Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fabrication of devices featuring covalently linked MoS2–graphene heterostructures

Abstract

The most widespread method for the synthesis of 2D–2D heterostructures is the direct growth of one material on top of the other. Alternatively, flakes of different materials can be manually stacked on top of each other. Both methods typically involve stacking 2D layers through van der Waals forces—such that these materials are often referred to as van der Waals heterostructures—and are stacked one crystal or one device at a time. Here we describe the covalent grafting of 2H-MoS2 flakes onto graphene monolayers embedded in field-effect transistors. A bifunctional molecule featuring a maleimide and a diazonium functional group was used, known to connect to sulfide- and carbon-based materials, respectively. MoS2 flakes were exfoliated, functionalized by reaction with the maleimide moieties and then anchored to graphene by the diazonium groups. This approach enabled the simultaneous functionalization of several devices. The electronic properties of the resulting heterostructure are shown to be dominated by the MoS2–graphene interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the preparation of the covalent f-MoS2/CVDG FET heterostructure and characterization of f-MoS2.
Fig. 2: Characterization of the f-MoS2/CVDG heterostructure.
Fig. 3: Electrical properties of the covalent f-MoS2/CVDG heterostructure and equivalent van der Waals heterostructure.

Similar content being viewed by others

Data availability

The authors declare that all the data that support these findings are available in the manuscript and its Supplementary Information as well as from the corresponding authors on request. Source Data are provided with this paper.

References

  1. Liu, Y. et al. Van der Waals heterostructures and devices. Nat Rev. Mater. 1, 16042 (2016).

    Article  CAS  Google Scholar 

  2. Robinson, J. A. Growing vertical in the flatland. ACS Nano 10, 42–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Yankowitz, M., Ma, Q., Jarillo-Herrero, P. & LeRoy, B. J. Van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 1, 112–125 (2019).

    Article  CAS  Google Scholar 

  5. Neupane, G. P. et al. In-plane isotropic/anisotropic 2D van der Waals heterostructures for future devices. Small 15, e1804733 (2019).

    Article  PubMed  CAS  Google Scholar 

  6. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Ulstrup, S. et al. Ultrafast band structure control of a two-dimensional heterostructure. ACS Nano 10, 6315–6322 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Shi, Y. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, L. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14, 3055–3063 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Lorchat, E. et al. Filtering the photoluminescence spectra of atomically thin semiconductors with graphene. Nat. Nanotechnol. 15, 283–288 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Kezilebieke, S. et al. Topological superconductivity in a van der Waals heterostructure. Nature 588, 424–428 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Flöry, N. et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol. 15, 118–124 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang, X. et al. Realization of vertical metal semiconductor heterostructures via solution phase epitaxy. Nat. Commun. 9, 3611 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Le, C. T. et al. Effects of interlayer coupling and band offset on second harmonic generation in vertical MoS2/MoS2(1x)Se2x structures. ACS Nano 14, 4366–4373 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Choi, W. et al. Optoelectronics of multijunction heterostructures of transition metal dichalcogenides. Nano Lett. 20, 1934–1943 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Li, C. et al. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47, 4981–5037 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Duong, D. L., Yun, S. J. & Lee, Y. H. Van der Waals layered materials: opportunities and challenges. ACS Nano 11, 11803–11830 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Vera-Hidalgo, M., Giovanelli, E., Navio, C. & Perez, E. M. Mild covalent functionalization of transition metal dichalcogenides with maleimides: a “click” reaction for 2H-MoS2 and WS2. J. Am. Chem. Soc. 141, 3767–3771 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Quirós-Ovies, R. et al. Controlled covalent functionalization of 2H‐MoS2 with molecular or polymeric adlayers. Chem. Eur. J. 26, 6629–6634 (2020).

    Article  PubMed  CAS  Google Scholar 

  24. Vázquez Sulleiro, M. et al. Covalent cross-linking of 2H-MoS2 nanosheets. Chem. Eur. J. 27, 2993–2996 (2021).

    Article  PubMed  CAS  Google Scholar 

  25. Villalva, J. et al. Covalent modification of franckeite with maleimides: connecting molecules and van der Waals heterostructures. Nanoscale Horizons 6, 551–558 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Bahr, J. L. & Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem. Mater. 13, 3823–3824 (2001).

    Article  CAS  Google Scholar 

  27. Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Bahr, J. L. et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123, 6536–6542 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Paulus, G. L., Wang, Q. H. & Strano, M. S. Covalent electron transfer chemistry of graphene with diazonium salts. Acc. Chem. Res. 46, 160–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Lomeda, J. R. et al. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Y., Zhao, Y., Jiao, L. & Chen, J. A graphene-like MoS2/graphene nanocomposite as a highperformance anode for lithium ion batteries. J. Mater. Chem. A 2, 13109–13115 (2014).

    Article  CAS  Google Scholar 

  32. Yang, L. et al. Lattice strain effects on the optical properties of MoS2 nanosheets. Sci Rep. 4, 5649 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mahouche-Chergui, S., Gam-Derouich, S., Mangeney, C. & Chehimi, M. M. Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem. Soc. Rev. 40, 4143–4166 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Boukerma, K., Chehimi, M. M., Pinson, J. & Blomfield, C. X-ray photoelectron spectroscopy evidence for the covalent bond between an iron surface and aryl groups attached by the electrochemical reduction of diazonium salts. Langmuir 19, 6333–6335 (2003).

    Article  CAS  Google Scholar 

  35. Lomeda, J. R. et al. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Chu, X. S. et al. Direct covalent chemical functionalization of unmodified two-dimensional molybdenum disulfide. Chem. Mater. 30, 2112–2128 (2018).

    Article  CAS  Google Scholar 

  37. Li, D. O., Chu, X. S. & Wang, Q. H. Reaction kinetics for the covalent functionalization of two-dimensional MoS2 by aryl diazonium salts. Langmuir 35, 5693–5701 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Benson, E. E. et al. Balancing the hydrogen evolution reaction, surface energetics, and stability of metallic MoS2 nanosheets via covalent functionalization. J. Am. Chem. Soc. 140, 441–450 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, X. et al. Covalent bisfunctionalization of two-dimensional molybdenum disulfide. Angew. Chem. Int. Ed. 60, 13484–13492 (2021).

    Article  CAS  Google Scholar 

  40. Fan, J.-H. et al. Resonance Raman scattering in bulk 2H-MX2 (M = Mo, W; X = S, Se) and monolayer MoS2. J. Appl. Phys. 115, 053527 (2014).

    Article  CAS  Google Scholar 

  41. Knirsch, K. C. et al. Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano 9, 6018–6030 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Mignuzzi, S. et al. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 91, 195411 (2015).

    Article  CAS  Google Scholar 

  43. Assresahegn, B. D., Brousse, T. & Bélanger, D. Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems. Carbon 92, 362–381 (2015).

    Article  CAS  Google Scholar 

  44. Bahr, J. L. & Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem. Mater. 13, 3823–3824 (2001).

    Article  CAS  Google Scholar 

  45. Wang, Y. et al. Photoelectrochemical immunosensing of tetrabromobisphenol A based on the enhanced effect of dodecahedral gold nanocrystals/MoS2 nanosheets. Sens. Actuators B 245, 205–212 (2017).

    Article  CAS  Google Scholar 

  46. Ryu, S. et al. Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett. 10, 4944–4951 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, Q. H. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 4, 724–732 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Fan, X. Y., Nouchi, R., Yin, L. C. & Tanigaki, K. Effects of electron-transfer chemical modification on the electrical characteristics of graphene. Nanotechnology 21, 475208 (2010).

    Article  PubMed  CAS  Google Scholar 

  49. Farmer, D. B. et al. Chemical doping and electron–hole conduction asymmetry in graphene devices. Nano Lett. 9, 388–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Sinitskii, A. et al. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4, 1949–1954 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Pham, T. et al. MoS2–graphene heterostructures as efficient organic compounds sensing 2D materials. Carbon 142, 504–512 (2019).

    Article  CAS  Google Scholar 

  52. Zhang, W. et al. Ultrahigh-gain photodetectors based on atomically thin graphene–MoS2 heterostructures. Sci Rep. 4, 3826 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ippolito, S. et al. Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. Nat. Nanotechnol. 16, 592–598 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Gbadamasi, S. et al. Interface chemistry of two-dimensional heterostructures–fundamentals to applications. Chem. Soc. Rev. 50, 4684–4729 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Bottari, G., de la Torre, G., Guldi, D. M. & Torres, T. Covalent and noncovalent phthalocyanine−carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chem. Rev. 110, 6768–6816 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Martín, N. et al. Electronic communication in tetrathiafulvalene (TTF)/C60 systems: toward molecular solar energy conversion materials? Acc. Chem. Res. 40, 1015–1024 (2007).

    Article  PubMed  CAS  Google Scholar 

  57. Villalva, J. et al. Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules. Nat. Commun. 12, 1578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge European Research Council (ERC-PoC- 842606 (E.M.P.); ERC-AdG-742684 (J. S.) and the MSCA program MSCA-IF-2019-892667 (N.M.S.), MINECO (CTQ2017-86060-P (E.M.P.) and CTQ2016-79419-R), Ministerio de Ciencia e Innovación (RTI2018-096075-A-C22 (E.B.), RYC2019-028429-I (E.B.)) the Comunidad de Madrid (MAD2D-CM S2013/ MIT-3007 (E.M.P.), Y2018/NMT-4783 (A.D.)) and the Programa de Atracción del Talento Investigador 2017-T1/IND-5562 (E.B.)). CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110) are gratefully acknowledged. IMDEA Nanociencia acknowledges support from the Severo Ochoa Programme for Centres of Excellence in R&D (MINECO, grant no. SEV-2016-0686). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.V.S., E.B. and E.M.P. conceived and designed experiments. M.V.S., R.Q.O. and M.V.H. synthesized compound 1. M.V.S. and R.Q.O. exfoliated and functionalized the materials. M.V.S., R.Q.O., N.M.S., M.L.G.J. and I.J.G. carried out the chemical and structural characterization. A.D., L.M.P. and E.B. fabricated the nanodevices and performed the electrical measurements. V.S., J. S., E.B. and E.M.P. supervised research and directed data analysis. M.V.S., E.B. and E.M.P. wrote the manuscript, with contributions from all authors.

Corresponding authors

Correspondence to Enrique Burzurí or Emilio M. Pérez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–35 and Tables 1–2.

Supplementary Data 1

Statistical source data for Supplementary Fig. 2.

Supplementary Data 2

Statistical source data for Supplementary Fig. 5.

Supplementary Data 3

Statistical source data for Supplementary Fig. 25.

Supplementary Data 4

Statistical source data for Supplementary Fig. 27.

Supplementary Data 5

Statistical source data for Supplementary Fig. 30a.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez Sulleiro, M., Develioglu, A., Quirós-Ovies, R. et al. Fabrication of devices featuring covalently linked MoS2–graphene heterostructures. Nat. Chem. 14, 695–700 (2022). https://doi.org/10.1038/s41557-022-00924-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00924-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing