019. The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab 29:1211–20.e5
    [Google Scholar]
  187. 187. 
    Drenth JPH, Cuisset L, Grateau G, Vasseur C, van de Velde-Visser SD et al. 1999. Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. Nat. Genet. 22:2178–81
    [Google Scholar]
  188. 188. 
    Mulders-Manders CM, Simon A 2015. Hyper-IgD syndrome/mevalonate kinase deficiency: What is new?. Semin. Immunopathol. 37:4371–76
    [Google Scholar]
  189. 189. 
    Bekkering S, Arts RJW, Novakovic B, Kourtzelis I, van der Heijden CDCC et al. 2018. Metabolic induction of trained immunity through the mevalonate pathway. Cell 172:1–2135–46.e9
    [Google Scholar]
  190. 190. 
    Simon A, Drewe E, van der Meer JWM, Powell RJ, Kelley RI et al. 2004. Simvastatin treatment for inflammatory attacks of the hyperimmunoglobulinemia D and periodic fever syndrome. Clin. Pharmacol. Ther. 75:5476–83
    [Google Scholar]
  191. 191. 
    Murray PJ, Wynn TA. 2011. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11:11723–37
    [Google Scholar]
  192. 192. 
    Gordon S, Plüddemann A. 2017. Tissue macrophages: heterogeneity and functions. BMC Biol 15:153
    [Google Scholar]
  193. 193. 
    Zhang H, Chen T, Ren J, Xia Y, Onuma A et al. 2021. Pre-operative exercise therapy triggers anti-inflammatory trained immunity of Kupffer cells through metabolic reprogramming. Nat. Metab. 3:6843–58
    [Google Scholar]
  194. 194. 
    You M, Chen L, Zhang D, Zhao P, Chen Z et al. 2021. Single-cell epigenomic landscape of peripheral immune cells reveals establishment of trained immunity in individuals convalescing from COVID-19. Nat. Cell Biol. 23:6620–30
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101320-031555
Loading
/content/journals/10.1146/annurev-immunol-101320-031555
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error