Skip to main content
Log in

The Effect of Power Saturation on the Line Shapes of Nitroxide Spin Probes Under the Influence of Spin-Exchange and Dipole–Dipole Interactions Studied by CW EPR

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The continuous-wave saturation (CWS) behavior of several measureable parameters in an EPR spectrum of a nitroxide free radical is carried out theoretically and tested experimentally with 15N-d17-4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl in 60% aqueous-glycerol solutions from 273 to 340 K. The theory explicitly includes spin relaxation due to electron spin exchange and dipole–dipole interactions, but no other spectral diffusion pathways of paramagnetic relaxation. A primary objective of this work was to study the CWS of the dispersion signal induced by spin exchange and dipole–dipole interactions, a signal that is superimposed upon the absorption. This was rendered possible because, using modern least-squares fitting methods, the two signals may also be separated to high precision. Using a new rigorous theory, theoretical spectra were simulated and were also separated into absorption and dispersion components. The absorption components, both experimental and theoretical, may be analyzed using the traditional Bloch equations and compared with literature results. The dispersion components may only be analyzed by direct comparison of parameters derived from the theoretical and experimental spectra. A comparison of the amplitudes of the absorption and the dispersion components provides a severe test of the theory and the experimental results are good agreement with the theory. The experimental values of \({T}_{1}\) both from The Bloch equations and the direct comparison of the absorption components were comparable to the limited and scattered literature results where both pulsed- and CWS methods were employed. From the theory, the same value of \({T}_{1}\) was found from the CWS of the Lorentzian line width and the doubly-integrated intensity; however, there were discrepancies in the values of \({T}_{1}\) for these two parameters experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.M. Salikhov, Appl. Magn. Reson. 38, 237–256 (2010)

    Article  Google Scholar 

  2. K.M. Salikhov, Fundamentals of Spin. Exchange Story of a Paradigm Shift (Springer, Geneva, 2019)

    Book  Google Scholar 

  3. K.M. Salikhov, Appl. Magn. Reson. 723, 1074–1087 (2018)

    Google Scholar 

  4. K.M. Salikhov, I.T. Khairuzhdinov, J. Exp Theor Phys 128, 684–699 (2019)

    Article  Google Scholar 

  5. K.M. Salikhov, Appl. Magn. Reson. 51, 297–325 (2020)

    Article  Google Scholar 

  6. B.L. Bales, M.M. Bakirov, R.T. Galeev, I.A. Kirilyuk, A.I. Kokorin, K.M. Salikhov, Appl. Magn. Reson. 48, 1399–1445 (2017)

    Article  Google Scholar 

  7. B.L. Bales, M. Peric, Appl. Magn. Reson. 48, 175–200 (2017)

    Article  Google Scholar 

  8. B.L. Bales, M. Peric, J. Phys. Chem. A 106, 4846–4854 (2002)

    Article  Google Scholar 

  9. D. Marsh, T. Páli, and P.I. Horváth, in Spin Labeling: The Next Millennium, L.J. Berliner, Editor. (Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 2002)

  10. D. Marsh, Spin-Label Electron Paramagnetic Resonance Spectroscopy (CRC Press, Taylor & Francis Group, Boca Raton, 2020)

    Google Scholar 

  11. B.L. Bales, in Biological Magnetic Resonance, L.J. Berliner and J. Reuben, Editors. (Plenum, New York, 1989)

  12. T.J. Stone, T. Buckman, P.L. Nordio, H.M. McConnell, Proc. Natl. Acad. Sci. USA 54, 1010–1017 (1965)

    Article  ADS  Google Scholar 

  13. G.I. Likhtenshtein, Nitroxides. Brief History, Fundamentals, and Recent Developments (Springer, Cham, 2020)

    Book  Google Scholar 

  14. L.J. Berliner (ed.), Spin Labeling: The Next Millennium. Biological Magnetic Resonance, vol. 14 (Kluwer Academic Publishers, New York, 2002), p. 444

    Google Scholar 

  15. L.J. Berliner, Spin Labeling: Theory and Applications (Plenum Publishing Corporation, New York, 1989)

    Book  Google Scholar 

  16. L.J. Berliner, Spin Labeling II: Theory and Applications (Academic Press, New York, 1979)

    Google Scholar 

  17. J.R. Biller, V. Meyer, H. Elajaili, G.M. Rosen, J.P.Y. Kao, S.S. Eaton, G.R. Eaton, J. Magn. Reson. 212, 370–377 (2011)

    Article  ADS  Google Scholar 

  18. J.R. Biller, J.E. McPeak, S.S. Eaton, G.R. Eaton, Appl. Magn. Reson. 49, 1235–1251 (2018)

    Article  Google Scholar 

  19. A. Overhauser, Phys. Rev. 89, 689–700 (1953)

    Article  ADS  Google Scholar 

  20. A. Overhauser, Phys. Rev. 92, 477 (1953)

    Article  Google Scholar 

  21. R.D. Bates, W.S. Drozdoski, J. Chem. Phys. 67, 4038 (1977)

    Article  ADS  Google Scholar 

  22. B.D. Armstrong, S. Han, J. Chem. Phys. 127, 10458 (2007)

    Article  Google Scholar 

  23. M.J. Prandolini, V.P. Denysenkov, M. Gafurov, S. Lyubenova, B. Endeward, M. Bennati, T.E. Prisner, Appl. Magn. Reson. 34, 399–407 (2008)

    Article  Google Scholar 

  24. D. Sezer, M. Gafurov, M.J. Prandolini, V.P. Denysenkov, T.F. Prisner, Phys. Chem. Chem. Phys. 11, 6638–6653 (2009)

    Article  Google Scholar 

  25. M.T. Tuerke, M. Bennati, Appl. Magn. Reson. 43, 129–138 (2012)

    Article  Google Scholar 

  26. M.M. Bakirov, K.M. Salikhov, M. Peric, R.N. Schwartz, B.L. Bales, Appl. Magn. Reson. 50, 919–942 (2019)

    Article  Google Scholar 

  27. M. Peric, B.L. Bales, M. Peric, J. Phys. Chem. A 116, 2855–2866 (2012)

    Article  Google Scholar 

  28. A.M. Portis, Phys. Rev. 91, 1071–1078 (1953)

    Article  ADS  Google Scholar 

  29. A.S. AlOmar, Optik 225, 165533–165544 (2021)

    Article  ADS  Google Scholar 

  30. T.G. Castner Jr., Phys. Rev. 115, 1506–1515 (1959)

    Article  ADS  Google Scholar 

  31. E.L. Wolf, Phys. Rev. 142, 555–569 (1966)

    Article  ADS  Google Scholar 

  32. C.P. Poole Jr., Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques, 2nd edn. (Dover, Mineola, 1996)

    Google Scholar 

  33. J.S. Hwang, R.P. Mason, L.-P. Hwang, J.H. Freed, J. Phys. Chem. 79, 489–511 (1975)

    Article  Google Scholar 

  34. M.P. Eastman, R.G. Kooser, M.R. Das, J.H. Freed, J. Chem. Phys. 51, 2690 (1969)

    Article  ADS  Google Scholar 

  35. B.L. Bales, Cell Biochem. Biophys. 75, 171–184 (2017)

    Article  Google Scholar 

  36. M.P. Eastman, G.V. Bruno, J.H. Freed, J. Chem. Phys. 52, 321–327 (1970)

    Article  ADS  Google Scholar 

  37. B.L. Bales, M. Peric, M.T. Lamy-Freund, J. Magn. Reson. 132, 279–286 (1998)

    Article  ADS  Google Scholar 

  38. B.L. Bales, M. Peric, J. Phys. Chem. B 101, 8707–8716 (1997)

    Article  Google Scholar 

  39. J.D. Currin, Phys. Rev. 126, 1995 (1962)

    Article  ADS  Google Scholar 

  40. D. Kivelson and K. Ogan, in Advances in Magnetic Resonance, J.S. Waugh, Editor. (Academic Press, New York, 1974)

  41. Y.N. Molin, K.M. Salikhov, K.I. Zamaraev, Spin Exchange. Principles and Applications in Chemistry and Biology (Springer, New York, 1980)

    Google Scholar 

  42. K.I. Zamaraev, Y.N. Molin, K.M. Salikhov, Spin Exchange. (Nauka, Siberian branch, Novosibisk. Russian Edition., 1977)

  43. B.L. Bales, M. Meyer, S. Smith, M. Peric, J. Phys. Chem. A 113, 4930–4940 (2009)

    Article  Google Scholar 

  44. B.L. Bales, M. Meyer, M. Peric, J. Phys. Chem. A 118, 6154–6162 (2014)

    Article  Google Scholar 

  45. B.L. Bales, M. Peric, I. Dragutan, J. Phys. Chem. A 107, 9086–9098 (2003)

    Article  Google Scholar 

  46. D. Marsh, J. Magn. Res. 277, 86–94 (2017)

    Article  ADS  Google Scholar 

  47. B.L. Bales, M. Meyer, S. Smith, M. Peric, J. Phys. Chem. A 112, 2177–2181 (2008)

    Article  Google Scholar 

  48. M.R. Kurban, M. Peric, B.L. Bales, J. Chem. Phys. 129, 064501-1-064501–10 (2008)

    Article  ADS  Google Scholar 

  49. A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, London, 1986)

    Google Scholar 

  50. K.M. Salikhov, A.G. Semenov, Y.D. Tsvetkov, Electron Spin Echo and Its Applications (Nauka, Novosibirsk, 1976). (in Russian)

    Google Scholar 

  51. K.M. Salikhov, J. Magn. Reson. 63, 271–279 (1985)

    ADS  Google Scholar 

  52. B.H. Robinson, D.A. Haas, C. Mailer, Science 263, 490–493 (1994)

    Article  ADS  Google Scholar 

  53. K.M. Salikhov, M.M. Bakirov, R.T. Galeev, Appl. Magn. Reson. 47, 1095–1122 (2016)

    Article  Google Scholar 

  54. M.K. Bowman, H. Hase, L. Kevan, J. Magn. Reson. 22, 23–32 (1976)

    ADS  Google Scholar 

  55. K. Yamada, Y. Kinoshita, T. Yamasaki, H. Sadasue, F. Mito, M. Nagai, S. Matsumoto, M. Aso, H. Suemuni, K. Sakai, H. Utsumi, Arch. Pharm. Chem. Life Sci. 341, 548–553 (2008)

    Article  Google Scholar 

  56. J. Pirrwitz, D. Schwarz, (DDR Patent, 222017 A1 (WP C 07 D/260 901 6).)

  57. L.A. Shundrin, I.A. Kirilyuk, I.A. Grigor’ev, Mendeleev Commun. 24, 298–300 (2014)

    Article  Google Scholar 

  58. P.R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969)

    Google Scholar 

  59. D. Marsh, Spin Labeling. Theory and Applications (Plenum Publishing Corporation, New York, 1989)

    Google Scholar 

  60. R.N. Schwartz, L.L. Jones, M.K. Bowman, J. Phys. Chem. 83, 3429 (1979)

    Article  Google Scholar 

  61. R.G. Kooser, W.V. Volland, J.H. Freed, J. Chem. Phys. 50, 5243–5257 (1969)

    Article  ADS  Google Scholar 

  62. P.W. Percival, J.S. Hyde, J. Magn. Reson. 23, 249–257 (1976)

    ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to our colleagues from Kazan Zavoisky Physical-Technical Institute, Prof. M. Bowman and Dr. A.G. Maryasov for numerous fruitful discussions. M.M.B. and I.T.K. acknowledge financial support from the government assignment for FRC Kazan Scientific Center of RAS. K.M.S. acknowledges also support by the Russian Science Foundation (Project No. 20-63-46034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel M. Bakirov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakirov, M.M., Khairutdinov, I.T., Salikhov, K.M. et al. The Effect of Power Saturation on the Line Shapes of Nitroxide Spin Probes Under the Influence of Spin-Exchange and Dipole–Dipole Interactions Studied by CW EPR. Appl Magn Reson 53, 1275–1315 (2022). https://doi.org/10.1007/s00723-021-01461-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01461-9

Navigation