Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Progressive Application of Marine Biomaterials in Targeted Cancer Nanotherapeutics

Author(s): Janani Indrakumar, Srivarshini Sankar, Harishkumar Madhyastha and Gothandam Kodiveri Muthukaliannan*

Volume 28, Issue 41, 2022

Published on: 28 June, 2022

Page: [3337 - 3350] Pages: 14

DOI: 10.2174/1381612828666220422091611

Price: $65

Abstract

The marine microenvironment harbors many unique species of organisms that produce a plethora of compounds that help mankind cure a wide range of diseases. The diversity of products from the ocean bed serves as potentially healing materials and inert vehicles carrying the drug of interest to the target site. Several composites still lay undiscovered under the blue canopy, which can provide treatment for untreated diseases that keep haunting the earth periodically. Cancer is one such disease that has been of interest to several eminent scientists worldwide due to the heterogenic complexity involved in the disease's pathophysiology. Due to extensive globalization and environmental changes, cancer has become a lifestyle disease continuously increasing exponentially in the current decade. This ailment requires a definite remedy that treats by causing minimal damage to the body's normal cells. The application of nanotechnology in medicine has opened up new avenues of research in targeted therapeutics due to their highly malleable characteristics. Marine waters contain an immense ionic environment that succors the production of distinct nanomaterials with exceptional character, yielding highly flexible molecules to modify, thus facilitating the engineering of targeted biomolecules. This review provides a short insight into an array of marine biomolecules that can be probed into cancer nanotherapeutics sparing healthy cells.

Keywords: Heterogenic complexity, marine biomaterials, biomaterials, nano-therapeutics, cancer-therapeutics, marine.

[1]
Kiuru P. DʼAuria MV, Muller CD, Tammela P, Vuorela H, Yli-Kauhaluoma J. Exploring marine resources for bioactive compounds. Planta Med 2014; 80(14): 1234-46.
[http://dx.doi.org/10.1055/s-0034-1383001] [PMID: 25203732]
[2]
Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR. Marine natural products. Nat Prod Rep 2017; 34(3): 235-94.
[http://dx.doi.org/10.1039/C6NP00124F] [PMID: 28290569]
[3]
Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG. Retrospective analysis of natural products provides insights for future dis-covery trends. Proc Natl Acad Sci USA 2017; 114(22): 5601-6.
[http://dx.doi.org/10.1073/pnas.1614680114] [PMID: 28461474]
[4]
Silva TH, Duarte ARC, Moreira-silva J. Examples of Natural and Nature-Inspired Materials 1-Biomaterials from Marine-Origin Biopol-ymers. John Wiley & Sons 2012; pp. 1-22.
[5]
Silva TH, Alves A, Ferreira BM, et al. Materials of marine origin: A review on polymers and ceramics of biomedical interest. Int Mater Rev 2012; 57: 276-307.
[http://dx.doi.org/10.1179/1743280412Y.0000000002]
[6]
Silva SS, Gomes JM, Rodrigues LC, Reis RL. Marine-Derived polymers in ionic liquids: architectures development and biomedical ap-plications. Mar Drugs 2020; 18(7): 18.
[http://dx.doi.org/10.3390/md18070346] [PMID: 32629815]
[7]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[8]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[9]
Macdonald S, Cunningham Y, Patterson C, et al. Mass media and risk factors for cancer: the under-representation of age. BMC Public Health 2018; 18(1): 490.
[http://dx.doi.org/10.1186/s12889-018-5341-9] [PMID: 29695238]
[10]
Kumar MS, Adki KM. Marine natural products for multi-targeted cancer treatment: A future insight. Biomed Pharmacother 2018; 105: 233-45.
[http://dx.doi.org/10.1016/j.biopha.2018.05.142] [PMID: 29859466]
[11]
Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10(8): 789-99.
[http://dx.doi.org/10.1038/nm1087] [PMID: 15286780]
[12]
Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016; 66(4): 271-89.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[13]
Oliphant R, Nicholson GA, Horgan PG, Molloy RG, McMillan DC, Morrison DS. Deprivation and colorectal cancer surgery: longer-term survival inequalities are due to differential postoperative mortality between socioeconomic groups. Ann Surg Oncol 2013; 20(7): 2132-9.
[http://dx.doi.org/10.1245/s10434-013-2959-9] [PMID: 23529783]
[14]
Amin ARMR, Kucuk O, Khuri FR, Shin DM. Perspectives for cancer prevention with natural compounds. J Clin Oncol 2009; 27(16): 2712-25.
[http://dx.doi.org/10.1200/JCO.2008.20.6235] [PMID: 19414669]
[15]
Kiran P, Khan A, Neekhra S, Pallod S, Srivastava R. Nanohybrids as protein-polymer conjugate multimodal therapeutics. Front Med Technol 2021; 3: 676025.
[http://dx.doi.org/10.3389/fmedt.2021.676025] [PMID: 35047929]
[16]
Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel) 2020; 10(7): 1-41.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[17]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[18]
Mallik AK, Shahruzzaman M, Zaman A, et al. Fabrication of polysaccharide-based materials using ionic liquids and scope for biomedi-cal use. Functional Polysaccharides for Biomedical Applications. Woodhead Publ 2019; 4: 131-71.
[19]
Agüero L, Zaldivar-Silva D, Peña L, Dias ML. Alginate microparticles as oral colon drug delivery device: A review. Carbohydr Polym 2017; 168: 32-43.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.033] [PMID: 28457455]
[20]
Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci 2012; 37(1): 106-26.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[21]
Park S. Bin, Lih E, Park KS, Joung YK, Han DK. Biopolymer-based functional composites for medical applications. Prog Polym Sci 2017; 68: 77-105.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.12.003]
[22]
Chiu HI, Lim V. Wheat germ agglutinin-conjugated disulfide cross-linked alginate nanoparticles as a docetaxel carrier for colon cancer therapy. Int J Nanomedicine 2021; 16: 2995-3020.
[http://dx.doi.org/10.2147/IJN.S302238] [PMID: 33911862]
[23]
Zhu L, Ge F, Yang L, et al. Alginate particles with ovalbumin (OVA) peptide can serve as a carrier and adjuvant for immune therapy in B16-OVA cancer model. Med Sci Monit Basic Res 2017; 23: 166-72.
[http://dx.doi.org/10.12659/MSMBR.901576] [PMID: 28450696]
[24]
Wang F, Yang S, Yuan J, Gao Q, Huang C. Effective method of chitosan-coated alginate nanoparticles for target drug delivery applica-tions. J Biomater Appl 2016; 31(1): 3-12.
[http://dx.doi.org/10.1177/0885328216648478] [PMID: 27164869]
[25]
Anirudhan TS, Anila MM, Franklin S. Synthesis characterization and biological evaluation of alginate nanoparticle for the targeted deliv-ery of curcumin. Mater Sci Eng C 2017; 78: 1125-34.
[http://dx.doi.org/10.1016/j.msec.2017.04.116] [PMID: 28575948]
[26]
Wang J, Wang M, Zheng M, et al. Folate mediated self-assembled phytosterol-alginate nanoparticles for targeted intracellular anticancer drug delivery. Colloids Surf B Biointerfaces 2015; 129: 63-70.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.028] [PMID: 25829128]
[27]
Dey S, Sherly MCD, Rekha MR, Sreenivasan K. Alginate stabilized gold nanoparticle as multidrug carrier: Evaluation of cellular interac-tions and hemolytic potential. Carbohydr Polym 2016; 136: 71-80.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.016] [PMID: 26572330]
[28]
Bilal M, Rasheed T, Iqbal HMN, Li C, Hu H, Zhang X. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. Int J Biol Macromol 2017; 105(Pt 1): 393-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.047] [PMID: 28705499]
[29]
Choukaife H, Doolaanea AA, Alfatama M. Alginate nanoformulation: Influence of process and selected variables. Pharmaceuticals 2020; 13(11): 335.
[http://dx.doi.org/10.3390/ph13110335]
[30]
Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A. Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm 2013; 455(1-2): 219-28.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.034] [PMID: 23886649]
[31]
Sorasitthiyanukarn FN, Muangnoi C, Ratnatilaka Na Bhuket P, Rojsitthisak P, Rojsitthisak P. Chitosan/alginate nanoparticles as a promis-ing approach for oral delivery of curcumin diglutaric acid for cancer treatment. Mater Sci Eng C 2018; 93: 178-90.
[http://dx.doi.org/10.1016/j.msec.2018.07.069] [PMID: 30274050]
[32]
Yuk SH, Oh KS, Cho SH, et al. Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging. Biomacromolecules 2011; 12(6): 2335-43.
[http://dx.doi.org/10.1021/bm200413a] [PMID: 21506550]
[33]
Deng X, Cao M, Zhang J, et al. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials 2014; 35(14): 4333-44.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.006] [PMID: 24565525]
[34]
Pramanik A, Laha D, Pramanik P, Karmakar P. A novel drug “copper acetylacetonate” loaded in folic acid-tagged chitosan nanoparticle for efficient cancer cell targeting. J Drug Target 2014; 22(1): 23-33.
[http://dx.doi.org/10.3109/1061186X.2013.832768] [PMID: 23987131]
[35]
Yang SJ, Lin CF, Kuo ML, Tan CT. Photodynamic detection of oral cancers with high-performance chitosan-based nanoparticles. Biomacromolecules 2013; 14(9): 3183-91.
[http://dx.doi.org/10.1021/bm400820s] [PMID: 23909559]
[36]
Cheng M, He B, Wan T, et al. 5-Fluorouracil nanoparticles inhibit hepatocellular carcinoma via activation of the p53 pathway in the or-thotopic transplant mouse model. PLoS One 2012; 7(10): e47115.
[http://dx.doi.org/10.1371/journal.pone.0047115] [PMID: 23077553]
[37]
Arya G, Vandana M, Acharya S, Sahoo SK. Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy. Nanomedicine 2011; 7(6): 859-70.
[http://dx.doi.org/10.1016/j.nano.2011.03.009] [PMID: 21550422]
[38]
Cavalli R, Leone F, Minelli R, Fantozzi R, Dianzani C. New chitosan nanospheres for the delivery of 5-fluorouracil: preparation, charac-terization and in vitro studies. Curr Drug Deliv 2014; 11(2): 270-8.
[http://dx.doi.org/10.2174/1567201811666140206103609] [PMID: 24499357]
[39]
Trickler WJ, Nagvekar AA, Dash AK. A novel nanoparticle formulation for sustained paclitaxel delivery. AAPS PharmSciTech 2008; 9(2): 486-93.
[http://dx.doi.org/10.1208/s12249-008-9063-7] [PMID: 18431660]
[40]
Yang SJ, Lin FH, Tsai KC, et al. Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjug Chem 2010; 21(4): 679-89.
[http://dx.doi.org/10.1021/bc9004798] [PMID: 20222677]
[41]
Campo VL, Kawano DF, da Silva DB, Carvalho I. Carrageenans: Biological properties, chemical modifications and structural analysis - A review. Carbohydr Polym 2009; 77: 167-80.
[http://dx.doi.org/10.1016/j.carbpol.2009.01.020]
[42]
Yu G, Zhao X, Yang B, et al. Sequence determination of sulfated carrageenan-derived oligosaccharides by high-sensitivity negative-ion electrospray tandem mass spectrometry. Anal Chem 2006; 78(24): 8499-505.
[http://dx.doi.org/10.1021/ac061416j] [PMID: 17165845]
[43]
Chen X, Han W, Zhao X, Tang W, Wang F. Epirubicin-loaded marine carrageenan oligosaccharide capped gold nanoparticle system for pH-triggered anticancer drug release. Sci Rep 2019; 9(1): 6754.
[http://dx.doi.org/10.1038/s41598-019-43106-9] [PMID: 31043709]
[44]
Oliveira C, Neves NM, Reis RL, Martins A, Silva TH. Gemcitabine delivered by fucoidan/chitosan nanoparticles presents increased tox-icity over human breast cancer cells. Nanomedicine (Lond) 2018; 13(16): 2037-50.
[http://dx.doi.org/10.2217/nnm-2018-0004] [PMID: 30189774]
[45]
Choi DG, Venkatesan J, Shim MS. Selective anticancer therapy using pro-oxidant drug loaded chitosan-fucoidan nanoparticles. Int J Mol Sci 2019; 20(13): 3220.
[http://dx.doi.org/10.3390/ijms20133220] [PMID: 31262038]
[46]
Kimura R, Rokkaku T, Takeda S, Senba M, Mori N. Cytotoxic effects of fucoidan nanoparticles against osteosarcoma. Mar Drugs 2013; 11(11): 4267-78.
[http://dx.doi.org/10.3390/md11114267] [PMID: 24177673]
[47]
Lee JS, Jin GH, Yeo MG, Jang CH, Lee H, Kim GH. Fabrication of electrospun biocomposites comprising polycaprolactone/] fucoidan for tissue regeneration. Carbohydr Polym 2012; 90(1): 181-8.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.012] [PMID: 24751028]
[48]
Dahlin RL, Kasper FK, Mikos AG. Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev 2011; 17(5): 349-64.
[http://dx.doi.org/10.1089/ten.teb.2011.0238] [PMID: 21699434]
[49]
Yan J, Han Y, Xia S, et al. Polymer template synthesis of flexible BaTiO3 crystal nanofibers. Adv Funct Mater 2019; 29: 1-9.
[http://dx.doi.org/10.1002/adfm.201907919]
[50]
Liu S, Zheng Y, Hu J, Wu Z, Chen H. Fabrication and characterization of polylactic acid/polycaprolactone composite macroporous mi-cro-nanofiber scaffolds by phase separation. New J Chem 2020; 44: 17382-90.
[http://dx.doi.org/10.1039/D0NJ03176C]
[51]
Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003; 21(10): 1171-8.
[http://dx.doi.org/10.1038/nbt874] [PMID: 14520402]
[52]
Janani I, Lakra R, Kiran MS, Korrapati PS. Selectivity and sensitivity of molybdenum oxide-polycaprolactone nanofiber composites on skin cancer: Preliminary in-vitro and in-vivo implications. J Trace Elem Med Biol 2018; 49: 60-71.
[http://dx.doi.org/10.1016/j.jtemb.2018.04.033] [PMID: 29895373]
[53]
Shahriar SMS, Mondal J, Hasan MN, Revuri V, Lee DY, Lee YK. Electrospinning nanofibers for therapeutics delivery. Nanomaterials (Basel) 2019; 9(4): 532.
[http://dx.doi.org/10.3390/nano9040532] [PMID: 30987129]
[54]
Buzgo M, Mickova A, Rampichova M, Doupnik M. Blend electrospinning, coaxial electrospinning, and emulsion electrospinning tech-niques. Core-Shell Nanostructures Drug Deliv Theranostics 2018; pp. 325-47.
[http://dx.doi.org/10.1016/B978-0-08-102198-9.00011-9]
[55]
Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L. Recent advances in nanofibre fabrication techniques. Text Res J 2012; 82: 129-47.
[http://dx.doi.org/10.1177/0040517511424524]
[56]
Valizadeh A, Mussa Farkhani S. Electrospinning and electrospun nanofibres. IET Nanobiotechnol 2014; 8(2): 83-92.
[http://dx.doi.org/10.1049/iet-nbt.2012.0040] [PMID: 25014079]
[57]
Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of Nanofibers. J Appl Phys 2004; 96: 557-69.
[58]
Satish A, Korrapati PS. Fabrication of Triiodothyronine incorporated nanofibrous biomaterial:Its implications on wound healing. RSC Advances 2015; 5: 83773-80.
[http://dx.doi.org/10.1039/C5RA14142G]
[59]
Karthikeyan K, Krishnaswamy VR, Lakra R, Kiran MS, Korrapati PS. Fabrication of electrospun zein nanofibers for the sustained deliv-ery of siRNA. J Mater Sci Mater Med 2015; 26(2): 101.
[http://dx.doi.org/10.1007/s10856-015-5439-x] [PMID: 25655500]
[60]
Han S, Nie K, Li J, et al. 3D electrospun nanofiber-based scaffolds: from preparations and properties to tissue regeneration applications. Stem Cells Int 2021; 2021: 8790143.
[http://dx.doi.org/10.1155/2021/8790143] [PMID: 34221024]
[61]
Rijal G, Li W. Native-mimicking in vitro microenvironment: an elusive and seductive future for tumor modeling and tissue engineering. J Biol Eng 2018; 12: 20.
[http://dx.doi.org/10.1186/s13036-018-0114-7] [PMID: 30220913]
[62]
Karthikeyan K, Guhathakarta S, Rajaram R, Korrapati PS. Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole. Int J Pharm 2012; 438(1-2): 117-22.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.075] [PMID: 22960320]
[63]
Chen M, Gao S, Dong M, et al. Chitosan/siRNA nanoparticles encapsulated in PLGA nanofibers for siRNA delivery. ACS Nano 2012; 6(6): 4835-44.
[http://dx.doi.org/10.1021/nn300106t] [PMID: 22621383]
[64]
Niemczyk-Soczynska B, Gradys A, Sajkiewicz P. Hydrophilic surface functionalization of electrospun nanofibrous scaffolds in tissue engineering. Polymers (Basel) 2020; 12(11): 2636.
[http://dx.doi.org/10.3390/polym12112636] [PMID: 33182617]
[65]
Jeckson TA, Neo YP, Sisinthy SP, Gorain B. Delivery of therapeutics from layer-by-layer electrospun nanofiber matrix for wound heal-ing: An Update. J Pharm Sci 2021; 110(2): 635-53.
[http://dx.doi.org/10.1016/j.xphs.2020.10.003] [PMID: 33039441]
[66]
Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 2009; 61(12): 1033-42.
[http://dx.doi.org/10.1016/j.addr.2009.07.007] [PMID: 19643152]
[67]
Peng J, Yang Q, Shi K, Xiao Y, Wei X, Qian Z. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Adv Drug Deliv Rev 2019; 143: 37-67.
[http://dx.doi.org/10.1016/j.addr.2019.06.007] [PMID: 31276708]
[68]
Poornima B, Korrapati PS. Fabrication of chitosan-polycaprolactone composite nanofibrous scaffold for simultaneous delivery of ferulic acid and resveratrol. Carbohydr Polym 2017; 157: 1741-9.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.056] [PMID: 27987890]
[69]
Chen S, Boda SK, Batra SK, Li X, Xie J. Emerging roles of electrospun nanofibers in cancer research. Adv Healthc Mater 2018; 7(6): e1701024.
[http://dx.doi.org/10.1002/adhm.201701024] [PMID: 29210522]
[70]
Sofi HS, Ashraf R, Khan AH, Beigh MA, Majeed S, Sheikh FA. Reconstructing nanofibers from natural polymers using surface function-alization approaches for applications in tissue engineering, drug delivery and biosensing devices. Mater Sci Eng C 2019; 94: 1102-24.
[http://dx.doi.org/10.1016/j.msec.2018.10.069] [PMID: 30423692]
[71]
Bhattarai DP, Aguilar LE, Park CH, Kim CS. A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes (Basel) 2018; 8(3): 62.
[http://dx.doi.org/10.3390/membranes8030062] [PMID: 30110968]
[72]
Qasim SB, Zafar MS, Najeeb S, et al. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int J Mol Sci 2018; 19(2): 407.
[http://dx.doi.org/10.3390/ijms19020407] [PMID: 29385727]
[73]
Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A comparative review of natural and synthetic biopolymer composite scaf-folds. Polymers (Basel) 2021; 13(7): 1105.
[http://dx.doi.org/10.3390/polym13071105] [PMID: 33808492]
[74]
Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 2017; 9(4): 53.
[http://dx.doi.org/10.3390/pharmaceutics9040053] [PMID: 29156634]
[75]
Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem 2016; 31(sup1): 177-83.
[http://dx.doi.org/10.3109/14756366.2016.1161620] [PMID: 27028474]
[76]
Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C 2010; 30: 1204-10.
[http://dx.doi.org/10.1016/j.msec.2010.06.018]
[77]
Xue J, Wu T, Xia Y. Perspective: Aligned arrays of electrospun nanofibers for directing cell migration. APL Mater 2018; 6(12): 120902.
[http://dx.doi.org/10.1063/1.5058083] [PMID: 33335802]
[78]
Sharma P, Sheets K, Elankumaran S, Nain AS. The mechanistic influence of aligned nanofibers on cell shape, migration and blebbing dynamics of glioma cells. Integr Biol 2013; 5(8): 1036-44.
[http://dx.doi.org/10.1039/c3ib40073e] [PMID: 23817451]
[79]
Najafi M, Frey MW. Electrospun nanofibers for chemical separation. Nanomaterials (Basel) 2020; 10(5): 982.
[http://dx.doi.org/10.3390/nano10050982] [PMID: 32455530]
[80]
Jiménez-Gómez CP, Cecilia JA. Chitosan: A natural biopolymer with a wide and varied range of applications. Molecules 2020; 25(17): 3981.
[http://dx.doi.org/10.3390/molecules25173981] [PMID: 32882899]
[81]
Gholipour AK, Bahrami SH, Nouri M. Chitosan-poly (vinyl alcohol) blend nanofibers : Morphology, biological and antimicrobial prop-erties. E-Polymers 2009; 9: 1-12.
[http://dx.doi.org/10.1515/epoly.2009.9.1.1580]
[82]
Garcia CEG, Martínez FAS, Bossard F, Rinaudo M, Bossard F, Rinaudo M. Biomaterials based on electrospun chitosan. Relation be-tween processing conditions and mechanical properties. Polymers (Basel) 2018; 10(3): 247.
[http://dx.doi.org/10.3390/polym10030257] [PMID: 30966292]
[83]
Balan P, Indrakumar J, Murali P, Korrapati PS. Bi-faceted delivery of phytochemicals through chitosan nanoparticles impregnated nano-fibers for cancer therapeutics. Int J Biol Macromol 2020; 142: 201-11.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.093] [PMID: 31604079]
[84]
Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H. Electrospinning of chitosan. Macromol Rapid Commun 2004; 24: 1600-5.
[http://dx.doi.org/10.1002/marc.200400253]
[85]
Rostami M, Ghorbani M, Aman Mohammadi M, Delavar M, Tabibiazar M, Ramezani S. Development of resveratrol loaded chitosan-gellan nanofiber as a novel gastrointestinal delivery system. Int J Biol Macromol 2019; 135: 698-705.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.187] [PMID: 31145955]
[86]
Islam A, Yasin T, Rafiq MA, et al. In-situ crosslinked nanofiber mats of chitosan/poly(vinyl alcohol) blend: Fabrication, characterization and MTT assay with cancerous bone cells. Fibers Polym 2015; 16: 1853-60.
[http://dx.doi.org/10.1007/s12221-015-5353-3]
[87]
Rengifo AFC, Stefanes NM, Toigo J, et al. PEO-chitosan nanofibers containing carboxymethyl-hexanoyl chitosan/dodecyl sulfate nano-particles loaded with pyrazoline for skin cancer treatment. Mater Sci Eng C 2019; 119: 335-43.
[88]
Aggarwal U, Goyal AK, Rath G. Development and characterization of the cisplatin loaded nanofibers for the treatment of cervical cancer. Mater Sci Eng C 2017; 75: 125-32.
[http://dx.doi.org/10.1016/j.msec.2017.02.013] [PMID: 28415413]
[89]
Samadi S, Moradkhani M, Beheshti H, Irani M, Aliabadi M. Fabrication of chitosan/poly(lactic acid)/graphene oxide/TiO2 composite nanofibrous scaffolds for sustained delivery of doxorubicin and treatment of lung cancer. Int J Biol Macromol 2018; 110: 416-24.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.048] [PMID: 28801095]
[90]
Ma G, Liu Y, Peng C, Fang D, He B, Nie J. Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemothera-py against prostate cancer. Carbohydr Polym 2011; 86: 505-12.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.082]
[91]
Faraji Dizaji B, Hasani Azerbaijan M, Sheisi N, et al. Synthesis of PLGA/chitosan/zeolites and PLGA/chitosan/metal organic frameworks nanofibers for targeted delivery of Paclitaxel toward prostate cancer cells death. Int J Biol Macromol 2020; 164: 1461-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.228] [PMID: 32735933]
[92]
Bharathi D, Ranjithkumar R, Chandarshekar B, et al. Bio-inspired synthesis of chitosan/copper oxide nanocomposite using rutin and their anti-proliferative activity in human lung cancer cells. Int J Biol Macromol 2019; 141: 476-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.235] [PMID: 31473316]
[93]
Sundar SS, Sangeetha D. Fabrication and evaluation of electrospun collagen/poly(N-isopropyl acrylamide)/chitosan mat as blood-contacting biomaterials for drug delivery. J Mater Sci Mater Med 2012; 23(6): 1421-30.
[http://dx.doi.org/10.1007/s10856-012-4610-x] [PMID: 22476650]
[94]
Abasian P, Radmansouri M, Habibi Jouybari M, et al. Incorporation of magnetic NaX zeolite/DOX into the PLA/chitosan nanofibers for sustained release of doxorubicin against carcinoma cells death in vitro. Int J Biol Macromol 2019; 121: 398-406.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.215] [PMID: 30287373]
[95]
Mendes AC, Gorzelanny C, Halter N, Schneider SW, Chronakis IS. Hybrid electrospun chitosan-phospholipids nanofibers for transder-mal drug delivery. Int J Pharm 2016; 510(1): 48-56.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.016] [PMID: 27286632]
[96]
Radmansouri M, Bahmani E, Sarikhani E, et al. Doxorubicin hydrochloride - Loaded electrospun chitosan/cobalt ferrite/] titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release. Int J Biol Macromol 2018; 116: 378-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.161] [PMID: 29723626]
[97]
Zhou X, Chen L, Wang W, et al. Electrospun nanofibers incorporating self-decomposable silica nanoparticles as carriers for controlled delivery of anticancer drug. RSC Advances 2015; 81: 65897-904.
[http://dx.doi.org/10.1039/C5RA11830A]
[98]
Wang Z, Sun N, Liu M, et al. Multifunctional nanofibers for specific purification and release of CTCs. ACS Sens 2017; 2(4): 547-52.
[http://dx.doi.org/10.1021/acssensors.7b00048] [PMID: 28723179]
[99]
Kular JK, Basu S, Sharma RI. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applica-tions for tissue engineering. J Tissue Eng 2014; 5: 2041731414557112.
[http://dx.doi.org/10.1177/2041731414557112] [PMID: 25610589]
[100]
Law JX, Liau LL, Saim A, et al. Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng Regen Med 2017; 14(6): 699-718.
[http://dx.doi.org/10.1007/s13770-017-0075-9] [PMID: 30603521]
[101]
Silva TH, Moreira-Silva J, Marques ALP, Domingues A, Bayon Y, Reis RL. Marine origin collagens and its potential applications. Mar Drugs 2014; 12(12): 5881-901.
[http://dx.doi.org/10.3390/md12125881] [PMID: 25490254]
[102]
Chinh NT, Manh VQ, Trung VQ, et al. Characterization of collagen derived from tropical freshwater carp fish scale wastes and its amino acid sequence. Nat Prod Commun 2019; 14.
[http://dx.doi.org/10.1177/1934578X19866288]
[103]
Heinemann S, Ehrlich H, Douglas T, et al. Ultrastructural studies on the collagen of the marine sponge Chondrosia reniformis Nardo. Biomacromolecules 2007; 8(11): 3452-7.
[http://dx.doi.org/10.1021/bm700574y] [PMID: 17944515]
[104]
Addad S, Exposito JY, Faye C, et al. Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical ap-plications. Mar Drugs 2011; 9(6): 967-83.
[http://dx.doi.org/10.3390/md9060967] [PMID: 21747742]
[105]
Han W, Chen S, Yuan W, et al. Oriented collagen fibers direct tumor cell intravasation. Proc Natl Acad Sci USA 2020; 117: 3944-52.
[PMID: 27663743]
[106]
Huang WY, Hibino T, Suye SI, et al. Electrospun collagen core/] poly-l-lactic acid shell nanofibers for prolonged release of hydrophilic drug. RSC Advances 2021; 11: 5703-11.
[http://dx.doi.org/10.1039/D0RA08353D]
[107]
Chen D, Zhu T, Fu W, Zhang H. Electrospun polycaprolactone/collagen nanofibers cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide and genipin facilitate endothelial cell regeneration and may be a promising candidate for vascular scaffolds. Int J Nanomedicine 2019; 14: 2127-44.
[http://dx.doi.org/10.2147/IJN.S192699] [PMID: 30988613]
[108]
Senthil R, Berly R, Bhargavi Ram T, Gobi N. Electrospun poly(vinyl) alcohol/collagen nanofibrous scaffold hybridized by graphene oxide for accelerated wound healing. Int J Artif Organs 2018; 41(8): 467-73.
[http://dx.doi.org/10.1177/0391398818775949] [PMID: 29843552]
[109]
Rath G, Hussain T, Chauhan G, Garg T, Goyal AK. Collagen nanofiber containing silver nanoparticles for improved wound-healing ap-plications. J Drug Target 2016; 24(6): 520-9.
[http://dx.doi.org/10.3109/1061186X.2015.1095922] [PMID: 26487102]
[110]
Akturk O, Kismet K, Yasti AC, et al. Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. J Biomater Appl 2016; 31(2): 283-301.
[http://dx.doi.org/10.1177/0885328216644536] [PMID: 27095659]
[111]
Sun F, Guo J, Liu Y, Yu Y. Preparation, characterizations and properties of sodium alginate grafted acrylonitrile/polyethylene glycol electrospun nanofibers. Int J Biol Macromol 2019; 137: 420-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.185] [PMID: 31252015]
[112]
Chen YH, Cheng CH, Chang WJ, Lin YC, Lin FH, Lin JC. Studies of magnetic alginate-based electrospun matrices crosslinked with dif-ferent methods for potential hyperthermia treatment. Mater Sci Eng C 2016; 62: 338-49.
[http://dx.doi.org/10.1016/j.msec.2016.01.070] [PMID: 26952432]
[113]
Sahoo DR, Biswal T. Alginate and its application to tissue engineering. SN Appl Sci 2021; 3: 1-19.
[http://dx.doi.org/10.1007/s42452-020-04096-w]
[114]
Hu WW, Lin CH, Hong ZJ. The enrichment of cancer stem cells using composite alginate/polycaprolactone nanofibers. Carbohydr Polym 2019; 206: 70-9.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.087] [PMID: 30553375]
[115]
Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Basic concepts and recent advances in nanogels as carriers for medical applica-tions. Drug Deliv 2017; 24(1): 539-57.
[http://dx.doi.org/10.1080/10717544.2016.1276232] [PMID: 28181831]
[116]
Din F ud W, Aman A, Ullah I. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[117]
Kang MG, Lee MY, Cha JM, et al. Nanogels derived from fish gelatin: application to drug delivery system. Mar Drugs 2019; 17(4): 246.
[http://dx.doi.org/10.3390/md17040246] [PMID: 31027308]
[118]
Wang LY, Ma GH, Su ZG. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. J Control Release 2005; 106(1-2): 62-75.
[http://dx.doi.org/10.1016/j.jconrel.2005.04.005] [PMID: 15922472]
[119]
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008; 60(15): 1650-62.
[http://dx.doi.org/10.1016/j.addr.2008.09.001] [PMID: 18848591]
[120]
Calvo P, Remuñan-López C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanopar-ticles as novel carriers for proteins and vaccines. Pharm Res 1997; 14(10): 1431-6.
[http://dx.doi.org/10.1023/A:1012128907225] [PMID: 9358557]
[121]
Duan C, Zhang D, Wang F, et al. Chitosan-g-poly(N-isopropylacrylamide) based nanogels for tumor extracellular targeting. Int J Pharm 2011; 409(1-2): 252-9.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.050] [PMID: 21356283]
[122]
Mangalathillam S, Rejinold NS, Nair A, Lakshmanan VK, Nair SV, Jayakumar R. Curcumin loaded chitin nanogels for skin cancer treat-ment via the transdermal route. Nanoscale 2012; 4(1): 239-50.
[http://dx.doi.org/10.1039/C1NR11271F] [PMID: 22080352]
[123]
Kumar SP, Birundha K, Kaveri K, Devi KT. Antioxidant studies of chitosan nanoparticles containing naringenin and their cytotoxicity effects in lung cancer cells. Int J Biol Macromol 2015; 78: 87-95.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.045] [PMID: 25840152]
[124]
d’Ayala GG, Malinconico M, Laurienzo P. Marine derived polysaccharides for biomedical applications: chemical modification ap-proaches. Molecules 2008; 13(9): 2069-106.
[http://dx.doi.org/10.3390/molecules13092069] [PMID: 18830142]
[125]
George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review. J Control Release 2006; 114(1): 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.017] [PMID: 16828914]
[126]
Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 2012; 33(11): 3279-305.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.007] [PMID: 22281421]
[127]
Xue Y, Xia X, Yu B, et al. A green and facile method for the preparation of a pH-responsive alginate nanogel for subcellular delivery of doxorubicin. RSC Advances 2015; 5: 73416-23.
[http://dx.doi.org/10.1039/C5RA13313K]
[128]
Debele TA, Mekuria SL, Lin SY, Tsai HC. Synthesis and characterization of bioreducible heparin-polyethyleneimine nanogels: Applica-tion as imaging-guided photosensitizer delivery vehicle in photodynamic therapy. RSC Advances 2016; 6: 14692-704.
[http://dx.doi.org/10.1039/C5RA25650J]
[129]
Maciel D, Figueira P, Xiao S, et al. Redox-responsive alginate nanogels with enhanced anticancer cytotoxicity. Biomacromolecules 2013; 14(9): 3140-6.
[http://dx.doi.org/10.1021/bm400768m] [PMID: 23927460]
[130]
Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA. Pharmaceutical significance of cellulose: A review. Express Polym Lett 2008; 2: 758-78.
[http://dx.doi.org/10.3144/expresspolymlett.2008.90]
[131]
Abeer MM, Mohd Amin MCI, Martin C. A review of bacterial cellulose-based drug delivery systems: their biochemistry, current ap-proaches and future prospects. J Pharm Pharmacol 2014; 66(8): 1047-61.
[http://dx.doi.org/10.1111/jphp.12234] [PMID: 24628270]
[132]
Wu L, Zhou H, Sun HJ, et al. Thermoresponsive bacterial cellulose whisker/poly(NIPAM-co-BMA) nanogel complexes: synthesis, char-acterization, and biological evaluation. Biomacromolecules 2013; 14(4): 1078-84.
[http://dx.doi.org/10.1021/bm3019664] [PMID: 23458422]
[133]
Tan J, Kang H, Liu R, et al. Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polym Chem 2011; 2: 672-8.
[http://dx.doi.org/10.1039/C0PY00348D]
[134]
Li Z, Xu W, Zhang C, Chen Y, Li B. Self-assembled lysozyme/carboxymethylcellulose nanogels for delivery of methotrexate. Int J Biol Macromol 2015; 75: 166-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.033] [PMID: 25637692]
[135]
Qian H, Wang X, Yuan K, et al. Delivery of doxorubicin in vitro and in vivo using bio-reductive cellulose nanogels. Biomater Sci 2014; 2(2): 220-32.
[http://dx.doi.org/10.1039/C3BM60176E] [PMID: 32481882]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy