Skip to main content
Log in

A novel R3H protein, OsDIP1, confers ABA-mediated adaptation to drought and salinity stress in rice

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Dehydration responsive element-binding factors (DBFs) have recently emerged as essential components of stress tolerance mechanisms in plants. In this work, we investigated the role of OsDIP1 that operate upstream of DBFs as a regulator of drought and salinity tolerance in rice.

Methods

Experiments were conducted on rice plants (Oryza sativa) and included combination of physiological (plant phenotyping) and molecular methods. The latter involved real-time PCR (RT-qPCR); yeast two-hybrid, BiFC assay, GST pull-down, CoIP and firefly luciferase (LUC)/ renilla (REN) assays.

Results

OsDIP1 expression was induced by hydrogen peroxide (H2O2), ABA (abscisic acid), drought (polyethylene glycol treatment), and salt stress. Overexpression of OsDIP1 in rice enhanced drought and salinity tolerance while knocking out OsDIP1 by CRISPR-Cas9 editing resulted in drought and salt sensitive phenotype. The activity and gene expression of antioxidant defense enzymes, superoxide dismutase (SOD), catalase (CAT), was increased in OsDIP1-overexpressed transgenic rice plants, while the content of malondialdehyde (MDA) was decreased. In contrast, the content and gene expression of SODCc2 and CatB, decreased, and the content of MDA was increased in knockout of OsDIP1 rice plants, suggesting that overexpression of OsDIP1 enhances the antioxidant capacity of rice plants. The yeast two-hybrid screening test revealed that OsDIP1 interacted with ZFP36, a key zinc finger transcription factor involved in ABA-induced antioxidant defense. Moreover, OsDIP1 could modulate some key ABA-responsive genes via interacting with ZFP36.

Conclusions

In this work, we show that DIP1 plays a central role in modulating drought and salinity stress tolerance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

source of the apoplastic ROS production) inhibitor diphenylene iodonium (DPI), H2O2 scavenger (dimethylthiourea, DMTU) and catalase (CAT) treated with 50 μM ABA treatment. 10 μM DPI, 100 mM DMTU, and 100 U CAT were used. (C) Time course of changes in the expression of OsDIP1 under PEG NaCl treatments. 10% PEG6000 and 100 mM NaCl were used to treat 10-d old rice plants. (D) The expression pattern of OsDIP1 exposed to 80 μM fluridon (an ABA inhibitor) under PEG or NaCl stress. Data are mean ± SD (n = 8)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

CAT:

Catalase

DAPI:

4',6-Diamidino-2-phenylindole, dihydrochloride

DMTU:

Dimethylthiourea

DPI:

Diphenylene iodonium

E. coli :

Escherichia coli

H2DCF-DA:

2′,7′-Dichlorofluorescein diacetate

H2O2 :

Hydrogen peroxidase

NCED:

9-Cis-epoxycarotenoid dioxygenase

LUC/REN:

Firefly luciferase/renilla

MDA:

Malondialdehyde

NaCl:

Sodium chloride

PEG:

Polyethylene glycol

Rbohs:

Respiratory burst oxidase homologs

SOD:

Superoxide dismutase

YFP:

Yellow fluorescence protein

ZFP:

Zinc finger protein

References

  • Agarwal PK, Gupta K, Lopato S, Agarwal P (2017) Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. J Exp Bot 68(9):2135–2148

    Article  CAS  PubMed  Google Scholar 

  • Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57(5):798–809

    Article  CAS  PubMed  Google Scholar 

  • Alam I, Batool K, Cui D, Yang Y, Lu Y (2019) Comprehensive genomic survey, structural classification and expression analysis of C2H2 zinc finger protein gene family in Brassica rapa L. PLoS ONE 14(5):e0216071. https://doi.org/10.1371/journal.pone.0216071

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandziulis RJ, Swanson MS, Dreyfuss G (1989) RNA-binding proteins as developmental regulators. Genes Dev 3:431–437

    Article  CAS  PubMed  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:e23681. https://doi.org/10.4161/psb.23681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cieśla M, Turowski TW, Nowotny M, Tollervey D, Boguta M (2020) The expression of Rpb10, a small subunit common to RNA polymerases, is modulated by the R3H domain-containing Rbs1 protein and the Upf1 helicase. Nucleic Acids Res 48:12252–12268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding X, Richter T, Chen M, Fujii H, Seo YS, Xie M, Zheng X, Kanrar S, Stevenson RA, Dardick C, Li Y, Jiang H, Zhang Y, Yu F, Bartley LE, Chern M, Ba rt R, Chen X, Zhu L, Farmerie WG, Gribskov M, Zhu JK, Fromm ME, Ronald PC, and Song WY (2009) A rice kinase-protein interaction map. Plant Physiol 149(3):1478–1492

  • Figueiredo DD, Barros PM, Cordeiro AM, Serra TS, Lourenco T, Chander S, Oliveira MM, Saibo NJ (2012) Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B. J Exp Bot 63:3643–3656

    Article  CAS  PubMed  Google Scholar 

  • Grishin NV (1998) The R3H motif: a domain that binds single-stranded nucleic acids. Trends Biochem Sci 23:329–330

    Article  CAS  PubMed  Google Scholar 

  • Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N, Wang B (2020) C2H2 zinc finger proteins: master regulators of abiotic stress responses in plants. Front Plant Sci 11:115. https://doi.org/10.3389/fpls.2020.00115

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M (2007) Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol 173:27–38

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Wang W, Li C, Zhang J, Lin F, Zhang A, Jiang M (2008) Cross-talks between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. Plant Growth Regul 55:183–198

    Article  CAS  Google Scholar 

  • Huang L, Jia J, Zhao X, Zhang M, Huang X, Ji E, Ni L, Jiang M (2018a) The ascorbate peroxidase APX1 is a direct target of a zinc finger transcription factor ZFP36 and a late embryogenesis abundant protein OsLEA5 interacts with ZFP36 to co-regulate OsAPX1 in seed germination in rice. Biochem Bioph Res Co 495:339–345

    Article  CAS  Google Scholar 

  • Huang L, Zhang M, Jia J, Zhao X, Huang X, Ji E, Ni L, Jiang M (2018b) An atypical late embryogenesis abundant protein OsLEA5 plays a positive role in ABA-induced antioxidant defense in Oryza sativa L. Plant Cell Physiol 59:916–929

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Takemoto M, Akimoto Y, Takada-Watanabe A, Yan K, Sakamoto K, Maezawa Y, Suguro M, He L, Tryggvason K, Betsholtz C, Yokote K (2021) A novel podocyte protein, R3h domain containing-like, inhibits TGF-β-induced p38 MAPK and regulates the structure of podocytes and glomerular basement membrane. J Mol Med (berl) 99(6):859–876

    Article  CAS  Google Scholar 

  • Jiang J, Song C (2005) Regulation role of reactive oxygen species and mitogen-activated protein kinases in plant stress signaling. Physiol Mol Biol Pla 31:1–10

    CAS  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defense system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Zhang D, Wang L, Pan J, Liu Y, Kong X, Zhou Y, Li D (2013) A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiol Bioch 71:112–120

    Article  CAS  Google Scholar 

  • Jung H, Chung PJ, Park SH, Redillas MCFR, Kim YS, Suh JW, Kim JK (2017) Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnol J 15:1295–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kizis D, Pagès M (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30(6):679–689

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Kudupudi PR, Sharma P, Sinha AK (2008) Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol Bioch 46:891–897

    Article  CAS  Google Scholar 

  • Lai HT, Chiang CM (2013) Bimolecular fluorescence complementation (BiFC) assay for direct visualization of protein-protein interaction in vivo. Bio Protoc 3(20):e935. https://doi.org/10.21769/bioprotoc.935

    Article  PubMed  Google Scholar 

  • Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X (2017) A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170:114–126

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chu Z, Luo J, Zhou Y, Cai Y, Lu Y, Xia J, Kuang H, Ye Z, Ouyang B (2018) The C2H2 zinc-finger protein SlZF3 regulates asa synthesis and salt tolerance by interacting with CSN5B. Plant Biotechnol J 16:1201–1213

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Zhang A, He G, Yan Y (2007) The R3H domain stabilizes poly(A)-specific ribonuclease by stabilizing the RRM domain. Biochem Bioph Res Co 360:846–851

    Article  CAS  Google Scholar 

  • Liu Y, Yao X, Zhang L, Lu L, and Liu R (2021) Overexpression of DBF-interactor protein 6 containing an R3H domain enhances drought tolerance in Populus L. (Populus tomentosa). Front Plant Sci 12:601585. https://doi.org/10.3389/fpls.2021.601585

  • Mohamed MSA, Wen J, Muyue W, Bian S, Xu M, Wang W, Zhang J, Xu Z, Yu M, Liu Q, Zhang C, Zhang H, Tang S, Gu M, Yu H (2017) Transcriptional changes of rice in response to rice black-streaked dwarf virus. Gene 628:38–47

    Article  CAS  Google Scholar 

  • Naalden D, Haegeman A, Almeida-Engler J, Eshetu FB, Bauters L, Gheysen G (2018) The Meloidogyne graminicola effector Mg16820 is secreted in the apoplast and cytoplasm to suppress plant host defense. Mol Plant Pathol 19(11):2416–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni L, Fu X, Zhang H, Li X, Cai X, Zhang P, Liu L, Wang Q, Sun M, Wang Q, Zhang A, Zhang Z, Jiang M (2019) Abscisic acid inhibits rice protein phosphatase PP45 via H2O2 and relieves repression of the Ca2+/CaM-dependent protein kinase DMI3. Plant Cell 31(1):128–152

    Article  CAS  PubMed  Google Scholar 

  • Pradeep K, Agarwal KG, Sergiy L, Agarwal P (2017) Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. J Exp Bot 68(9):2135–2148

    Article  CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  • Ray PD, Huang B, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razzaq A, Wani SH, Saleem F, Yu M, Zhou M, Shabala S (2021) Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. J Exp Bot 72(18):6123–6139

    Article  CAS  PubMed  Google Scholar 

  • Rehfeld F, Maticzka D, Grosser S, Knauff P, Eravci M, Vida I, Backofen R, Wulczyn FG (2018) The RNA-binding protein ARPP21 controls dendritic branching by functionally opposing the miRNA it hosts. Nat Commun 9:1235. https://doi.org/10.1038/s41467-018-03681-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman S, Mahmood T (2015) Functional role of DREB and ERF transcription factors: regulating stress-responsive network in plants. Acta Physiol Plant 37:178. https://doi.org/10.1007/s11738-015-1929-1

    Article  CAS  Google Scholar 

  • Rohila JS, Chen M, Chen S, Chen J, Cerny R, Dardick C, Canlas P, Xu X, Gribskov M, Kanrar S, Zhu JK, Ronald P, Fromm ME (2006) Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J 46(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Saleh A, Lumbreras V, Lopez C, Dominguez-Puigjaner E, Kizis D, Pages M (2006) Maize DBF1-interactor protein 1 containing an R3H domain is a potential regulator of DBF1 activity in stress responses. Plant J 46:747–757

    Article  CAS  PubMed  Google Scholar 

  • Shi B, Ni L, Liu Y, Zhang A, Tan M, Jiang MY (2014) OsDMI3-mediated activation of OsMPK1 regulates the activities of antioxidant enzymes in abscisic acid signalling in rice. Plant Cell Environ 37:341–352

    Article  CAS  PubMed  Google Scholar 

  • Shi B, Ni L, Zhang A, Cao J, Zhang H, Qin T, Tan M, Zhang J, Jiang M (2012) OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of rice. Mol Plant 5:1359–1374

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour J, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Z, Zhang Y, Liu J, Xie C (2010) Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance. Plant Biol 12:689–697

    Article  CAS  PubMed  Google Scholar 

  • Vergne E, Ballini E, Droc G, Tharreau D, Notteghem JL, Morel JB (2008) Archipelago: a dedicated resource for exploiting past, present, and future genomic data on disease resistance regulation in rice. Mol Plant Microbe in 21:869–878

    Article  CAS  Google Scholar 

  • Wani SH, Choudhary JR, Choudhary M, Rana M, Gosal SS (2020) Recent advances in genomics assisted breeding for drought stress tolerance in major cereals. J Cereal Res 12:1–12

    Article  Google Scholar 

  • Wang H, Liu C, Ren Y, Wu M, Wu Z, Chen Y, He L, Tang B, Huang X, Shabala S, Yu M, Huang L (2019b) An RNA-binding protein MUG13.4 interacts with AtAGO2 to modulate salinity tolerance in Arabidopsis. Plant Sci 288:110218. https://doi.org/10.1016/j.plantsci.2019a.110218

  • Wang K, Ding Y, Cai C, Chen Z, Zhu C (2019b) The role of C2H2 zinc finger proteins in plant responses to abiotic stresses. Physiol Plantarum 165(4):690–700

    Article  CAS  Google Scholar 

  • Wang Z, Chen D, Sun F, Guo W, Wang W, Li X, Lan Y, Du L, Li S, Fan Y, Zhou Y, Zhao H, Zhou T (2021) ARGONAUTE 2 increases rice susceptibility to rice black-streaked dwarf virus infection by epigenetically regulating HEXOKINASE 1 expression. Mol Plant Pathol 22(9):1029–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Ni Z, Liu L, Nie L, Li L, Chen M, Ma Y (2008) Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genomics 280:497–508

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Tong J, Xu Z, Wei P, Xu L, Wan Q, Huang Y, He X, Yang J, Shao H, Ma H (2016) Soybean C2H2-type zinc finger protein GmZFP3 with conserved QALGGH motif negatively regulates drought responses in transgenic Arabidopsis. Front Plant Sci 7:325. https://doi.org/10.3389/fpls.2016.00325

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Liu Y, Wen F, Yao D, Wang L, Guo J, Ni L, Zhang A, Tan M, Jiang M (2014) A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defense and oxidative stress tolerance in rice. J Exp Bot 65:5795–5809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/ chloroplast-related processes. Plant Methods 7(1):30. https://doi.org/10.1186/1746-4811-7-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng S, Li J, Ma L, Wang H, Zhou H, Ni E, Jiang D, Liu Z, Zhuang C (2019) OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers. P Natl Acad Sci USA 116(15):7549–7558

    Article  CAS  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Yan J, Liu W, Liu L, Sheng Y, Sun Y, Li Y, Scheller HV, Jiang M, Hou X, Ni L, Zhang A (2016) Phosphorylation of a NAC transcription factor by a calcium/calmodulin-dependent protein kinase regulates abscisic acid-induced antioxidant defense in maize. Plant Physiol 171:1651–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof Wenhua Zhang from Nanjing Agricultural University for supplying pSUPER1300 and pCAMBIA1301 vectors, and Prof. Hongxuan Lin from Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences for providing rice protoplast transformation vectors to study the transactivation of TFs.

Funding

This work was supported by the National Natural Science Foundation of China (grants 31901202, 31672228), National Distinguished Expert Project (WQ20174400441), Project for High-level Talents of Foshan University (gg07102, gg05003/071), and by the Australian Research Council (DP150101663).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyi Jiang.

Additional information

Responsible Editor: Ricardo Aroca.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the journal policy described in the Instructions for authors is: Mingyi Jiang (m_y_jiang@126.com).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Fu, W., Ji, E. et al. A novel R3H protein, OsDIP1, confers ABA-mediated adaptation to drought and salinity stress in rice. Plant Soil 477, 501–519 (2022). https://doi.org/10.1007/s11104-022-05428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05428-y

Keywords

Navigation